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Following E. H. Fel ler [ l ] , a ring R is called a duo ring 
if every one-sided ideal of R is a two-sided ideal. 

In the first part of this paper, we give some proper t ies 
of duo rings and we show that the set of the nilpotent elements 
of a duo ring R is an ideal, the intersection of the completely 
p r ime ideals of R. 

It is easy to see that every duo ring is a subdirect sum 
of subdirectly irreducible duo rings. We give in the second part 
of this paper a characterizat ion of the subdirectly irreducible 
duo rings. This characterizat ion is quite s imilar to the charac­
terization of the subdirectly irreducible commutative rings, due 
to N. H. McCoy [2], whose methods we use . 

*• P r ime ideals in the duo rings. If R is a duo ring, one 
sees easily that for every tr iple of elements, a, b , . c € R, there 
exist x, y € R such that 

abc = bx = yb. 

PROPOSITION 1. Every idempotent element e of a 
duo ring R is central . 

Proof. If a € R, there exist x, y £ R such that aee = ex 
and eea = ye. Hence eae = ex = ye and ae = ea. 

PROPOSITION 2. Every non-nilpotent minimal ideal 
M of a duo ring R is a division ring. 
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Proof . B e c a u s e R i s a duo r i ng , M i s a l s o a m i n i m a l 
r igh t i dea l . T h e r e f o r e , t h e r e e x i s t s an i d e m p o t e n t e l e m e n t e 
such tha t M = eR. Since e i s c e n t r a l by p r o p o s i t i o n 1, e i s an 
ident i ty e l e m e n t of M. If m € M, m 4 0, we have m M 4 0; h e n c e 
m M = M and M i s a d iv i s ion r ing . 

THEOREM 1. E v e r y duo r ing R (of m o r e than one e l e ­
m e n t ) , which i s s u b d i r e c t l y i r r e d u c i b l e and wi thout n o n - z e r o 
n i lpo ten t e l e m e n t s , i s a d iv i s ion r i ng . 

Proof . Since R i s s u b d i r e c t l y i r r e d u c i b l e , it con t a in s 
a m i n i m a l idea l M, the i n t e r s e c t i o n of the n o n - z e r o i d e a l s of 
R. T h i s idea l M i s not n i lpo ten t . T h e r e f o r e , by p r o p o s i t i o n 2, 
M i s a d iv is ion r ing and t h e r e e x i s t s a c e n t r a l i d e m p o t e n t e l e ­
m e n t e such tha t M = eR. The se t T = { ex - x [ x € R } i s an 
idea l of R. If y € M n T, we have y = ey = 0, Hence M o> T = 0 
and T = 0. T h e r e f o r e ex = x for e v e r y x £ R and M = R. 

An idea l P of a r ing R i s sa id to be p r i m e , if XY C_P 
i m p l i e s tha t X C P o r Y C P , X and Y be ing i d e a l s of R. A c ­
co rd ing to McCoy [3] , an idea l P i s p r i m e if and only if xRy c P 
i m p l i e s that x c P o r y c P . An idea l Q of R i s said to be c o m ­
p le te ly p r i m e , if xy € Q i m p l i e s tha t x c Q o r y s Q . 

PROPOSITION 3. E v e r y p r i m e i d e a l P of a duo r ing R 
i s c o m p l e t e l y p r i m e . 

Proof . L e t xy e P . The set T = { t | t € R, xt e P } i s 
a r igh t i dea l , t h e r e f o r e a t w o - s i d e d i d e a l of R. A s y € T, we 
have R y C T and xRy C P . Hence x € P o r y c P . 

THEOREM 2. The set N of the n i lpo ten t e l e m e n t s of a 
duo r ing i s an i dea l , which i s the i n t e r s e c t i o n of the c o m p l e t e ­
ly p r i m e i dea l s of R. 

Proof . Le t I be the i n t e r s e c t i o n of the c o m p l e t e l y p r i m e 
i d e a l s P^ of R. If a = 0 , we have a € P^ and t h e r e f o r e a € P^ . 
Hence N C I . F r o m the p r o p o s i t i o n 3, it fo l lows tha t I i s the 
i n t e r s e c t i o n of the p r i m e i d e a l s of R. Now, a c c o r d i n g to McCoy 
[3] , t h i s i n t e r s e c t i o n i s a n i l i dea l . T h e r e f o r e N = I. 

As any h o m o m o r p h i c i m a g e of a duo r ing i s a l s o a duo 
r i n g , we have the following: 
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COROLLARY. E v e r y duo r ing without n o n - z e r o n i l -
potent e l e m e n t s i s a s u b d i r e c t sum of duo r i ngs without d i v i s o r s 
of z e r o . 

2. Subd i rec t ly i r r e d u c i b l e duo r i n g s . As e v e r y r ing i s 
a s u b d i r e c t sum of subd i r ec t ly i r r e d u c i b l e r i ngs and e v e r y h o m o -
m o r p h i c i m a g e of a duo r ing i s a duo r ing , we have the following. 

THEOREM 3. E v e r y duo r ing i s a subd i r ec t sum of s u b ­
d i r e c t l y i r r e d u c i b l e duo rings.. 

We sha l l now c h a r a c t e r i z e the subd i rec t ly i r r e d u c i b l e duo 
r i n g s . To do t h i s , it wi l l suffice to adapt the a r g u m e n t s u s e d by 
McCoy in [2] to c h a r a c t e r i z e the subd i rec t ly i r r e d u c i b l e c o m m u ­
ta t ive r i n g s . A s in [2] , we shal l d i s t ingu i sh two c a s e s . 

C a s e 1. In th i s c a s e , we c o n s i d e r r i n g s , not a l l of 
whose e l e m e n t s a r e r ight d i v i s o r s of z e r o . We shal l now p r o v e : 

T H E O R E M 4. Le t R be a duo r ing with a t l e a s t one e l e ­
m e n t which i s not a r ight d i v i s o r of z e r o , and le t D be the set of 
a l l r ight d i v i s o r s of z e r o in R. Then R i s subd i rec t ly i r r e d u c i b l e 
if, and only if, it h a s the following four p r o p e r t i e s : 

( i ) The se t of a l l e l e m e n t s x of R such that xD = 0 i s a 
p r i n c i p a l i dea l J = (j) 4 0. 

(2) The se t of a l l e l e m e n t s y of R such tha t Jy = 0 i s 
p r e c i s e l y D. (Hence D i s an idea l in R. ) 

(3) R / D i s a d iv i s ion r ing . 

(4) If d i s any e l e m e n t of D which i s not in J , t h e r e 
e x i s t s an e l e m e n t c of R such tha t dc = j . 

Proof . By t h e o r e m 1, if R h a s no n o n - z e r o n i lpotent 
e l e m e n t s and i s s u b d i r e c t l y i r r e d u c i b l e , R i s a d ivis ion r ing 
and hence the above p r o p e r t i e s a r e t r i v i a l l y sa t i s f ied . C o n v e r s e ­
ly, if R h a s the above s ta ted p r o p e r t i e s with D 4 0, then R h a s a 
n o n - z e r o n i lpo ten t e l e m e n t . Hence , if R h a s t h e s e p r o p e r t i e s 
and con t a in s no n o n - z e r o n i lpotent e l e m e n t s , D = 0 and R i s a 
d iv i s ion r ing . Acco rd ing ly , we m a y hence fo r th confine o u r 
a t t en t ion to the c a s e in which R h a s at l e a s t one n o n - z e r o n i l -
po ten t e l e m e n t . 
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We shall first show that if R has the stated properties, 
it is subdirectly irreducible. To show this, we shall show that 
every principal ideal (a), a 4 0, contains J. 

First, let a be any non-zero element of J. Since R is 
a duo ring, we have 

a = jb + nj 4 0 (b € R, n an integer). 

L.et c be an element of R which is not a right divisor of zero. 
Then 

ac = (jb + nj)c = j(bc + ne) i 0. 

Hence be + nc is not a right divisor of zero. Thus, by (3), there 
exists an element x of R such that 

(be + nc)xc = c + d 

where d is an element of D. Multiplying by j , we get 

j(bc + nc)xc = jc + jd = jc. 

Thus, since c is not a right divisor of zero, we have 

j = j(bc + nc)x = (jb + nj)cx = acx. 

Therefore j € (a) and J c (a)-

If a is an element of D, not in J, then (a) contains J by 
property (4). 

If, finally, a is not a right divisor of zero, by (3) there 
exists an element x such that 

axa = a + d (d c D). 

Hence, jaxa = ja and jax = j . Therefore j € (a) and J C (a). We 
have thus established this part of the theorem. 

We assume henceforth that R has at least one non-zero 
nilpotent element and is subdirectly irreducible. Let J be the 
unique minimal ideal of R. Clearly J is a principal ideal and is 
generated by any of its elements other than the zero element. 
We let j be any fixed non-zero element of J, so that J = (j). 

If a is any non-zero element of R, aR is a non-zero 
ideal in R and hence contains J. Thus, there exists an element 
x of R such that 

(a) ax=j. 
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By theorem 2, the set N of the nilpotent elements of R is an 
ideal. Hence J C N and j is nilpotent. If j 2 4 0, there exists 
by(ûf) an element y such that j 2 y = j . This, however, is seen 
to be inconsistent with the nilpotence of j . Hence we must have 
j 2 = 0. 

Proof of (2). If Jy = 0, then y € D. Conversely, if d € D, 
there exists z 4 0 such that zd = 0. The set { t | t € R, td = 0} 
is a non-zero ideal of R and therefore contains J. Hence Jd = 0 
and D is an ideal. 

Proof of (3). If c is any element which is not a right 
divisor of zero, the ideal jcR is a non-zero ideal, since jc 2 4 0. 
Hence J C jcR and there exists x € R such that j = jcx. If a is an 
a rb i t ra ry element of R, we have ja = jcxa and j(a - cxa) = 0. 
Hence, a - cxa is a right divisor of zero and a - cxa € D. There­
fore, R/D is a division ring. 

Proof of ( 1 ). Let a be any non-zero element of R such 
that aD = 0. By (a), there exists x such that ax = j . If c 4 D, 
we have axe = jc 4 0 and xc / D. Hence, by (3), there is an 
element t € R, t i D, such that 

xct =c + d (d € D). 

Hence 

jet = axct = a(c + d) = a c . 

Since c, t / D, there exists by (3) an element v such that 

ct = vc + dj (dx € D). 

Hence jet = jvc + jd! = jvc. Therefore, jvc =ac , jv = a and a € J. 

Proof of (4). This is immediate by (a). 

Case 2. In this case , we consider rings, all of whose 
elements are right divisors of zero. We have the following. 

THEOREM 5. Let R be a duo ring in which all elements 
a re right divisors of zero. Then R is subdirectly irreducible 
if, and only if, it has the following three proper t ies : 

(1) There exists a fixed pr ime p such that if aR = 0, 
then p a =0 for some positive integer k, depending on a. 
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(Z) The set of all elements a of R such that aR = 0, pa = 0, 
is a principal ideal J = (j) 4 0. 

(3) If bR 4 0, there exists an element c such that be - j . 

The proof of this theorem is identical to the proof of the 
corresponding theorem in [2]. 

REFERENCES 

1. E. H. Fel ler , P roper t i e s of p r imary noneommutative r ings, 
Trans . Amer. Math. Soc. 89 (1958), 79-91. 

2. N. H. McCoy, Subdirectly irreducible commutative r ings, 
Duke Math. J. 12 (1945), 381-387. 

3. N. H. McCoy, P r ime ideals in general r ings, 
Amer. J. Math. 71 (1949), 823-833. 

University of Montreal 
and 
Summer Research Institute, Kingston 

172 

https://doi.org/10.4153/CMB-1960-021-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1960-021-7

