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We investigate the turbulence statistics in a multiphase plume made of heavy particles
(particle Reynolds number at terminal velocity is 450). Using refractive-index-matched
stereoscopic particle image velocimetry, we measure the locations of particles whose
buoyancy drives the formation of a multiphase plume, together with the local velocity
of the induced flow in the ambient salt–water. Measurements of the mean axial flow
in the plume centreplane follow Gaussian profiles and that of the mean radial flow is
consistent with integral plume theory. The turbulence characteristics resemble those
measured in a bubble plume, including strong anisotropy in the normal Reynolds
stresses. However, we observe structural differences between the two multiphase
plumes. First, the skewness of the probability density function of the axial velocity
fluctuations is not that which would be predicted by simply reversing the direction
of a bubble plume. Second, in contrast to a bubble plume, the particle plume has
a non-negligible fluid-shear production term in the turbulent kinetic energy (TKE)
budget. Third, the radial decay of all measured terms in the TKE budget is slower than
those in a bubble plume. Despite these dissimilarities, a bigger picture emerges that
applies to both flows. The TKE production by particles (or bubbles) roughly balances
the viscous dissipation, except near the plume centreline. The one-dimensional power
spectra of the velocity fluctuations show a −3 power law that puts both the particle
and bubble plume in a category different from single-phase shear-flow turbulence.

Key words: sediment transport, particle/fluid flows

1. Introduction
Plumes containing bubbles, particles and droplets are present in both environmental

and industrial applications. A few examples of environmental interest are settling
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sediment, volcanic eruption columns, CO2 ocean sequestration plumes, and rising
oil droplets and gas bubbles from oil well blowouts (Freeth 1987; Baines & Sparks
2005; Baines 2008; Socolofsky & Bhaumik 2008; Woods 2010; Socolofsky, Adams
& Sherwood 2011; Huppert & Neufeld 2014; Wang et al. 2016). Suspension-flow
plumes differ from traditional single-fluid plumes in that the energy due to buoyant
forcing is transmitted indirectly from the suspended phase to the continuous phase.
The relative motion between the two phases introduces additional length and time
scales; these must be included in the model formulation employed to predict plume
behaviour, for example, when extending classic single-phase integral plume models
(Morton, Taylor & Turner 1956) to multiphase plumes (Milgram 1983; Sun & Faeth
1986). Identifying such scales is non-trivial due to the complexity of particle–particle
and particle–fluid interactions.

For the special case of air bubbles in water, empirical data collection has
allowed accurate closure of predictive schemes (Lance & Bataille 1991; Risso &
Ellingsen 2002; Mercado et al. 2010; Almeras et al. 2017; Risso 2018). However,
the bubble-in-water plume can be quite different from other suspension-flow plumes
of interest, because bubbles are far less dense than the ambient fluid (specific gravity
of order 10−3) and have negligible inertia. Other plumes of interest are droplets in
water (specific gravity of order 1), solid particles in water (specific gravity of order 2
to 10), or liquid droplets in air (specific gravity of order 103). Each of these different
suspensions can behave quite differently than the others in terms of the interphase
interactions. Empirical data are relatively scarce for these other suspension-flow
plumes.

Recent progress in suspension flows (especially turbulent flows) offers the hope
that predictive techniques will eventually describe overall plume behaviour from a
direct description of the internal dynamics of particle–fluid coupling. To help support
this strategy and address some of the open questions that remain about turbulent
suspension flows (Balachandar & Eaton 2010; Guazzelli & Morris 2012), we take
an observational approach herein, measuring the particle and fluid behaviours in
a particle-laden plume. Because particles are dynamically quite different from air
bubbles in water, we are curious to see how the two-phase kinematics and the
interstitial fluid turbulence behave.

Both bubbles and particles have been shown to modulate the turbulent properties
of multiphase flows in a manner sensitive to volume fraction (φ), particle Reynolds
number (Red) and particle Stokes number (St). One starting point for understanding
such turbulence modulation is the agitation of a quiescent fluid by bubbles or particles
distributed homogeneously in space. This is often referred to as pseudo-turbulence (e.g.
Lance & Bataille (1991), Cartellier & Rivière (2001)) as its characteristic scales are
set by the bubble or particle wakes. Pseudo-turbulence is fundamentally anisotropic,
with stronger velocity fluctuations aligned in the direction of suspended-phase motion
(x1, typically vertical). Numerical simulations of pseudo-turbulence by Riboux,
Legendre & Risso (2013) show that the velocity fluctuation energy spectrum has
a slope of k−3 for wavelengths smaller than the integral length scale; they also find
that the integral length scale is the ratio of the bubble or particle diameter and the
drag coefficient, Cd.

A recent topical review article by Risso (2018) provides a comprehensive summary
of pseudo-turbulence due to a homogeneous swarm of bubbles rising in a quiescent
medium. First, the turbulence intensity is anisotropic and is dominated by the vertical
component. The probability density function (p.d.f.) of the vertical component is
positively skewed due to the wake immediately behind each rising bubble, whereas the
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other two components are symmetrically distributed with exponential tails. Because
the turbulent kinetic energy (TKE) production in suspension flows occurs at two
length scales (first at the scale of bubble wakes and second at the scale of overall
bubble population), the combination of the two results in a k−3 spectral subrange.

Previous laboratory (Hall et al. 2010) and numerical (Azimi, Zhu & Rajaratnam
2011, 2012) studies have investigated the influence of particle size, particle concent-
ration and nozzle size on the mean flow characteristics of sediment plumes. These
authors considered fine to medium sized sand with diameters in the 0.1–0.8 mm range.
Among all the observed differences between the particle plume and its single-phase
counterpart, the nonlinear growth of plume width with downstream distances is a
significant result; the two-phase plume initially spreads at approximately the same
rate as single-phase plumes and then spreads at a lower rate beyond 60 nozzle
diameters downstream. This change in the spreading rate affects all other mean flow
variables as they are tied together by the continuity and momentum equations. In
the present study, we consider the turbulent statistics of the two-phase plume in
the initial spreading region. We choose to focus on the initial region because direct
measurements of the plume turbulence are already lacking. Our results can be used
for comparison in future studies looking at the region with a reduced plume growth
rate.

To our knowledge, there are no existing studies examining turbulence in negatively
buoyant particle plumes released into an unstratified, initially quiescent fluid. However,
there are many studies of turbulence in bubble plumes with notable contributions
coming from Soga & Rehmann (2004), Wain & Rehmann (2005), García & García
(2006), Seol, Duncan & Socolofsky (2009), Simiano et al. (2009) and Lai &
Socolofsky (2019). These investigations reveal different velocity characteristics at
a different axial distance (x1) from the origin. Simiano et al. (2009) examined the
near-field characteristics (x1/D< 2, where D is the dynamic length scale to be defined
in § 3.1) and showed that the meandering nature of bubbles influences the effective
spreading, volume fraction and mean velocity profiles. Seol et al. (2009) and Lai &
Socolofsky (2019) focused on the far field (2< x1/D< 11) turbulence characteristics,
such as Reynolds stress, turbulent transport and TKE budget; their results will be
used to compare with our particle plume data.

In recent years, computational fluid dynamics (known as CFD) has seen significant
improvements in computational speed, domain size and in the flow complexities it
can simulate. This in turn has allowed more accurate representations of flow physics
in the simulations using approaches such as large eddy simulation (LES) and hybrid
Reynolds-averaged Navier–Stokes (known as RANS) LES. To further develop and
improve turbulence closure models in these approaches, a comprehensive database of
canonical turbulent flows is needed. This need is especially relevant for multiphase
flows in which a physics-based coupling model between the carrier and dispersed
phase is critical to successful predictions. To this end, we offer a dataset of a
heterogeneous particle plume with statistics of the turbulent velocity fluctuations up
to the third order. Although boundary layer resolving direct numerical simulations
(DNS) that resolve all relevant flow physics have been available for several years
now, these simulations tend to be limited to homogeneous flows with periodic
boundary conditions. It is necessary to validate closure models using data with flow
heterogeneities as most industrial and engineering flows are inhomogeneous. This
study represents an important step as practical particle-laden flows are often released
from a point source.

Characterizing the turbulence statistics in a multiphase plume is challenging,
primarily due to the difficulty in simultaneously measuring velocity in both phases.
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Parameter Particle Fluid
(Teflon PFA) (0.4 % salt–water solution)

Length (mm) 2.0 —
Bulk volume (ml) 110 2.28× 106

Density (g cm−3) 2.1 1.04
Dynamic viscosity (kg m−1 s−1) — 1.059× 10−3

Refractive index 1.34 1.338

TABLE 1. Physical properties of particles and surrounding salt–water solution.

Traditional intrusive techniques such as hotwire anemometry suffer from the possibility
of being damaged by the solid particles. Optical measurements from techniques such
as particle image velocimetry (PIV) and laser Doppler anemometry are usually
distorted due to the difference in optical properties of the two media. We overcome
the distortion herein by carefully choosing two media with matched refractive indices.

This paper is organized as follows: § 2 provides a detailed description of the plume-
generating facility and method for characterizing the two-phase flow. We report and
discuss our experimental observations in § 3. Finally, § 4 provides the key conclusions
from this work.

2. Experimental set-up and methodology
2.1. Plume facility

The plume experiments were conducted in a rectangular tank (80 cm deep × 80 cm
wide × 365 cm long) as described in Bordoloi & Variano (2017). The tank was filled
with tap water filtered to 5 µm and maintained using an ultraviolet (UV) purifier.
Then 91.1 kg of commercial sodium chloride (Cargill Top-Flo) was mixed to yield a
salt concentration of 0.04 g ml−1. The resulting solution has density ρs= 1.04 g cm−3

and kinematic viscosity µs = 1.059× 10−3 Pa s (see table 1).
A schematic of the experimental set-up is shown in figure 1(a). The negatively

buoyant plume was created by releasing 110 ml of cylindrical Neoflon PFA AP-202
(a copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether) from a height of
56.5 cm via a screw feed particle release mechanism (see figure 1b). The pellets are
right circular cylinders with length= diameter= 2 mm (see figure 1b-A). The physical
properties of the solid particles and the surrounding salt solution are summarized in
table 1. Because of the hydrophobic nature of PFA, the particles tend to trap and
hold air bubbles when added to water. To prevent these air bubbles from entering
the experiment, particles were presoaked in water in a separate container and rapidly
stirred to dislodge all bubbles. Once the particles were free of air bubbles, they were
placed in a funnel for eventual release into the quiescent salt–water mixture. The
funnel was kept partially submerged 23 cm below the free surface through a nozzle
with internal diameter d0 = 11.25 mm so that the particles did not contact air (see
figure 1b). Particle release was governed by a motor-driven helical screw. Prior to
release, the particles were held inside the funnel by the blades of the screw. Upon
release, the motor rotated the screw at a constant rate of 0.5 r.p.m. operated via
Lego Mindstorms software. The particle flux, Q0 = 7.5 cm3 s−1 was measured by
video recording the release of a known quantity of particles and measuring the time
difference between the exit of the first and last particle from the funnel nozzle. Before
each experiment, the tank fluid was seeded with optical tracers, specifically 13 µm
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Particle release
mechanism

Camera no. 1 Camera no. 2

Laser

12.4d0

d0

50.2d0

70.7d0

x3
�

x2
�

x1
�

A

B

x2
�

x1
� x1

x2 œ1

(a)

(b)

FIGURE 1. (a) Schematic of experimental facility and plume release mechanism (in inset),
(b) regions of interest with specific dimensions, a picture of Teflon particles (inset A) and
an illustration of two-dimensional transformation from world coordinates into the plume
coordinates (inset B).

silver-coated hollow glass spheres (SH400S20, Conduct-O-Fil, Potters Industries).
Twenty plume releases provided a sufficient number of samples for the analysis
described in § 3.

The plume release conditions for this study are parameterized into five non-
dimensional numbers as suggested in Lai et al. (2016) and are summarized in table 2.
Here, u0 is the initial plume velocity computed from particle volume flux Q0 and us is
the characteristic settling velocity of a particle. We measure the inlet volume fraction
(α0) separately from a sample of 100 ml of tightly packed particle–water mixture. The
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Plume number Np =
u0

us
≈0.2

Inlet volume fraction α0 ≈0.65

Froude number Fr=
u0

√
g′α0d0

≈0.2

Plume Reynolds number Re0 =
u0d0

ν
550

Measurement distance x1/d0 12.5–15

TABLE 2. Plume release parameters used in this study.

velocity scale (us = 0.23 m s−1) is the terminal velocity of a single spherical particle
in quiescent fluid and is computed using the standard Clift–Gauvin drag model for a
sphere with volume equivalent to our particles. This value, inserted in the correction
model proposed in Loth (2008), reduces significantly namely to us = 0.04 m s−1.
Because computing the drag on a non-spherical particle in intermediate Reynolds
number is complex, we restrict our analysis to the standardized drag model for a
spherical particle. Future work in which we focus on particle velocities will examine
this issue in greater detail.

2.2. Refractive index matching
To measure the fluid velocity inside and around the plume, we matched the refractive
index (n) of the particle and fluid phases. A target refractive index of PFA (n≈ 1.34)
was achieved from an aqueous solution of commercial sodium chloride with a
concentration of 0.04 g ml−1. The refractive index of the solution was measured to
be 1.338 using an ATAGO refractometer and found to match with the salinity versus
n prediction given in Tan & Huang (2015). Although the refractive indices of the
two phases were matched, because of the scattering properties of PFA the particles
appeared bright under the laser illumination. To limit the intensity of particles below
the saturation threshold of the camera’s sensor we used a circular polarizer on each
camera lens. Figure 2 shows example images of Teflon particles in different salinity
water samples illuminated by a laser sheet (wavelength= 532 nm). The high-intensity
elements in the images represent the particles intersected by the laser sheet. The
low-intensity elements are the particles outside the laser-sheet plane. Fluid tracers
(seen as tiny bright dots) are much more visible when particles and fluid have
matched refractive indices (figure 2b compared to figure 2a). This difference is well
demonstrated inside the dotted rectangle in each figure: tracers obstructed by the
out-of-plane particles are much more visible inside the rectangle in figure 2(b).

2.3. Multiphase velocimetry
We performed stereoscopic particle image velocimetry (SPIV) to find the two-
dimensional three-component (2D3C) velocity field of the fluid phase of the plume.
The origin of our coordinate system is located at the tank centre. The plume is
axisymmetric about the vertical axis, but we use Cartesian coordinates (x1, x2, x3) for
our measurements as described in figure 1(b). Velocity measurement of the particle
phase is currently underway and beyond the scope of this paper.

The x3 = 0 plane was illuminated with a laser sheet (1 mm thick at beam
waist; Quantel/Big Sky Lasers, 532-nm double-pulse Nd-YAG). Two charge-coupled
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Out-of-plane
particles

Out-of-plane
particles

In-plane
particles

In-plane
particles

(a) (b)

FIGURE 2. Teflon particles (large) and silver coated hollow glass spheres (small)
illuminated by a 532 nm laser sheet in (a) pure water, (b) 0.4 % salt–water mixture.

device (known as CCD) cameras (Imager PRO-X, 1600 pixels × 1200 pixels) were
synchronized with the laser pulses. They were placed ±55◦ to the laser sheet (cf. 90◦
for standard 2D2C PIV). To minimize distortion due to this angle, water-filled acrylic
prisms were placed between the camera lenses and the tank walls. The cameras were
mounted with Nikkor 105 mm lenses, circular polarizers and Scheimpflug adapters.
The interframe delay (1t) was optimized to 0.5 ms. The PIV images were collected
at a frequency of 14.0 Hz. The sampling frequency was chosen such that the Eulerian
fluid motions were decorrelated based on the correlation coefficient computed from
subsequent samples. This set-up gave approximately 50 independent samples during
the steady-state phase of each experimental run. We performed a convergence test for
all dominant statistical quantities discussed in § 3 and found them to converge within
±4 % for 1000 independent samples.

2.3.1. Fluid-phase processing
We computed the fluid-phase velocity field using DaVis 8.2 software (LaVision

GmbH). Before SPIV processing, we performed stereo self-calibration to reduce
disparity in the alignment between the laser sheet and the measurement plane to
below 0.1 pixel. Tracers and particles in an image were separated by intensity
thresholding; erosion and dilation were applied to isolate individual particles. Fluid
velocity fields were obtained by masking particles and correlating tracer locations
through multipass stereoscopic cross-correlation. The cross-correlation was applied
with an initial interrogation window of 64 pixel × 64 pixel and a final window of
48 pixel× 48 pixel with 50 % overlap, yielding a spacing between vectors of 0.7 mm.
Interrogation windows were weighted according to the symmetric two-dimensional
Gaussian function. Vectors were discarded based on universal outlier detection
(Westerweel & Scarano 2005) and left as data gaps. Figure 3 shows a representative
field of fluid velocity fluctuations superposed with the corresponding particle image
(transformed into the lab coordinate system). The grid cells are colour-coded with the
out-of-plane velocity component while the vectors show the in-plane velocity field.

2.3.2. Particle-phase processing
To estimate the particle number density across the plume, we conducted a series

of additional image processing steps (see figure 4). First, the raw images were
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21

0.5 m s-1

0
x2/d0

x 1
/d

0

-1-2

13.0

13.5

14.0

14.5

15.0

0.10

0.05

0

-0.05

-0.10

FIGURE 3. Sample mean-subtracted instantaneous 2D3C velocity field in the fluid phase
superposed with the particle image in the laboratory coordinate system. The vectors show
the in-plane velocity (u1, u2, m s−1), and the shades of red and green colours show the out-
of-plane velocity component (u3, m s−1). The reference vector on the upper right corner
corresponds to 0.5 m s−1.

transformed from the camera coordinate system to the lab coordinate system using
the stereoscopic mapping function. Small-size background noise features (including
tracers) were removed using a simple median filter.

In stereo mapping, after transforming into the lab coordinate system, the section of
the particle intersected by the laser sheet should overlap in both cameras. Figure 4(a)
shows a sample instant with the two camera images overlayed. The high intensity
regions in the image represent the intersection between the two camera images,
whereas the low intensity background is from the out-of-plane particles captured in
only one of the two cameras. We remove the background noise by setting an intensity
threshold and convolving the two images. The result is shown in figure 4(b).

After inspecting our dataset, we find many instances where particles are nearly
touching as exemplified in the lower left pair in the image. The non-uniform intensity
gradients in the bordering regions among different particle pairs yielded different
intensity gradients. A traditional intensity-gradient-based image segmentation therefore
could not differentiate between two particles, and so we adopted a segmentation
technique based on the watershed transform. The watershed transform treats an image
as a topographic map with brighter intensity pixels as heights, and finds the separating
line that runs along the ridges (Gonzalez & Woods 2007). The result, with individual
particles identified with separate colours, is shown in figure 4(c). Since the area of
a laser-intersected particle image is known a priori, we applied an area threshold to
remove partially illuminated particles (which are out of the measurement plane). The
centroids of particles identified from the final binary image are shown in figure 4(d).

2.4. Coordinate transformation
Typically in jets and plumes the cross-stream velocity components (U2 and U3) are
smaller than the axial velocity component (U1) near the centreline. Thus, any small
misalignment between the plume axis and the measurement axis could lead to a
systematic bias in the measured U2 and U3. The scenario is schematically shown in
inset B in figure 1(b) in a simplified x1–x2 plane in which the plume axis, x1, makes
an angle θ1 with the measurement axis x′1. For our data, if θ1 is defined the same way
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(a) (b)

(c) (d)

FIGURE 4. Image processing steps leading from raw PIV image to centroid identification:
sample image showing (a) particles from camera 1 and camera 2 blended into one image,
(b) convolution of camera 1 image with camera 2 image, (c) image segmentation based
on watershed transform and (d) final binary image with particle boundaries and located
centroids in the laboratory coordinate system.

and if θ2 is the angle between the plume axis and the measurement axis on the x1–x3
plane, using axisymmetry and assuming that 〈U2〉, 〈U3〉 = 0 at the plume centreline,
the measured velocities can be transformed into the plume coordinate system via
correction angles,

θ1 = atan
(
〈U′2〉0
〈U′1〉0

)
, θ2 = atan

(
〈U′3〉0
〈U′1〉0

)
. (2.1a,b)

The measurement bias in U2 and U3 at the plume centreline are captured in
figure 5(a) that shows the respective mean radial profiles, 〈U′2〉 and 〈U′3〉. We perform
this transformation for the 20 replicate datasets independently with correction angles
(θ1, θ2) reported in figure 5(c). The bias in the non-zero centreline velocities are
reflected in θ1 and θ2 which are small and less than 1.5◦. The two velocity components
transformed into the plume coordinate systems are shown in figure 5(b). The analysis
that follows will be in the plume coordinate system.

3. Results and discussion
3.1. Mean flow characteristics

We first characterize the mean interstitial fluid velocity based on approximately 1000
independent PIV snapshots. The mean axial velocity field 〈U1(x1, x2)〉 in dimensional
form is shown in figure 6(a). The radial (x2) variations of 〈U1〉 normalized by the local
mean centreline velocity 〈Uc(x1, 0)〉 (written as Uc for simplicity from here onward)
are shown in figure 6(b) at representative axial locations (12.9d0 < x1 < 15.1d0) across
our measurement region. The Gaussian plume radius, bg, defined as the x2 location
where 〈U1〉 = e−1Uc, is obtained via a nonlinear least squares fit of each measured
profile to a normalized Gaussian function. The data closely follow the Gaussian curve
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FIGURE 5. The radial and out-of-plane mean velocity components in (a) laboratory
coordinate and (b) plume coordinate system averaged across the axial direction, and (c)
mapping angles (θ1 and θ2) based on (2.1).

(solid line in figure 6b), which is also seen in single- and multi-phase jets and plumes
(Milgram 1983; Darisse, Lemay & Benaïssa 2012; Lai & Socolofsky 2019).

Next, we examine the axial decay of centreline velocity, Uc, and the axial
growth of Gaussian plume radius (bg) for a particle plume by comparing them
to existing data from bubble plumes (see figure 7). For the purpose of comparison,
we use two non-dimensional parameters: a velocity scale (us) and a length scale
(D = gQ0/4πα2

0u3
s ). These are based on an integral model of bubble plumes

(Bombardelli et al. 2007), in which a constant α0 = 0.083 is used as the entrainment
coefficient. The computed entrainment coefficient of our particle plume to be presented
later is different from this a priori constant. The velocity scale (us = 0.23 m s−1) is
the terminal velocity of a single particle in quiescent fluid and is computed using a
simple drag model (Clift, Grace & Weber 1978). Based on Q0 = 7.5 cm3 s−1, the
length scale D is approximately 6.8 cm. This situates our axial measurement region
between 2–2.5D.
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FIGURE 6. (a) Two-dimensional intensity field showing the local mean axial velocity
(〈U1〉, m s−1) across the PIV measurement region, (b) radial profiles of non-dimensional
〈U1〉/Uc at 45 axial locations (x1/d0) indicated by the colourbar.

The overall trends in both centreline velocity and plume radius show similarity
between particle and bubble plumes. The axial variation of Uc/us in a particle plume
is not measurable from our data, but we can say that it falls above the curve for
bubble plumes (Lai & Socolofsky 2019) (see figure 7a). The dashed and solid lines
in figure 7(a) are the −1/3 power law fits, with A= 2.05 (current data, see inset) and
A= 1.6 (Lai & Socolofsky 2019). The variation of bg for all the data (including ours)
is captured by the solid line (bg/D = 0.114x1/D) in figure 7(b). Within the limited
axial extent (≈0.5D) of our measurement, the local spreading rate (β = dbg/dx1) is
difficult to estimate. However, justified based on the collapse of our data on the solid
line in figure 7(b), we will use β = 0.114 in the remaining analyses in this paper.

Profiles of mean radial (〈U2〉) and out-of-plane (〈U3〉) velocities at various axial
locations are shown in figures 8(a) and 8(b), respectively. The mean radial velocity
exhibits typical jet/plume behaviour: within the plume radius (|x2/bg|< 1) the
interstitial fluid flows away from the centreline, whereas outside the plume radius
(|x2/bg|> 1) the surrounding fluid is entrained into the plume. The mean out-of-plane
velocity should be zero by design (swirling motions are not introduced by the particle
feeder) but it shows some variations and asymmetry far from the plume axis. The
solid line in figure 8(a) is a nonlinear least squares fit to a shape function,

〈U2〉

Uc
=−

α

η

(
(1− e−η

2
)−

β

α
η2e−η

2

)
. (3.1)
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FIGURE 7. Comparison of (a) mean centreline velocity, Uc, and (b) Gaussian plume
radius, bg, between a particle plume (current study) and bubble plume (published
literature).
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FIGURE 8. Radial profiles of non-dimensional (a) 〈U2〉/Uc and (b) 〈U3〉/Uc at various
axial locations (x1/d0) indicated by the colourbar.

Here, η= x2/bg. The shape function in (3.1) is obtained from the radial integration of
the continuity equation written in a cylindrical coordinate system after adopting the
entrainment hypothesis for jets/plumes and the Gaussian-profile assumption for 〈U1〉

(Papanicolaou & List 1988; Lee & Chu 2003). Herein, the entrainment coefficient,
α=0.07 is computed as a fitting parameter in (3.1). The spreading versus entrainment
ratio, β/α, has been measured as 2 for pure jets (Lee & Chu 2003), and 1.2 for bubble
plumes (Lai & Socolofsky 2019). Our results show β/α= 0.114/0.07= 1.63, situating
the particle-laden plume between pure jets and bubble plumes.

We compute particle number density by counting the particles across each sample
(detection method described in § 2.3.2). The normalized distribution of particle number
density φ across the radius of the plume is shown in figure 9. Here, 〈φ〉 signifies
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FIGURE 9. Normalized distribution of particle number density across the plume averaged
along x1. The solid line is a Gaussian fit to the measured data, and the dotted line is the
Gaussian fit to mean axial fluid velocity (〈U1〉/Uc) from figure 6. The particle half-width,
bφ = 0.56bg.

the probability of finding a particle in the specified radial location, and φc is the
centreline value, which measures as 0.11 at all axial locations. The distribution of φ
allows us to fit a Gaussian profile and measure the half-width (bφ), which we use to
designate the ‘particle core’ from here onward. The axially averaged bφ obtained from
the particle concentration profiles, when normalized by the axially averaged bg, shows
that bφ/bg = 0.56. This ratio for the bubble plume in Lai & Socolofsky (2019) was
not measured, but in earlier studies of bubble plumes, e.g. Milgram (1983), reported
values of bφ/bg are in the range of 0.8–0.9. This value is somewhat higher than our
value, implying that solid particles spread less rapidly than bubbles. This may be
due to the fact that rising bubbles exhibit swirling motions and experience significant
lateral lift force when compared to particles (Lai & Socolofsky 2019). In addition,
LES for a range of monodispersed and polydispersed bubble plumes in Fraga &
Stoesser (2016) show that the ratio bφ/bg is very sensitive to the size distribution of
bubbles across the plume. They showed that the size distribution across the plume
resembles a reverse-Gaussian profile with larger bubbles populating away from the
centreline. This reveals the complexity related to clearly defining a bubble-core which
depends on the distribution of the number density as well as bubble size across the
plume. A future investigation on bubble plumes examining the relationship between
polydispersity and turbulence characteristics will help to better explain the above
differences between the particle and bubble plumes.

The dynamic length scale D in the above formulation was derived by Bombardelli
et al. (2007), wherein the authors started with the governing equations (continuity and
momentum) of the air–water mixture, which were derived from a two-fluid approach
(Buscaglia, Bombardelli & Garcia 2002). The mixture was assumed to have low
air void fractions, to be incompressible and the Boussinesq approximation for small
density differences to be valid. For bubble plumes having air void fractions of the
order of a few per cent, this is equivalent to the usual Boussinesq approximation
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FIGURE 10. Comparison of standardized p.d.f. of (a) axial, u1/u1,rms; (b) radial, u2/u2,rms,
and out-of-plane, u3/u3,rms, velocity fluctuations at the centreline of a particle plume
(present data) and a bubble plume (Lai & Socolofsky 2019). In (a), positive values indicate
upward-moving fluid in the case of bubble plume and downward-moving fluid in the case
of particle plume.

applied to single-phase water flows like seawater. The parameter D was then obtained
from the non-dimensional momentum equation by requiring a balance between inertia
and buoyancy.

To apply the above formulation to particle-laden plumes, care must be taken to
ensure that the Boussinesq approximation remains valid in the mean flow, and thus,
imposing restrictions on the type of particles that can be considered. In our study,
the specific gravity of Teflon particles relative to water is 2.15. The mixture density
equation gives a density difference φ(ρs − ρw) = φ(2.15 − 1)ρw = 1.15φρw. The
maximum solid fraction, φ, occurs at the plume centreline and is approximately 10 %.
This gives a density difference of approximately 10 %, (ρm− ρw)/ρw≈ 0.1. This 10 %
is a little bit on the high side but is not unreasonable. The possible mild violation
of the Boussinesq approximation at the plume centreline should not invalidate the
formulation that seeks to predict the overall, plume-scale dynamics.

3.2. Fluctuating flow characteristics
In this section, we examine the nature of the fluctuating components of velocity
(ui = Ui − 〈Ui〉, ui,rms =

√
〈u2

i 〉). The normalized p.d.f. of ui at the plume centreline
is shown in figure 10. The respective p.d.f. for a bubble plume (Lai & Socolofsky
2019) is also included in each plot for comparison. Interestingly, the distribution of
the axial velocity fluctuations is negatively skewed for a particle plume, such that
axial fluctuations opposite to the direction of particle motion are more common than
those along the direction of particle motion. This behaviour is strikingly opposite to
what is seen in bubble plumes and homogeneous bubble swarms (Riboux, Risso &
Legendre 2010; Prakash et al. 2016; Lai & Socolofsky 2019), for which the axial
velocity fluctuations moving in the direction of bubble motion are more common than
those moving in the opposite direction. Another way to see this effect is that the
mode of the distribution is slightly positive for the particle plume, while it is slightly
negative for a bubble plume (see figure 10a). One implication of this contrasting
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FIGURE 11. Standardized p.d.f. of (a) axial, u1/u1,rms; (b) radial, u2/u2,rms; and out-of-
plane, u3/u3,rms at various locations across a particle plume. The colourbar indicates the
various radial locations (x2/bg).

result is that the turbulence in a multiphase plume is sensitive to the direction of the
plume with respect to gravity; particle plumes are not a simple reversal of bubble
plumes. One implication of this contrasting result could be that the fluid flow in a
multiphase plume is non-Boussinesq and is sensitive to the direction of the plume
with respect to gravity. The cause of this difference could be the deformability of
bubbles, the different density contrast between the two phases (2 : 1 for a particle
plume and 0.001 : 1 for a bubble plume), or the different inertia between a bubble and
a particle. All of these factors cause structural differences in the wake of a particle
compared to that of a bubble and thus the role of role of added mass in these two
flows. A future study comparing the wake-to-wake interaction in a particle plume
with that in a bubble plume will help clarifying these differences between the two
flows.

The p.d.f.s of radial and out-of-plane velocity fluctuations are symmetric about
their means (figure 10b), and closely follow a Gaussian curve. We do not observe
the prominent signatures of intermittency in the cross-stream components typically
observed in bubble plumes and bubble swarms (Prakash et al. 2016; Lai & Socolofsky
2019).

In figure 11, we further examine the velocity fluctuations across the plume at
different radial locations (x2/bg). For this purpose, we sort the data into eight equal
bins (bin width = 0.16bg) for x2 > 0 after checking that the choice of bin width
does not change the results. Across the plume, the radial, u2, and out-of-plane, u3,
velocity fluctuations are symmetric with nearly zero skewness (see figure 11b). The
axial velocity fluctuations, u1, switch from negatively skewed at the centreline (as
discussed earlier) to positively skewed outside the half-radius (x2 > 0.5bg) of the
plume. These characteristics are better captured in the statistical moments (r.m.s.,
skewness and kurtosis) as shown in figure 12. Figure 12(b) shows that the change of
sign in S(u1) occurs at three-quarters of the plume width bg, which also coincides
with the maximum u1,rms (see figure 12a). Both u2,rms and u3,rms show their maximum
at the centreline, and are consistently smaller than u1,rms. The radial variation of
kurtosis K(ui) in figure 12(c) captures the increasing flatness of each distribution
outside the plume half-radius.
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FIGURE 12. Higher-order statistics: (a) standard deviation; (b) skewness; and (c) kurtosis
of the three components of velocity fluctuations across a particle plume.

3.3. Reynolds stresses

The Reynolds stresses across the plume are reported at all measured axial locations
in figures 13(a) (normal stresses) and 13(b) (shear stress in the measurement plane).
The turbulent kinetic energy (k) based on 13(a) is shown separately in figure 13(c). A
nonlinear least squares fit of the data to a shape-preserving function (see appendix A)
captures well each profile (see fitted lines in figure 13). Results show that the turbulent
kinetic energy is primarily dominated by the axial velocity fluctuations, and that it
increases from the plume centreline to its maximum value near the edge of the plume
(x2≈0.75bg). The maximum TKE located at x2/bg=0.75 is approximately 44 % of U2

c
and is approximately 1.5 times the TKE at the plume centre. The in-plane shear stress,
〈u1u2〉/U2

c , follows a trend similar to that of a turbulent jet and increases from zero at
the centreline to a maximum located near x2/bg= 0.75 (see figure 13b). The location
of maximum shear is consistent with that of 〈u2

1〉/U
2
c , suggesting that the shear stress

is dominated by the axial fluctuations u1.
In figure 14, we compare the in-plane turbulent intensities normalized by the local

mean axial velocity, (
√
〈u2

1〉/〈U1〉), with two earlier studies on bubble plumes (Duncan,
Seol & Socolofsky 2009; Lai & Socolofsky 2019). For this comparison, we use the
shape functions (solid and dashed lines in figure 13(a)). The present data and the data
from Duncan et al. (2009) show reasonably similar trends with unbounded growth
away from the centreline as 〈U1〉 approaches zero asymptotically outside the plume.
The results from Lai & Socolofsky (2019) show somewhat higher turbulent intensity
inside the plume core. Also, the growth in their normalized turbulent intensities is not
unbounded. Lai & Socolofsky (2019) attribute this deviation to finite 〈U1〉 outside of
the plume caused by large recirculation cells caused by the tank walls; also shown in
the LES simulations in Fraga & Stoesser (2016). This created a non-zero upward mean
flow and so the normalized stresses do not attain infinitely large values at the plume
edges in their study. The centreline turbulent intensities for the present data are 18 %,
11 % and 9 % for u1, u2 and u3, respectively. The axial turbulent intensity (

√
〈u2

1〉)
at the centreline for a bubble plume (Lai & Socolofsky 2019) is also approximately

twice the other two normal intensities (
√
〈u2

2,3〉), suggesting stronger anisotropy in
multiphase plumes when compared to a single-phase jets/plumes in which the ratio√
〈u2

1〉/〈u
2
2,3〉 is approximately 1.4 (Wang & Law 2002).
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FIGURE 13. Radial profiles of normalized (a) turbulent normal stresses: 〈u2
1〉/U

2
c , (E);

〈u2
2〉/U

2
c , (@); and 〈u2

3〉/U
2
c , (A); (b) normalized turbulent shear stress 〈u1u2〉/U2

c ; and (c)
normalized turbulent kinetic energy (k/U2

c ) at various axial locations. The colourbars show
the normalized axial locations (x1/d0) indicated by the colourbar.

3.4. Conservation of kinematic momentum flux of the plume
Using the method in Lai & Socolofsky (2019), we assess the conservation of the
total kinematic momentum flux, M = 〈M〉 + Mt, of the induced liquid flow in our
particle plume in figure 15. Here, the momentum flux contributed by the mean flow
is 〈M〉 = 2π

∫
∞

0 x2U2
1 dx2. The momentum flux carried by the turbulence fluctuations

is computed as Mt = 2π
∫
∞

0 x2(〈u2
1〉 − 0.5(〈u2

2〉 + 〈u
2
3〉)) dx2. The results are compared

to the analytical expression for M(x1) for pure vertical plumes (Lee & Chu 2003),

M(x1)= (3
√

2πβF0/4)2/3(x1 − x0)
4/3. (3.2)

Here, x0 = −5.6d0 is the virtual origin of the plume and F0 = Q0g is the buoyancy
flux of the particles. Our results show reasonably good agreement with this model,
suggesting that the particle plume obeys the scaling law M∼ x4/3

1 , which is consistent

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

32
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.326


896 A19-18 A. D. Bordoloi and others

1.51.00.5
x2/bg

1.5(a) (b)

1.0

0.5

0 1.51.00.5
x2/bg

√
¯u

12 ˘/
¯U

1˘

√
¯u

22 ˘/
¯U

1˘

0.8

0.6

0.4

0.2

0

Present data
Duncan et al. (2009)
Lai & Socolofsky (2019)

FIGURE 14. (a) Axial and (b) radial turbulence intensities normalized by the local mean
axial velocity 〈U1〉.
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FIGURE 15. Variation of total kinematic momentum flux of the induced liquid flow in a
particle plume along the axial direction. The dashed line shows a model prediction from
(3.2).

with buoyancy-driven plumes. Some deviation from this power law is observed beyond
axial location x1 − x0 > 16 cm where the value of 〈M〉 becomes almost flat. This is
attributed to PIV measurement uncertainty near the edge of our measurement window.
The total momentum flux is primarily contributed by the momentum flux due to the
mean flow 〈M〉. The remaining contribution comes from Mt, and it is customary to
quantify the contribution by the local momentum amplification factor γ = M/〈M〉.
For our particle plume, γ is 1.2, averaged across all axial measurements. This result
shows that γ for a particle plume is larger than that for a single-phase jet/plume
(γ = 1.07–1.09 (Wang & Law 2002)) and smaller than a bubble plume (γ = 1.4–1.6
(Lai & Socolofsky 2019)).
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i

〈(
∂ui

∂x1

)2
〉
(s−2)

〈(
∂ui

∂x2

)2
〉
(s−2)

1 1555 [1536, 1577] 1509 [1487, 1530]
2 624 [619, 629] 565 [561, 568.5]
3 399 [396, 402] 368.5 [366, 371]

TABLE 3. The second moment of the six available components of the velocity gradient
tensor averaged axially and radially. The quantities within the bracket indicate the 95 %
uncertainty bounds obtained with the bootstrap method.

3.5. Velocity triple correlation and turbulent transport
Because the p.d.f. of axial velocity fluctuations in a particle and a bubble plume
are oppositely skewed (see figure 10a), some interesting differences between the two
flows can be identified in terms of the velocity triple-correlation terms. These terms
contribute to the transport of turbulent kinetic energy and thus are important in the
TKE budget (§ 3.7). The radial profiles of the triple correlation of in-plane velocity
fluctuations normalized by U3

c are shown in figure 16. To compare the trends we also
show the respective profiles for a single-phase jet (Darisse et al. 2012) and a bubble
plume (Lai & Socolofsky 2019). The profiles extracted from the two references are
multiplied by a factor for visual comparison (see legends in figure 16).

Other than 〈u3
1〉, all triple-correlation profiles for the particle plume show trends

similar to a turbulent single-phase jet. The triple-correlation profiles of the first two
terms (〈u3

1〉/U
3
c and 〈u1u2

2〉/U
3
c ) for the bubble plume in Lai & Socolofsky (2019)

are significantly different from the single-phase jet and our particle plume, and they
show 10–20 times larger magnitude compared to our particle plume results (see
figure 16a,b). The bubble plume shows a positive 〈u3

1〉 near the centreline as opposed
to the negative 〈u3

1〉 observed near the core of the particle plume, due to the opposite
skewness of their u1 distributions discussed earlier (see figure 10a).

Based on the triple-correlation terms computed above, we estimate the axial and
radial transport of k in figures 17(a) and 17(b), respectively. Since the TKE in the
particle plume is primarily contributed by the axial stress, 〈u2

1〉, these two profiles
are nearly identical to those in figure 16(a,c). These profiles are fitted to two shape
functions (see appendix A) and are shown as solid lines in figures 17(a) and 17(b),
respectively. We use them for estimating the TKE budget in § 3.7.

3.6. Mean square gradients of velocity fluctuations
To test the conditions of local isotropy and local axisymmetry (George & Hussein
1991), we compute the in-plane derivatives of all three components of velocity
fluctuations employing the second-order-accurate central difference scheme. Table 3
and figure 18 show the second moments of axial (∂/∂x1) and radial (∂/∂x2) derivatives
of all three components of velocity. These moments clearly do not satisfy the
conditions of local isotropy (e.g. 〈(∂u1/∂x1)

2
〉 6= 〈(∂u2/∂x2)

2
〉 and 〈(∂u1/∂x2)

2
〉 6=

2〈(∂u1/∂x1)
2
〉) nor of local axisymmetry (e.g. 〈(∂u3/∂x1)

2
〉 6= 〈(∂u2/∂x1)

2
〉).

The violation of local axisymmetry was also observed for bubble plumes (Lai &
Socolofsky 2019), suggesting that this is a common characteristic of multiphase plume
turbulence contrary to single-phase jets.

Computing the true viscous dissipation rate (stress power) requires all nine
components of the velocity gradient tensor and each component has to be adequately
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FIGURE 16. Normalized radial profiles of triple correlations (a,b) axial transport (〈u1u2
i 〉)

and (c,d) radial transport (〈u2u2
i 〉) of in-plane components of turbulent kinetic energy in a

particle plume at various axial locations (x1/d0) indicated by the colourbar compared with
a single-phase jet (Darisse et al. 2012) and a bubble plume (Lai & Socolofsky 2019).

resolved, which is not easy to achieve experimentally. Instead, we compute the
pseudo-dissipation rate 〈ε〉 (Pope 2000),

〈ε〉 = ν

[〈(
∂u1

∂x1

)2
〉
+

〈(
∂u1

∂x2

)2
〉
+

〈(
∂u1

∂x3

)2
〉

+

〈(
∂u2

∂x1

)2
〉
+

〈(
∂u2

∂x2

)2
〉
+

〈(
∂u2

∂x3

)2
〉

+

〈(
∂u3

∂x1

)2
〉
+

〈(
∂u3

∂x2

)2
〉
+

〈(
∂u3

∂x3

)2
〉]

. (3.3)

Here, ν = 1.02× 10−6 m2 s−1 is the kinematic viscosity of saline water at 23 ◦C. In
our calculations all but the three out-of-plane derivative terms in (3.3) are computed
directly from our SPIV data, and the missing out-of-plane mean-square derivatives
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FIGURE 17. Radial profiles of non-dimensional (a) axial (〈u1k〉/U3
c ) and (b) radial

(〈u2k〉/U3
c ) transport of turbulent kinetic energy at various axial locations (x1/d0) indicated

by the colourbar.
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FIGURE 18. Radial profiles of non-dimensional (a) axial (〈u1k〉/U3
c ) and (b) radial

(〈u2k〉/U3
c ) transport of turbulent kinetic energy at various axial locations (x1/d0) indicated

by the colourbar.

(〈(∂ui/∂x3)
2
〉) are replaced by 〈(∂ui/∂x2)

2
〉. The mean pseudo-dissipation rate 〈ε〉

across the plume is shown for various axial locations in figure 19.
To assess the accuracy in the dissipation calculation, we adopt a method based on

conservation of total kinetic energy for multiphase plume in a Lagrangian framework
as outlined in Lai & Socolofsky (2019). In essence, this method estimates the balance
of the total kinetic energy as production minus dissipation∫∫∫

V

D
Dt
(〈K〉 + 〈k〉) dV =−fc

∫∫∫
V
〈ε〉 dV +

∫∫∫
V

1ρ

ρ
〈U1〉g dV, (3.4)

and calculates the correction factor fc to balance the two sides. The mean kinetic
energy, 〈K〉 ≈ 〈U1〉

2/2 because U1 � U2, U3. This equation can be simplified in the
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FIGURE 19. Radial profiles of non-dimensional mean dissipation rate at various axial
locations (x1/d0) indicated by the colourbar.

Term in (3.4) Full form Similarity form Value

Flux of K, I1 2π

∫
∞

0
〈Uz〉〈K〉r dr 2π

∫
∞

0
ηe−3η2

dη 1.047

Flux of k, I2 2π

∫
∞

0
〈Uz〉〈k〉r dr 2π

∫
∞

0
ηe−η

2
F4(η) dη 0.095–0.105

Dissipation, I3 2π

∫
∞

0
〈ε〉r dr 2π

∫
∞

0
ηF5(η) dη 0.021–0.027

K ≈U2
1/2 k= (u2

1 + u2
2 + u2

3)/2

TABLE 4. Simplified similarity expressions and values of various integrals used in (3.5).
The shape functions F4(η) and F5(η) are summarized in appendix A.

cylindrical coordinate system (r, θ, z) by invoking steady state as follows. The left-
hand side of the equation is computed using the shape functions of the mean radial
profiles for 〈U1〉 and 〈k〉 (see §§ 3.1 and 3.2). The first term on the right-hand side is
obtained by using 〈ε〉 at multiple axial locations. The last term in (3.4) refers to the
kinetic energy production due to the particle buoyancy flux and equals CF01x1, where
the prefactor C = 1+ λ2/πλ2√4/γ

∫
∞

0 2πηe−(2λ2
+1/λ2)η2 dη depends on λ = 〈bφ〉/〈bg〉

and the momentum amplification factor γ . Based on λ= 0.6 and γ = 1.2, we obtain
C= 1.44. The simplified equation for a volume bounded by two axial locations x1 and
x2 is written as

[(0.5I1 + I2)(b2
gU3

c )]
x2
x1
= fc

∫ z2

z1

I3bgU3
c dx+ 1.44F01x1. (3.5)

Here, I1, I2 and I3 are the axisymmetric surface integrals (2π
∫
∞

0 (.)r dr) of the
respective terms inside the volume integral in (3.4) (summarized in table 4).

We test the balance of (3.5) at multiple axial locations separated by 1.5bg and
have found fc to vary between 2.8 and 5.1 with a mean value of 4.0. This method
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estimates the amount by which 〈ε〉 is underestimated by our evaluation of (3.6), but it
is unable to correct 〈ε〉 locally along the radius of the plume. Given such limitation,
〈ε〉 presented here must be interpreted as order of magnitude estimates. We use the
corrected dissipation profile only for a qualitative assessment of the TKE budget
discussed in the following section.

3.7. Turbulent kinetic energy budget
In the cylindrical coordinate system, the time-averaged transport equation for k of an
axisymmetric, steady, turbulent plume without swirl is (Kataoka & Serizawa 1989)

0 =

A︷ ︸︸ ︷
−

(
〈Ur〉

∂k
∂r
+ 〈Uz〉

∂k
∂z

)
T︷ ︸︸ ︷

−

(
1
r
∂〈urk〉
∂r
+
∂〈uzk〉
∂z

)
Tp︷ ︸︸ ︷

−
1
ρ

(
1
r
∂〈urp〉
∂r
+
∂〈uzp〉
∂z

)
Ps︷ ︸︸ ︷

−

(
〈u2

z 〉
∂〈Uz〉

∂z
+ 〈u2

r 〉
∂〈Ur〉

∂r
+
〈Ur〉〈u2

θ 〉

r
+ 〈uzur〉

(
∂〈Uz〉

∂r
+
∂〈Ur〉

∂z

))
− 〈ε〉

+ Pb. (3.6)

In addition to the terms already present in single-phase jets/plumes (A, advection;
Ps, shear-production; T , turbulent transport; and Tp, pressure transport), a multiphase
plume has another source term (Pb) that represents the interfacial energy transfer
at the boundaries between the dispersed phase and the surrounding fluid. Obtaining
the complete TKE budget for a particle plume is challenging for multiple reasons.
First, it is difficult to accurately measure experimentally the mean dissipation rate
〈ε〉 because of the under-resolved velocity gradients (as seen in § 3.6). Second, there
is no existing model for pressure–velocity correlation in multiphase flow turbulence,
and therefore the pressure transport term (Tp) requires an assumption. Finally, the
interfacial energy transfer (Pb) is the most complex and inaccessible term, and
it requires the local distribution of particles and their relative velocity with the
surrounding fluid (Santarelli, Rouseel & Frohlich 2016). In an ideal scenario with all
other terms measured correctly, the term Pb can be sought as the closing term of
(3.6), such that Pb = 〈ε〉 − (A+ Ps + T + Tp). We will use this method to estimate Pb

from our data.
We directly compute A, Ps and T from our experimental data. The expressions

for these in terms of similarity variables are summarized in appendix B. Each plot
contains an error band corresponding to the 95 % confidence interval in the constituent
fits. Each uncertainty band is computed via the rule of uncertainty propagation
described in Charonko & Prestridge (2017). The pressure transport term, Tp, not
directly available from experiment, is replaced by Lumley’s model Tp = −2/5T ,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

32
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.326


896 A19-24 A. D. Bordoloi and others

2.52.01.51.0
r/bg r/bg

0.50

10

(÷ 10-3)(a) (b) (÷ 10-2)

5

0

-5

-10

(T
K

E 
bu

dg
et

 te
rm

s)
(b

g/
U

c3 )

-15

-20
2.01.61.20.80.40

10

5

0

-5

-10

Advection (A)
Shear production (Ps)

Pressure transport (Tp)
Dissipation (¯´˘)
A + Ps + T + Tp

Pb

Turbulent transport (T)

FIGURE 20. Various terms in the turbulent kinetic energy budget for (a) a particle plume
and (b) a bubble plume reproduced from Lai & Socolofsky (2019). The error band in each
term (shown up to the extent of measurement window) represents uncertainty in computing
the term.

widely used for single-phase turbulence (Lumley 1978). These four terms and the
mean dissipation rate (〈ε〉) multiplied by the correction factor fc = 4 are shown in
figure 20(a). The remaining terms of the balance equation are the interfacial energy
transfer (Pb) from particles to fluid and out-of-balance experimental error (known as
OOBE). The budget terms for a bubble plume from Lai & Socolofsky (2019) are
reproduced in figure 20(b) for comparison. Each budget term is normalized by U3

c/bg;
the order of magnitude difference in the two budgets arises because of the difference
in the downstream measurement locations with respect to the source, leading to the
differences in Uc and bg (see figure 7a,b). Below we discuss the comparison of the
TKE budget for the two multiphase plumes in light of previous experiments on a
single-phase jet (Lai & Socolofsky 2018) and a variable-density single-phase (VDSP)
jet (Charonko & Prestridge 2017). The qualitative summary of this comparison is
provided in table 5.

The shape of the advection (A) profiles are very similar across all four plumes
with a positive central lobe inside the plume core. The shear production term (Ps)
in the particle plume increases from zero at the centreline to a dominant peak at
approximately r/bg = 0.65 near the edge of the plume. This behaviour strongly
resembles a single-phase jet both in shape and relative magnitude. The Ps profile in
the VDSP jet also matches this trend, except that a negative Ps is observed at the
jet centreline. By contrast, the bubble plume shows almost negligible Ps across the
radius of the plume. The turbulent transport term (T) in the particle plume exhibits
a positive peak near the centreline and a negative lobe near the edge of the plume.
The bubble plume and the VDSP jet are similar, but with a larger peak in the former.
The single-phase jet does not match the others, i.e. near the centreline the turbulent
transport is consistently observed to be negative or marginally positive (Darisse,
Lemay & Benaïssa 2015).

Because the energy production at the two-phase boundaries, Pb, is computed
indirectly, the peak location in Pb is sensitive to the experimental error in 〈ε〉.
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TKE budget term Multiphase Single phase
Particle Bubble Jet VD jet

Advection, A
√ √ √ √

Shear production, Ps
√

7
√

7
Turbulent transport, T

√ √
7

√

√
: similar profile shapes 7: dissimilar profile shapes

TABLE 5. Qualitative comparison summary of three TKE budget terms in our particle
plume and those in a bubble plume (Lai & Socolofsky 2019), a single-phase jet (Darisse
et al. 2015; Lai & Socolofsky 2018) and a VDSP jet (Charonko & Prestridge 2017).

Despite this limitation, it is worth noting that in both particle and bubble plumes, the
sum (A+ T + Ps + Tp) is significantly smaller than the mean dissipation rate outside
the plume core (r > 0.5bg). This results in the TKE budget being an approximate
balance between Pb and 〈ε〉 lending further credibility to our results.

3.8. Two-point correlation and energy spectra
We obtain the two-point statistics from the spatial autocorrelation function R11
computed along the axial measurements of axial velocity fluctuations, u1. Figure 21
shows R11 inside the plume core (x2/bg < 0.5) at various radial locations (shaded
circles) and their mean R̄11 (red circles). The horizontal axis is normalized by the
particle diameter dp. We estimate the Taylor microscale (λf ) of this flow by fitting
an osculating parabola, 1 − (x2

1/λ
2
f ) (Pope 2000) to the first four points of R̄11 (see

solid line in figure 21), yielding λf = 1.3dp, which is of the order of the particle
size. The Kolmogorov scale obtained based on λf is approximately 0.1 mm, which
suggests that our velocity gradient measurements are ‘coarse-grained’ and are subject
to the inherent spatial averaging over the PIV subwindow. The Taylor microscale, λf ,
is related to the mean square velocity gradient in homogeneous isotropic turbulence
(Pope 2000) and we use this relation to approximate〈(

∂u1

∂x1

)2
〉
≈

2〈u2
1〉

λ2
f
. (3.7)

Based on this method, 〈(∂u1/∂x1)
2
〉(bg/Uc)

2 at x2 = 0 is 3.2± 0.6 and at x2 = 0.5bg
is 5.8± 0.6. Within the uncertainty bounds, these values match those obtained from
direct computation of gradients in § 3.6 (see figure 18a).

Risso (2018) suggests that the inter-scale energy transfer in bubble-induced
agitation (known as BIA) is quite different from the classical picture of shear-induced
turbulence (known as SIT). As a first step toward understanding the energy cascade
in particle-plume turbulence, we generate the one-dimensional energy spectrum (E11)
from the autocorrelation function R̄11 (Pope 2000). The normalized spectra for our
particle plume is compared with experimental results (Riboux et al. 2010) and DNS
simulations (Lai et al. 2018) in figure 22(a). The result shows striking similarity in the
spectra between homogeneous bubble swarms (both experiment and DNS simulation)
and our particle plume; for wavenumbers smaller than 1/λf , all follow a power
law close to κ−3 similar to the earlier prediction (Lance & Bataille 1991). Beyond
κ1 > 1/λf , both experimental results (ours and Riboux et al. (2010)) show different
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FIGURE 21. Spatial autocorrelation R11 along longitudinal (axial) direction of the flow.
The shaded circles show autocorrelation at various radial location (x2/bg < 0.5), the filled
circles are their mean. The solid line is an osculating parabola fit to the first four data
points in R̄11.
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FIGURE 22. Comparison of (a) one-dimensional power spectra E11(κ1) of axial velocity
fluctuations and (b) one-dimensional dissipation spectra in particle plume with earlier
studies related to homogeneous bubble swarms (experiment, (Riboux et al. 2010); DNS
simulation, Lai et al. (2018)). The horizontal axis is normalized by the wavenumber
corresponding to respective particle diameter (dp).

slopes than the DNS results, which can be attributed to experimental uncertainty in
resolving velocity fluctuations below λf . Nonetheless, this result is valuable and it
suggests power law universality of multiphase flow turbulence which is quite different
from that for single-phase turbulent shear-flows.
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The one-dimensional dissipation spectra D11(κ1) = 2νκ2E11(κ1) is shown in
figure 22(b). Quite strikingly, the peaks of dissipation for our data and bubble
plume/swarms reside at κ1dp ≈ 0.2–0.4. This indicates that in both bubble- and
particle-laden turbulence, production and dissipation occur near the scale of particle
size. This lack of scale separation was first postulated for homogeneous bubbly flows
in Lance & Bataille (1991) and is observed in direct numerical simulations reported
in Lai et al. (2018).

4. Conclusions
We report an experimental study characterizing the turbulence inside a heavy

particle plume descending under gravity within a salt–water solution. We measure
the three components (i.e. 2D3C) of the interstitial fluid velocity and the spatial
distribution of particles in the central plane of the plume using refractive-index-
matched stereoscopic particle image velocimetry. Below we summarize our key
findings primarily in the light of the results for a bubble plume (Lai & Socolofsky
2019).

The induced liquid flow inside the plume evolves with the mean flow characteristics
of a bubble plume (Lai & Socolofsky 2019), that show Gaussian mean axial velocity
(〈U1〉) profile. The radial profiles of mean particle number density are also Gaussian
with a half-width bφ equals to 0.56bg, where bg is the Gaussian half-width of the mean
streamwise velocity profile in the fluid.

The turbulence inside the plume is highly anisotropic with maximum streamwise
turbulence intensity measuring up to 2.7 times that of the other two components, a
result consistent with that observed in a bubble plume. The p.d.f. of the axial velocity
fluctuation (u1) at the centreline of the plume is skewed so that the strongest events
are in the direction opposite to mean flow. This behaviour is strikingly opposite to that
observed previously for a bubble plume and a homogeneous swarm of bubbles. The
turbulent kinetic energy and the in-plane shear-stress peak near ≈0.75bg, locating the
shear layer slightly outside the edge of the particle core (bφ). Although these quantities
for a bubble plume in Lai & Socolofsky (2019) peaked at a similar location (≈ 0.7bg),
the location of the shear layer with respect to their bubble-core (bφ) remains unknown.

Another distinction between the particle and the bubble plume is observed in the
fluid-shear production term, Ps, in the TKE budget. While the shear production in the
bubble plume is negligible across the plume compared to the other terms, we observe
a distinct peak in Ps at the shear layer region of a particle plume, resembling a single-
phase jet.

The other TKE terms including advection, A, and the turbulent transport, T , in the
two flows exhibit similar profiles. Further, we show that the turbulent transport, T ,
term follows similar qualitative profiles for both plumes and also an earlier reported
variable-density single-phase jet (Charonko & Prestridge 2017), all of which differ
from a typical single-phase jet. The difference in the relative magnitude in T at the
centreline between the two plumes is attributed to the difference in their third moment
(skewness) of the axial velocity fluctuations.

Despite the above differences inside the core, both particle and bubble plumes show
qualitatively that the TKE production by the particles, Pb, approximately balances
the mean dissipation rate, 〈ε〉, away from the centreline. Further, the one-dimensional
spectrum in the particle plume exhibits the −3 power law consistent with bubble
plume and homogeneous swarms of bubbles. These two results support the notion
that there is a lack of separation between the scales of production and dissipation in
multiphase turbulent flows like ours.
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Function (Fi(η)) Parameter f1 f2 f3

F1 〈u2
z 〉/U

2
c 0.069 0.74 0.63

F2 〈u2
r 〉/U

2
c 0.011 0.57 1.00

F3 〈u2
θ 〉/U

2
c 0.009 0.62 0.84

F4 k/U2
c 0.045 0.71 0.68

F5 〈ε〉bg/U3
c 0.004 0.76 0.72

TABLE 6. Coefficients of double-Gaussian function in (A 1) used to fit various
parameters measured in the experiment.
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Appendix A.
The three components of normal stresses, the turbulent kinetic energy (k) and the

mean dissipation rate 〈ε〉 are fitted into a shape preserving double-Gaussian curve,
given in (A 1) as follows:

Fi(η)= f1

[
exp

(
−

(
η− f3

f2

)2
)
+ exp

(
−

(
η+ f3

f2

)2
)]

. (A 1)

All terms are expressed in similarity variable η= r/bg.
The in-plane shear-stress is fitted into a polynomial-Gaussian function in (A 2) as

follows:

S= 〈uzur〉/U2
c = (0.0124η+ 0.0286η3

− 0.0113η5)exp(−1.47η2). (A 2)

The axial and radial transport of the turbulent kinetic energy (k) are fitted into the
polynomial-Gaussian functions in (A 3) and (A 4), respectively, as

T1 = 〈uzk〉/U3
c = (−0.0016− 0.0252η2

− 0.0181η4
+ 0.0746η6)exp(−2.62η2), (A 3)

T2 = 〈urk〉/U3
c = (−0.0008η0.0048η3

− 0.0139η5
− 0.0049η7)exp(−1.76η2). (A 4)

Appendix B.
Expressions for the advection, A, shear-production, Ps, and turbulent transport,

T , terms in cylindrical coordinate system in the turbulent kinetic energy budget are
summarized below. Each term is expressed in terms of the similarity variable η= r/bg.

(i) Advection term

A=−
[
〈Uz〉

∂k
∂z
+ 〈Ur〉

∂k
∂r

]
,

A×
bg

U3
c

=

[
2
3

F4(η)+ η
dF4(η)

dη

]
βe−η

2
−

[
G(η)

dF4(η)

dη

]
. (B 1)
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(ii) Production term

P=−

〈u2
z 〉
∂〈Uz〉

∂z︸ ︷︷ ︸
P1

+ 〈u2
r 〉
∂〈Ur〉

∂r︸ ︷︷ ︸
P2

+
〈Ur〉〈u2

θ 〉

r︸ ︷︷ ︸
P3

+ 〈uzur〉

(
∂〈Uz〉

∂r
+
∂〈Ur〉

∂z

)
︸ ︷︷ ︸

P4

 ,

P1 ×
bg

U3
c

=
β

3
F1(η)e−η

2
(1− 6η2), (B 2)

P2 ×
bg

U3
c

=−F2(η)
dG(η)

dη
, (B 3)

P3 ×
bg

U3
c

=−
1
η

F3(η)G(η), (B 4)

P4 ×
bg

U3
c

= S(η)
(

2ηe−η
2
+
β

3
G(η)+ ηβ

dG(η)
dη

)
. (B 5)

(iii) Turbulent transport

T =−
[
∂〈uzk〉
∂z
+

1
r
∂〈urk〉
∂r

]
,

T ×
bg

U3
c

= β

(
T1(η)+ η

dT1
dη

)
−

(
T2(η)

η
+
∂T2(η)

∂η

)
. (B 6)
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