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Abstract. About 15 years ago, Lutwak and Zhang (E. Lutwak and G. Zhang,
Blaschke–Santalo inequalities, J. Differ. Geom. 47 (1997), 1–16) introduced the notion
of Lp moment bodies and established important volume inequalities for them, which
were recently generalized by Haberl and Schuster (C. Haberl and E. Schuster, General
Lp affine isoperimetric inequalities, J. Differ. Geom. 83 (2009), 1–26). In this paper,
we establish new Brunn–Minkowski-type inequalities with respect to Blaschke Lp

harmonic addition for the quermassintegrals and dual quermassintegrals of Lp

moment bodies.
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1. Introduction and main results. Centroid bodies were defined and investigated
by Petty [27]. They have proven to be a remarkably powerful tool in establishing a num-
ber of fundamental affine isoperimetric inequalities due to Petty [27–29] (see also [18,
19]). Projection bodies were introduced by Minkowski at the turn of the previous cen-
tury and have since become a central notion in convex geometry (see e.g. [8] and the ref-
erences therein). All centroid and projection bodies are zonoids. However, the centroid
operator and the projection operator are quite different. For example, the centroid
operator commutes with linear transformations, while the projection operator does
not; the projection operator is translation invariant, but the centroid operator is not.

While projection bodies and the projection operator have been the objects
of intensive investigations during more than 50 years, centroid bodies (volume-
normalized moment bodies) and their Lp extensions by Lutwak and Zhang [24] have
attracted increased attention only in the last two decades (see e.g. [4–6, 8–15, 19–25, 33,
35, 36, 38]). The aim of this paper is to obtain the Brunn–Minkowski-type inequalities
with respect to Blaschke Lp harmonic combinations for quermassintegrals and dual
quermassintegrals of Lp moment bodies (see e.g. [1, 2, 26, 31, 32] for related results).

Let Kn denote the set of convex bodies (compact, convex subsets with non-empty
interiors) in �n. For the set of convex bodies containing the origin in their interior and
the set of convex bodies centred at the origin, we write Kn

o and Kn
s respectively. The

unit ball in �n and its surface will be denoted by B and Sn−1 respectively. The volume
and surface area of the convex body K will be denoted by V (K) and S(K) respectively.

If K ∈ Kn, then its support function hK = h(K, ·) is defined by h(K, x) = max{x · y :
y ∈ K}, x ∈ �n \ {0}. Let K be a star body in Euclidean space �n, that is a compact set
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which is star-shaped with respect to the origin and has a continuous radial function
ρK (u) = ρ(K, u) = max{λ ≥ 0 : λu ∈ K}, u ∈ Sn−1. Let Sn

o be the set of star bodies in
�n containing the origin in their interiors. Two star bodies K and L are said to be
dilates (of one another) if ρK (u)/ρL(u) is independent of u ∈ Sn−1.

If K is an arbitrary non-empty subset of �n, then the set K∗ = {x : x · y ≤ 1, y ∈ K}
is called the polar set of K . According to the definitions of polar body, support function
and radial function, it follows that for K ∈ Kn

o,

h(K∗, u) = 1
ρ(K, u)

, ρ(K∗, u) = 1
h(K, u)

. (1.1)

Lutwak and Zhang [24] introduced the notion of Lp moment bodies: For each
compact star-shaped (about the origin) L in �n and any real p ≥ 1, the Lp moment
body MpL of L is defined by

h(MpL, u)p = cn,p

∫
Sn−1

|u · v|pρ(L, v)n+pdS(v). u ∈ Sn−1, (1.2)

where

cn,p = �( n+p
2 )

π (n−1)/2�( 1+p
2 )

. (1.3)

We note that the constant cn,p in the definition of Lp moment body is chosen so that
for the unit ball B we have MpB = B. We use M∗

p L to denote the polar of MpL. From
definition (1.2), it is easy to see that for any L ∈ Sn

o , the Lp moment body MpL ∈ Kn
o

is well defined.
Lutwak et al. [21] (see also Campi and Gronchi [3]) established an Lp version

of the classical Busemann–Petty centroid inequality: For p ≥ 1 and convex bodies K
containing the origin in their interiors,

V (K)n/p−1V (MpK) ≤ V (B)n/p,

with equality if and only if K is an ellipsoid centred at the origin.
Suppose K, L ∈ Sn

o and p ≥ 1. Yuan et al. (see [37]) introduced the Blaschke Lp

harmonic combination of K and L, Kb+pL. Let ξ > 0 be defined by

ξ 1/(n+p) = 1
n

∫
Sn−1

[V (K)−1ρ(K, u)n+p + V (L)−1ρ(L, u)n+p]n/(n+p)dS(u).

The body Kb+pL ∈ Sn
o is defined as the body whose radial function is given by

ξ−1ρ(Kb+pL, ·)n+p = V (K)−1ρ(K, ·)n+p + V (L)−1ρ(L, ·)n+p.

Note that, since ξ = V (Kb+pL), we have

ρ(Kb+pL, ·)n+p

V (Kb+pL)
= ρ(K, ·)n+p

V (K)
+ ρ(L, ·)n+p

V (L)
. (1.4)

The main results of this paper are the following Brunn–Minkowski-type
inequalities for the quermassintegrals Wi and the dual quermassintegrals fW i of Lp

moment bodies.
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THEOREM 1. If K, L ∈ Sn
o , p ≥ 1 and i = 0, 1, . . . , n − 1, then

Wi(Mp(Kb+pL))
p

n−i

V (Kb+pL)
≥ Wi(MpK)

p
n−i

V (K)
+ Wi(MpL)

p
n−i

V (L)
, (1.5)

with equality if and only if K and L are dilates when p > 1 or when p = 1 and 0 ≤ i <

n − 1; there is always equality in (1.5) when p = 1 and i = n − 1.

THEOREM 2. If K, L ∈ Sn
o , p ≥ 1, and i �= n, then

for i < n and n < i < n + p, we have

fW i(M∗
p (Kb+pL))−

p
n−i

V (Kb+pL)
≥
fW i(M∗

p K)−
p

n−i

V (K)
+
fW i(M∗

p L)−
p

n−i

V (L)
; (1.6)

for i > n + p, we have

fW i(M∗
p (Kb+pL))−

p
n−i

V (Kb+pL)
≤
fW i(M∗

p K)−
p

n−i

V (K)
+
fW i(M∗

p L)−
p

n−i

V (L)
, (1.7)

with equality in either of the inequalities (1.6) and (1.7) if and only if K and L are
dilates.

2. Preliminaries. In this section we collect some basic well-known facts that will
be useful in the proofs of our results. For references about the Brunn–Minkowski
theory, see [8, 30].

2.1. Lp Mixed quermassintegrals. Let K ∈ Kn, the quermassintegrals Wi(K), for
i = 0, 1, . . . , n − 1, of K , are defined by (see [8, 17])

Wi(K) = 1
n

∫
Sn−1

h(K, u)dSi(K, u), (2.1)

where Si(K, ·)(i = 0, 1, . . . , n − 1) is called the area measure of order i of K ∈ Kn. In
particular,

W0(K) = V (K). (2.2)

For p ≥ 1, K, L ∈ Kn
o and ε > 0, the Firey Lp combination K +p ε · L ∈ Kn

o is
defined by (see [7, 17])

h(K +p ε · L, ·)p = h(K, ·)p + εh(L, ·)p,

where ‘·’ in ‘ε · L’ denotes the Firey scalar multiplication.
Associated with the Firey Lp combination, Lutwak [16] defined the Lp mixed

quermassintegrals as follows: For K, L ∈ Kn
o, i = 0, 1, . . . , n − 1 and real p ≥ 1, the Lp

mixed quermassintegrals Wp,i(K, L), i = 0, 1, . . . , n − 1, are defined by

n − i
p

Wp,i(K, L) = lim
ε→0+

Wi(K +p ε · L) − Wi(K)
ε

. (2.3)

For p = 1, W1,i(K, L) are just the classical mixed quermassintegrals Wi(K, L) (see [16]).
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In [16], Lutwak showed that for K, L ∈ Kn
o, p ≥ 1, i = 0, 1, . . . , n − 1, there exists

a positive Borel measure Sp,i(K, ·) on Sn−1 such that the Lp mixed quermassintegral
Wp,i(K, L) has the following integral representation:

Wp,i(K, L) = 1
n

∫
Sn−1

hp
L(u)dSp,i(K, u). (2.4)

It turns out that the measures Sp,i(K, ·), i = 0, 1, . . . , n − 1, on Sn−1 are absolutely
continuous with respect to Si(K, ·). From (2.4), it follows immediately that for each
K ∈ Kn

o and p ≥ 1,

Wp,i(K, K) = Wi(K). (2.5)

We shall require a basic inequality for the Lp mixed quermassintegral Wp,i(K, L),
which may be stated as follows: for K, L ∈ Kn

o, p ≥ 1 and 0 ≤ i < n, (see [16])

Wp,i(K, L)n−i ≥ Wi(K)n−i−pWi(L)p, (2.6)

with equality for p = 1 if and only if K and L are homothetic, and for p > 1 if and
only if K and L are dilates.

2.2. Lp Dual mixed quermassintegrals. For K ∈ Sn and arbitrary real i, the dual
mixed quermassintegrals fW i(K) are defined by (see [8, 30])

fW i(K) = 1
n

∫
Sn−1

ρn−i
K (u)dS(u), (2.7)

where dS(u) denotes the area element at u ∈ Sn−1. From (2.7), it follows immediately
that

fW 0(K) = V (K). (2.8)

For K, L ∈ Sn
o , ε > 0 and p ≥ 1, the Lp harmonic radial combination K +−p ε · L ∈ Sn

o
is defined as the star body whose radial function is given by (see [17])

ρ(K +−p ε · L, ·)−p = ρ(K, ·)−p + ερ(L, ·)−p.

Associated with the Lp harmonic radial combination, Wang and Leng [34] defined
the Lp dual mixed quermassintegrals as follows.

For K, L ∈ Sn
o , p ≥ 1 and any real i �= n, the Lp dual mixed quermassintegral,

fW−p,i(K, L) of K and L was defined in [34] by

n − i
−p

fW−p,i(K, L) = lim
ε→0+

fW i(K +−p ε · L) −fW i(K)
ε

. (2.9)

Taking i = 0 in (2.9) and using (2.8), we see

fW−p,0(K, L) = eV−p(K, L). (2.10)

The above definition and the polar coordinate formula for dual mixed
quermassintegrals yield the following integral representation of Lp dual mixed
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quermassintegrals fW−p,i(K, L): for K, L ∈ Sn
o , p ≥ 1 and any real i �= n,

fW−p,i(K, L) = 1
n

∫
Sn−1

ρ
n+p−i
K (u)ρ−p

L (u)dS(u). (2.11)

By (2.10) and (2.11), we have

eV−p(K, L) = 1
n

∫
Sn−1

ρ
n+p
K (u)ρ−p

L (u)dS(u). (2.12)

From definition (2.11), it follows immediately that for each K ∈ Sn
o , real i �= n and

p ≥ 1,

fW−p,i(K, K) = fW i(K). (2.13)

The Lp Minkowski inequality for Lp dual mixed quermassintegrals states that [34]
if K, L ∈ Sn

o , p ≥ 1, then, for real i < n or i > n + p,

fW−p,i(K, L)n−i ≥ fW i(K)n+p−i
fW i(L)−p, (2.14)

for n < i < n + p,

fW−p,i(K, L)n−i ≤ fW i(K)n+p−i
fW i(L)−p, (2.15)

with equality in either of the inequalities (2.14) and (2.15) if and only if K and L are
dilates.

3. Brunn–Minkowski inequalities for Lp moment bodies. In order to prove
Theorems 1 and 2, we need the following lemma.

LEMMA 1. Let K ∈ Sn
o , p ≥ 1, then for u ∈ Sn−1,

h(Mp(Kb+pL), u)p

V (Kb+pL)
= h(MpK, u)p

V (K)
+ h(MpL, u)p

V (L)
. (3.1)

Proof. From (1.4) and (1.2), we have

h(Mp(Kb+pL), u)p

V (Kb+pL)
= cn,p

∫
Sn−1

|u · v|p ρ(Kb+pL, v)n+p

V (Kb+pL)
dS(v)

= cn,p

∫
Sn−1

|u · v|p
[
ρ(K, v)n+p

V (K)
+ ρ(L, v)n+p

V (L)

]
dS(v)

= cn,p

∫
Sn−1

|u ·v|p ρ(K, v)n+p

V (K)
dS(v) + cn,p

∫
Sn−1

|u ·v|p ρ(L, v)n+p

V (L)
dS(v)

= h(MpK, u)p

V (K)
+ h(MpL, u)p

V (L)
.

�
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Proof of Theorem 1. Let K, L ∈ Sn
o and p ≥ 1. From (2.4), (3.1) and (2.6), we obtain

for all Q ∈ Kn
o,

Wp,i(Q, Mp(Kb+pL))

V (Kb+pL)
= 1

nV (Kb+pL)

∫
Sn−1

hp

Mp(Kb+pL)
(u)dSp,i(Q, u)

= 1
n

∫
Sn−1

hp

Mp(Kb+pL)
(u)

V (Kb+pL)
dSp,i(Q, u)

= 1
n

∫
Sn−1

hp
MpK (u)

V (K)
dSp,i(Q, u) + 1

n

∫
Sn−1

hp
MpL(u)

V (L)
dSp,i(Q, u)

= Wp,i(Q, MpK)
V (K)

+ Wp,i(Q, MpL)
V (L)

≥ Wi(Q)
n−p−i

n−i

[
Wi(MpK)

p
n−i

V (K)
+ Wi(MpL)

p
n−i

V (L)

]
.

Taking Q = Mp(Kb+pL) in the above inequality, and using (2.5), we obtain the desired
inequality (1.5).

According to the equality condition of inequality (2.6), we know that equality
holds in inequality (1.5) if and only if MpK , MpL and Mp(Kb+pL) are homothetic when
p = 1 and 0 ≤ i < n − 1 or MpK , MpL and Mp(Kb+pL) are dilates when p > 1. There
is always equality in (1.5) when p = 1 and i = n − 1.

Since MpK , MpL and Mp(Kb+pL) are origin-symmetric, equality holds in (1.5) if
and only if they are dilates (except for p = 1 and i = n − 1). Thus, MpK = λ1Mp(Kb+pL)
and MpL = λ2Mp(Kb+pL) for some λ1, λ2 > 0. An argument similar to [31, p. 227]
now yields that K and L are dilates. �

For i = 0 we note the following special case of Theorem 1:

COROLLARY 1. If K, L ∈ Sn
o , p ≥ 1, then

V (Mp(Kb+pL))
p
n

V (Kb+pL)
≥ V (MpK)

p
n

V (K)
+ V (MpL)

p
n

V (L)
,

with equality if and only if K and L are dilates.

Proof of Theorem 2. Let K, L ∈ Sn
o , p ≥ 1, then by (2.11), (1.1) and (3.1), we have

for all Q ∈ Kn
o,

fW−p,i(Q, M∗
p (Kb+pL))

V (Kb+pL)
= 1

nV (Kb+pL)

∫
Sn−1

ρ
n+p−i
Q (u)ρ−p

M∗
p (Kb+pL)

(u)dS(u)

= 1

nV (Kb+pL)

∫
Sn−1

ρ
n+p−i
Q (u)hp

Mp(Kb+pL)
(u)dS(u)

= 1
n

∫
Sn−1

ρ
n+p−i
Q (u)

hp

Mp(Kb+pL)
(u)

V (Kb+pL)
dS(u)
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= 1
n

∫
Sn−1

ρ
n+p−i
Q (u)

hp
MpK (u)

V (K)
dS(u) + 1

n

∫
Sn−1

ρ
n+p−i
Q (u)

hp
MpL(u)

V (L)
dS(u)

=
fW−p,i(Q, M∗

p K)

V (K)
+
fW−p,i(Q, M∗

p L)

V (L)
.

If i < n or n < i < n + p, then using (2.14) and (2.15) we obtain

fW−p,i(Q, M∗
p (Kb+pL))

V (Kb+pL)
≥ fW i(Q)

n+p−i
n−i

[
fW i(M∗

p K)−
p

n−i

V (K)
+
fW i(M∗

p L)−
p

n−i

V (L)

]
. (3.2)

Taking Q = M∗
p (Kb+pL) in the above inequality and using (2.13) we get the desired

inequality,

fW i(M∗
p (Kb+pL))−

p
n−i

V (Kb+pL)
≥
fW i(M∗

p K)−
p

n−i

V (K)
+
fW i(M∗

p L)−
p

n−i

V (L)
.

Using now (2.14) and (2.15) the equality conditions follow from arguments similar
to the ones in the proof of Theorem 1. The case i > n + p is treated analogously. �

The following corollary is a direct consequence of Theorem 2 when i = 0.

COROLLARY 2. If K, L ∈ Sn
o , p ≥ 1, then

V (M∗
p (Kb+pL))−

p
n

V (Kb+pL)
≥ V (M∗

p K)−
p
n

V (K)
+ V (M∗

p L)−
p
n

V (L)
,

with equality if and only if K and L are dilates.
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1–16.
25. G. Paouris, Concentration of mass on isotropic convex bodies, Geom. Funct. Anal. 16

(2006), 1021–1049.
26. L. Parapatits and F. E. Schuster, The Steiner formula for Minkowski valuations, Adv.

Math. 230 (2012), 978–994.
27. C. M. Petty, Centroid surfaces, Pacific J. Math. 11 (1961), 1535–1547.
28. C. M. Petty, Projection bodies, Proceedings of a colloquium on convexity, Copenhagen

(1965) (Kobenhavns Univ. Mat. Inst., Copenhagen, 1967), 234–241.
29. C. M. Petty, Geominimal surface area, Geom. Dedicata. 3 (1974), 77–97.
30. R. Schneider, Convex bodies: The Brunn–Minkowski theory (Cambridge University

Press, Cambridge, UK, 1993).
31. F. E. Schuster, Volume inequalities and additive maps of convex bodies, Mathematika

53 (2006), 211–234.
32. F. E. Schuster, Crofton measures and Minkowski valuations, Duke Math. J. 154 (2010),

1–30.
33. F. E. Schuster and M. Weberndorfer, Volume inequalities for asymmetric Wulff shapes,

J. Differ. Geom. arXiv:1110.2069v2.
34. W. D. Wang and G. S. Leng, Lp dual mixed quermassintegrals, Indian J. Pure Appl.

Math. 36 (2005), 177–188.
35. T. Wannnerer, GL(n) equivariant Minkowski valuations, Indiana Univ. Math. J. (to

appear).
36. V. Yaskin and M. Yaskina, Centriod bodies and comparison of volumes, Indiana Univ.

Math. J. 55 (2006), 1175–1194.
37. J. Yuan, L. Z. Zhao and G. S. Leng, Inequalities for Lp centroid body, Taiwan J. Math.

11 (2007), 1315–1325.
38. L. Z. Zhao, B. W. He and G. S. Leng, On polars of projection bodies and centroid

bodies, Acta Math. Sinica (Chinese Ser.). 49 (2006), 679–686.

https://doi.org/10.1017/S0017089512000638 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000638

