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Abstract

Given a pair of biorthogonal multiscaling functions, we present an algorithm for raising
their approximation orders to any desired level. Precisely, let <t>(x) and 4>(JT) be a pair
of biorthogonal multiscaling functions of multiplicity r, with approximation orders m
and m, respectively. Then for some integer s, we can construct a pair of new biorthogonal
multiscaling functions d>new(jc) = [<t>TM, </>r+1 (or), 0,+2(*) <Pr+s(x)f and O™w(̂ ) =
[i>(x)T,4>r+l(x),4>r+2(x) 4>r+I(x)]T with approximation orders n (n > m) and h
(h > in), respectively. In addition, corresponding to Onew(x) and <t>new(.ir), a biorthogonal
multiwavelet pair ^"""(x) and ^"'"(A:) is constructed explicitly. Finally, an example is
given.
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Keywords and phrases: biorthogonal, multiscaling functions, multi wavelets, approximation
order.

1. Introduction

A refinable function vector of multiplicity r is a vector <i>(x) = [(p\(x),..., 4>r(x)]T',

which satisfies a matrix refinement equation

* ) . (1.1)
k

The sequence {P*}*ez of coefficient matrices is called the two-scale matrix sequence

of <i>(x). We assume that only finitely many Pk are nonzero and that all 0;-(JC) have

compact support.

We call <J>(x) a multiscaling function with multiplicity r if it generates a mul-

tiresolution analysis (MRA) of L2(R). This means that there exists a sequence of

subspaces V), j € Z, of L2(R) with the following properties:
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(1) • • • C Vo C V, C V2 • • • ;

(2) closLHR)(\JjeZ Vj) = L2(R);
(3) rUz*0 = {O);
(4) f(x) € V, <» /(2x) € VJ+lJ 6 Z;
(5) The family {<t>t{x - k) : 1 < £ < r, k e Z] forms a Riesz basis of Vo.

In detail, property (5) means that there exist two constants 0 < . A < f i < o o s o that

2 J*Z

for any sequence of coefficient vectors {C;} with 2Z,-eZ 11 Cy 11̂  < oo. The superscript
* denotes the transpose.

Corresponding to a multiscaling function 0>(x), ty(x) = [ V ' I ^ ) . • • •. V'VOO]7 >s
called a multiwavelet if {\j/t(x — k) : 1 < I < r;k € Z} forms Riesz bases of subspace
Wo so that V, = Vo ® Wo and {2n/2^(2nA: - A:) : 1 < I < r;k, n € Z) forms a Riesz
basis of L2(/?).

satisfies the refinement equation

\k<t>(2x-.k) (1.2)

for some r x r matrices sequence {Qk)kez-
By taking Fourier transforms on both sides of (1.1) and (1.2), respectively, we have

- P(z) = -),Pkz\ (1.3)

. fi(z) = ^ '

where P(z) and 2(z) ^ c called the two-scale matrix symbols of <£>(x) and
respectively.

The properties of multiscaling functions and multiwavelets are discussed in many
papers (see [3,4,6, 15,17-19]). One of the properties of a multiscaling function
which has great practical interest is the approximation order (see [2,8,10-12]). One
known way to raise the approximation order is through the use of two-scale similarity
transforms (TSTs) (see [13,16]). In this paper, we will give a general scheme for
constructing a pair of biorthogonal multiscaling functions and multiwavelets with ar-
bitrary desired approximation orders from any given pair of biorthogonal multiscaling
functions <t>(x) and <t>(;t). In addition, we also present an explicit formula for con-
structing a pair of biorthogonal multiwavelets vj/ncw(.x) and *•"*(*) associated with a
new biorthogonal multiscaling function pair <J>ni:w(;t) and <t>new(;t).
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2. Basic concept

Two multiscaling functions 4>(x) and <t>(jc) form a biorthogonal pair if

* ( * - *)> = «o.*/rxr. kzZ, (2.1)

where 8 is the Kronecker delta, and lrxr denotes the identity matrix.
Corresponding to <£>(x) and <t>(x), two multiwavelets * ( J C ) = [ij/\(x),..., V*V(

and ^ ( x ) = [i /f iOO,. . . , irr(x)]T form a biorthogonal multiwavelet pair if they satisfy
the following equations:

kZ

where Orxr denotes the zero matrix.
Similarly, let P(z) and Q(z) be the two-scale matrix symbols of <t>(x) and

respectively. In terms of the two-scale matrix symbols P(z), Q(z), P(z) and Q(z),
the biorthogonality of conditions (2.1)-(2.2) implies (see [1,9,19])

P(z)HzY + P(-z)P(-z)* = Irxr,
P(z)Q(z)* + P(-z)Q(-zr = Orxr,
P(z)Q(z)* + P(-z)Q(-zY = Orxr,
Q{z)Q{zY + Q{-z)Q{-zY = h.r.

LEMMA 2.1. Let $>(x) and <t>(jc) be a pair of biorthogonal multiscaling functions,
and let ^{x) and ^(x) be the corresponding biorthogonal multiwavelet pair, with
two-scale matrix symbols P(z), P(z), Q(z) and Q(z), respectively. Suppose Qk(z),
k= 1, . . . , r isthekth row of Q(z), and Qk(z), k = 1, ...,r is the kth row of Q(z).
Then

P(z)Qk(zY + P(-z)Qk(-zY = O,xi, * = 1 , . . . , r,

* + P(-z)Q*(-z)* = 0rxi, k = l,...,r, (2.4)

* ( z ) * + Q J ( - z ) Q k ( - z Y = Sj.t, j , k = l , . . . , r .

PROOF. In terms of the biorthogonality of <t>(x), <t>(x), *(JC) and *(*) , we
can show that P(z), Q(z), P(z) and Q(z) satisfy (2.3). Substituting Q(z) =
[Q'(z)*.- . . ,Gr(z)T and Q(z) = [Q\zY,..., Qr(zYY into (2.3), respectively,
we obtain (2.4). D
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A multiscaling function <t>(x) has approximation order m > 1 if m is the largest
integer for which there is a set of row vectors {ae}™~o C Rlxr, with a0 ^ Oixr that
satisfy, for I =0, \,... ,m — I,

t=0

( 2 -5 )

See [8,10,11] for details. As is well known, if a multiscaling function <I>(x) has
approximation order m, this implies that the multiwavelet ^(x) has m vanishing
moments, that is, f x'\jrk(x)dx = 0, for j — 0, 1, . . . , m — 1; k = 1 , . . . , r.

By repeated application of (1.3), we have

According to [3,5], the infinite matrix product ( Y\T=\ P{e iw/2')) converges uniformly
on compact sets to a continuous matrix-valued function if and only if P(l) has
eigenvalues kt = • • • = kk = 1 and \kk+i\, ..., \kr\ < 1. with the eigenvalue 1
nondegenerate for k > 1.

A two-scale matrix symbol P(z) satisfies Condition E, if P(l) has a simple eigen-
value of 1, with all other eigenvalues less than 1 in modulus. Condition E is automat-
ically satisfied if the two-scale matrix symbol P(z) generates an MRA of L2{R) with
compactly supported basis functions.

In order to obtain the conditions that the matrix refinement equation has an L2-stable
solution, we introduce the transition operator &P;

STPA{Z2) = p(z)A(Z)P(zr + p(-z)A(-Z)P(-zr,

where A(z) is an r x r matrix with trigonometric polynomial entries. See [15] for
details. It was shown in [15] that the matrix refinement equation has an L2-stable
solution if and only if the corresponding transition operator &P satisfies Condition E,
and its eigenmatrix corresponding to the eigenvalue 1 is positive definite for all w e R.

3. Biorthogonal multiscaling functions

In this section, we will introduce a procedure for constructing a pair of biorthog-
onal multiscaling functions with multiplicity r + s starting with any given pair of
biorthogonal multiscaling functions with multiplicity r.
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Let H(z) = [hij(z)] be the s x r matrix of Laurent polynomials with H(z) =
H(-z) and H(z)H(z)* = Cl (0 < C < 1, \z\ = 1). Construct two s x r matrices
A(z) and A(z) as follows:

A(z) = H(z)Q(z), (3.1)

A = H(z)Q(z). (3.2)

LEMMA 3.1. In the setting of Lemma 2.1, suppose that A(z) and A(z) are two s xr
matrices defined in (3.1) and (3.2), respectively. Then

A(z)A(z)* + A(-z)A(-z)* = CISXS, (3.3)

P(z)A(z)* + P(-z)A(-z)* = Orxs, (3.4)

P(z)A(z)* + P(-z)A(-z)* = Orxs, (3.5)

A(z)Q(zT + A(-z)Q(-zY - H(z), (3.6)

A{z)QUT + H-z)Q{-zT = H(z). (3.7)

PROOF. Suppose that Equations (2.3) hold and that H(z) satisfies the conditions
above. Then we have

A(z)A(zT + A(-z)A(-Zy

= H(z)Q(z)Q(zTH(zy + H(-z)Q(-z)Q(-zyH(-zy

= H(z)[Q(z)Q(zy + Q(-z)Q(-zy]H(-zy = H(z)H(-zy = CISXS.

This implies that (3.3) holds. Similarly, applying Lemma 2.1, (3.4)-(3.7) can also be
proven. D

THEOREM 3.2. Under the condition of Lemma 3.1, suppose that B(z) and B(z) are
two s x s matrices, and satisfy B(z)B(z)* + B(—z)B(—z)* = (1 — C)ISXS, where
0 < C < 1. Define

\7\ 1 [ ? ! ?J (3-8)
Then Pnew(z)Pnew(z)* + Pm»(-z)Pm"(-zy = /<,+,)*<,+,>.

PROOF. By Lemmas 2.1 and 3.1, we have

/jnew(z)Pnew(z)* + />new(-z)Pnew(-z)*

= [P(z) 0 1 \P(zy Mz)'~\
[A(z) B{Z)\[ 0 BizY]
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\P(~Z) 0\ ]
LA(-z) B ( - Z ) J | . 0 B(-Zy
P(z)P(zY + P(-z)P(-zY P(z)A(zY + P(-z)A(-zY
A(z)P(zY + A(-z)P(-zY A(z)A(zY + A(-z)A(-zY

_ f Irxr 0,x,l _ ,
— \ n I \ ~ l<-r+s)x.(r+s)-

L'-'jtxr 'IXJ J

This completes the proof of Theorem 3.2. •

REMARK 1. There exist a lot of B(z), B(z) satisfying the condition

B(z)B(zY + B(-z)B(-zY = (1 - C)/1XI.

Additionally, we can choose B(z) = B(z).

THEOREM 3.3. Suppose that all eigenvalues of the matrices B(l) and B(l) are less
than 1 in modulus. If both P(z) and P(z) satisfy Condition E, then both P"ew(z) and
Pncw(z) satisfy Condition E.

PROOF. Since Pnew(l) = [P
A\\\ B%\ then

= |X/rxr - P{\)\\USXS -

Obviously, all the eigenvalues of the matrices P(l) and B (1) must be the eigenvalues of
the matrix Pncw(l). This means that matrix Pnew(l) has a simple eigenvalue of 1, with
all other eigenvalues less than 1 in modulus. That is, Pnew(z) satisfies Condition E.
Similarly, we can prove that Pnew(z) also satisfies Condition E. This completes the
proof of Theorem 3.3. •

It was shown in [7, 14] that the representation matrix of the transition operator
"̂p~« is J^no. = [2srfii-j]jj, where sfj is the (r + s)2 x (r + s)2 matrix defined by

of — Ŷ  Pnew f$\ Pncw

According to the above discussion and [15], we have the following construction
theorem.

THEOREM 3.4. Let the conditions of Lemma 3.1 and Theorems 3.2 and 3.3 be
satisfied. Further, let the transition operator S?P™ satisfy Condition E, and let its
eigenmatrix corresponding to the eigenvalue 1 be positive definite for all w e R.
Then there are <pr+l (x) , 0r+,(jc) and 0r+, (JC), . . . , <pr+Ax) such that <t>new(x) =
[4>r(jc), 4>r+l(x) 4>r+,(x)]T and4>ne"(x) = [<t>(*)r, $r+l(x), ..., tr+,(.x)]T area
pair of biorthogonal multiscaling functions with multiplicity r + s. Their two-scale
matrix symbols Pnew(z) and Pmw(z) are given by (3.8).
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4. Explicit formula for constructing biorthogonal multiwavelets

In the above section, we have given a method for constructing a pair of biorthog-
onal multiscaling functions. In this section, we will discuss the construction of the
corresponding biorthogonal multiwavelet pair.

For simplicity, in this section, we suppose that matrices B(z) and B(z) of Theo-
rem 3.2 satisfy the following conditions:

(Al) B(z) = B(z);
(A2) B(z)B(z)* + B(-z)B(-Zy = (1 - C)/,XJ, where 0 < C < 1;
(A3) B(z)B(-z) = B(-z)B(z).
Clearly, if B{z) is an r x r diagonal matrix, then condition (A3) must hold.

Construct the matrices Qnew(z) and Qmw(z), respectively, by

n™( = \x^Qiz) Y(z)B(z) ]
v (z) [ o (i-c)-"vs(-zrj'
nM - r Y(z)B(z)
U U)~[ O (l-C)-'^VB(-z

where X(z) and X(z) are two r x r matrices, Y(z) and Y(z) are two r x s matrices,
and it is an odd number.

Next we will give an explicit formula for constructing a biorthogonal multiwavelet
pair corresponding to <t>new(x) and 4>ncw(;c).

THEOREM 4.1. Under the conditions of Theorem 3.4, if matrices X(z), X(z), Y(z)
and Y(z) satisfy the following conditions:

H(z)X{z)* + (1 - C)Y{z)* = Osxr, (4.2)

X(Z)X(ZT + (1 - C)Y(Z)Y(Z)* = hxr,

then a biorthogonal multiwavelet pair tymw(x) and tynew(x) corresponding to <tnew(:c)
and <t>new(jc) is given, in terms of Fourier transforms, by

Vncw(w) = 0new(e~""/2)<J>new(uV2), *ncw(u;) = Qnevi(e-iw/2)i>new(w/2).

PROOF. According to our wavelet construction theorem, we only need prove that
Pmw(z), Pnew(z), 0new(z) and Qncw(z) satisfy the following equations:

Pmw(z)P'KW(zy + Pmw(-z)Pnew(-zr = /(,+,,x(,+,), (4.3)

(_zy = O(r+s)x(r+x), (4.4)
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Pncw(z)Qnew(zr + Pnew(-z)Qne"(-zy = Oir+S)x(r+Sh

Qncw(z)Qnew(zr + Qnew(-z)Qnew(-z)* = /(,+,)x(,+,).

[8]

(4.5)

(4.6)

By Theorem 3.2, (4.3) holds. Next, we only need to prove that (4.4), (4.5) and (4.6)
hold. In fact

o
Y(zy (i-cyl<2ikB(-z)

o

By (2.3), we have P{z)Q{z)* + P(-z)Q(-z)* = Orxr. Hence

y = orxr.

Using Lemma 3.1 and the condition B(z)B(z)* + B(-z)B(-z)* = (1 - C)/iXS, we
obtain

= osxr.
Therefore (4.4) holds. Similarly, we can prove that (4.5) holds. Finally, we prove
(4.6) holds. Since

\X(z)Q(z)
| o

Y(z)B(z) O

X(z)Q(z)Q(zyX(zy
+Y(z)B(z)B(zyY(zy

by (4.2), we have

Qnew(z)Qmw(zy + Qncw(-z)Qnew(-zy

L

o
This completes the proof of Theorem 4.1.

o

•
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5. Approximation orders

In this section, we discuss the approximation orders of a pair of new biorthogonal
multiscaling functions constructed in Section 3.

Let for u = 1 , . . . , s and nu e 2+

jeZ

where hu{z) are Laurent polynomials.
By bu(z) defined in (5.1), construct a n s x s diagonal matrix B(z) by

(5.2)

Then we have the following lemma.

LEMMA 5.1. Let bu(z) defined in (5.1) be symbols of sequences {b"}. Then

jeZ

% = T,<-2J + ! ) % + „ * = 1, . . . , / ! „ - 1.
;eZ jeZ

Further, suppose that B(z) = £y-eZ S;Zy, and L = min{«i,..., ns). Then

;eZ jeZ

LEMMA5.2. Ifallbu(z),u = 1 , . . . , s, satisfy |fcu(z)|2 + \bu(-z)\2 = 2-(2m-2), then

B(z)B(Zy + B(-z)B(-zT =\l- 2
2 2 m J 2 " 1 j /Sxv (5.3)

THEOREM 5.3. In the setting of Theorem 3.4, suppose that <£>(x) and <&(x) have
approximation orders m and m, respectively. If the following conditions hold:

(Cl) B(z) given by (5.2) satisfies (5.3),
(C2) A(z), A(z) defined in (3.1) and (3.2) satisfy

A(z)A(z)' + A(-z)A(-Zy = 2
 22m_7
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then Pnew(z) and Pnew(z) given by (3.8) can generate a pair of new biorthogonal
multiscaling functions <t>new(x) = [<t>T(x),(/>r+l(x) 4>r+s{x)Y and 4>new(x) =
[<$>(x)T, <pr+i(x), . . . , <pr+s(x)]T, which have approximation orders m + L andm + L,
respectively.

PROOF. By Theorem 3.4, P"ew(z) and Pnew(z) can generate a new biorthogonal
multiscaling function pair <t>new(jc) and <&mv/(x). Next, we will prove that this new
biorthogonal multiscaling function pair have approximation orders of m + L and
m + L, respectively.

Since the approximation order of <t>(x) is m, there are a1 e Rr, i = 0, 1,... ,m — 1,
with a0 ^ Olxr, such that, by (2.4) and (2.5),

•' (E ft; - h1-) = ~

;ez

Next, we will prove the approximation order of <J>new(x) is m + L . That is, we will
find a set of row vectors w ' e Rr+S, 1=0, \, ...,m + L — 1, with w° ^ OXMr+s)

such that

1

)-/A

" W ^
l Orx. 1 1 \

l l^j€ZB2j+l] 2l )

l2'-* W l_£ , e zy y+ E ; 6 z y ^ +

(5.5)

It is clear that w' = [a', 0 , . . . , 0] e Rr+S, t = 0, 1 , . . . , m - 1, as the first m
vectors satisfy (5.4) and (5.5). Hence we choose vre = [ a ' , 0 , . . . , 0] € Rr+S,
I = 0, 1, . . . , m — 1, to be the first m vectors in (5.4) and (5.5). The remaining L
row vectors are denoted by w m + ' = [am+e, cl

m+e, c2
m+c,..., cs

m+t], £ = 0, 1 , . . . , L - 1.

Obviously, wm must satisfy Y,)=\ \CL\ / °- 1" fact> i f a ' l CL = °> t h e n w™ =
[am, 0, . . . , 0]. This means that the approximation order of <J> (x) is m +1. If we use the
notation w' = [ae, c\, c],..., c}], then c{ = 0 for j = 1, . . . , s; I = 0, 1 , . . . , m — 1.
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Hence (5.4) is equivalent to

= - E ̂  0
*=0 Z W

iY'kA 2j

,eZ

, (5.6)

k=0

(5.7)

Since c{ = 0 for j = 1 , . . . , s, £ = 0, 1, . . . , m - 1, then (5.7) implies the following
two identities:

- ±;IsJ = O,x,,
z J

E Bl> - zZu1'**
Ljez J

(5.8)

(5.9)

for€ = 1 . . . . . L - 1.
By Lemma 5.1, £ ; e Z B2j = 2-"7,X J. Hence

1
' 'SX.V

Therefore, for I = 1 , . . . , L - 1,

rc' a* l

2m

*=o

5.10)

Similarly, applying (5.5), we have

[ c i , . . . . c f j
Lyez - ] •
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l
jhxs

E (—l)e k (m +
~2^{e-

k=o L \ c

for I = 1 , . . . , L — 1. Hence we have

2m

Y t k (5.11)

for£ = 1 L - 1. By (5.10) or (5.11), taking any [cl
m,..., dm] £ O,XI, we can

obtain [cl
m+r . . . , c^ + J , € = 1, . . . , L — 1. And then applying (5.6), we can obtain

am+e. This means that the remaining L - 1 row vectors wm+t = [am+t, cl
m+e,..., <^,+J,

£ = 1, . . . , L — 1 are obtained. Thereby, we prove that <t>new(x) has approximation
order m + L. Similarly, we also prove that the approximation order of <i>new(;c) is
m + L. This completes the proof of Theorem 5.3. D

REMARK 2. Lemma 5.1 can guarantee that vectors [cl
m+t,..., c^+J, t = 1 , . . . ,

L — 1, obtained by (5.10) and (5.11) are the same.

6. Example

Case of r = s = 1 Let #t (x) and 0| (*) be a pair of biorthogonal scaling functions,
and let ViC*) ar>d V̂ iOO be the corresponding biorthogonal wavelet pair. Their
corresponding two-scale symbols are

LZ'+1-,-1- and

It is easy to verify that both the approximation orders of <p(x) and 4>(x) are 2. That is,
m = m = 2. Take

/2 2 "- 2 - 1 v/3

Then by (3.1) and (3.2), A(z) = (y/3/2)Q(z) and i ( z ) = (y/3/2)Q(z). Take

l + z l 2 (1 + V3) + (1 - V3)z
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It is easy to verify that

A(z)A(z)* + A(-z)A(-zy = 3/4, Bfe)fl(z)* + B(-z)B(-z)* = 1 - 3/4.

By (3.8), we construct

|_ 2

From [6,14], the transition operation Sfp™ associated with Pnew(z) is a 44 x 44
matrix. By calculation, the transition operation 3TP™ satisfies condition E. Hence,
applying Theorem 3.4, we obtain a pair of new biorthogonal multiscaling functions
*n e w(x) = [0,(x),</>2(x)]r and <t>new(;t) = [4>dx),4>2(x)]T, with two-scale matrix
symbols Pncw(z) and Pnew(z) given by (6.1) and (6.2), respectively.

Let X(z) = X(z)* = 1/2 and Y(z) = Y(zY = -j%. It is easy to verify that
X(z), X(z)*, Y(z) and Y(zY satisfy (4.2). Thus, by (4.1), and taking k = 3, we
can construct two matrices Qnew(z) and Qntw(z). Hence, applying Theorem 4.1,
the corresponding biorthogonal multiwavelet pair Wcw(x) = [T^IOO, ^2Ml7" and
tynew(x) = [V^I(JC), i/^OO]7 can be constructed by the two scale matrix symbols
Qnew(z) and <2new(z)-

Further, by Theorem 5.3, both approximation orders of the new biorthogonal mul-
tiscaling functions <t>mw(x) and <t>new(.x) are 4. That is, we raise the approximation
orders of <f>\{x) and 0I(JC) from 2 to 4.

Similar to the case of r = s = 1, some examples can also be constructed for the
settings r > 1 and s > 1.
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