# CHERN CHARACTERS, REDUCED RANKS AND $\mathscr{D}$-MODULES ON THE FLAG VARIETY 

by T. J. HODGES and M. P. HOLLAND

(Received 3rd December 1992)


#### Abstract

Let $D$ be the factor of the enveloping algebra of a semisimple Lie algebra by its minimal primitive ideal with trival central character. We give a geometric description of the Chern character ch: $K_{0}(D) \rightarrow H C_{0}(D)$ and the state (of the maximal ideal $m$ ) $s: K_{0}(D) \rightarrow K_{0}(D / m)=\mathbb{Z}$ in terms of the Euler characteristic $\chi: K_{0}(\mathscr{X}) \rightarrow \mathbb{Z}$, where $\mathscr{X}$ is the associated flag variety.


1991 Mathematics subject classification: 17B35, 16E20, 19A49

## 1. Introduction

Let $G$ be a connected, semi-simple, complex algebraic group, let $g$ be its Lie algebra and let $U(\mathfrak{g})$ be the enveloping algebra of $\mathfrak{g}$. Let $P$ be the minimal primitive deal of $U(\mathrm{~g})$ with trivial central character and set $D=U(\mathfrak{g}) / P$. Then $D$ has a unique maximal ideal $m$ (the annihilator of the trivial representation) and $D / m \cong \mathbb{C}$. We consider here the relationship between three natural functions on the Grothendieck group $K_{0}(D)$. First, there is the Chern character, ch: $K_{0}(D) \rightarrow H C_{0}(D)$ where $H C_{0}(D)=D /[D, D]=\mathbb{C}$ is the zero-th cyclic homology group. Second, the natural map $D \rightarrow D / m$ induces a map $s: K_{0}(D) \rightarrow K_{0}(D / \mathrm{m})=\mathbb{Z}$. In Theorem 3.1 we observe that $c h$ and $s$ coincide (via the usual embedding of $\mathbb{Z}$ in $\mathbb{C}$ ).

The third map is induced from the Euler characteristic on the associated flag variety $G / B$ where $B$ is a Borel subgroup. Let $\mathscr{D}$ denote the sheaf of differential operators on $G / B$. The Bernstein-Beilinson Theorem establishes an equivalence of categories between the category of $D$-modules and the category of quasi-coherent $\mathscr{D}$-modules. From this one may deduce that $K_{0}(D) \cong K_{0}(G / B)$. Thus the Euler characteristic $\chi: K_{0}(G / B) \rightarrow \mathbb{Z}$ induces a function on $K_{0}(D)$. The relation between this and the above maps is given by Theorem 2.9. Let $\tilde{\chi}$ denote $\chi$ composed with the duality automorphism of $K_{0}(G / B)$; that is, $\tilde{\chi}[\mathscr{E}]=\chi\left[\mathscr{E}^{*}\right]$ for any locally free sheaf $\mathscr{E}$. Then via the above isomorphism, $s$ coincides with $\tilde{\chi}$.

It is a pleasure to thank Collier Coutinho for many helpful conversations.

## 2. Reduced ranks

2.1. The results announced in the introduction will be proved in a slightly more
general situation. Let $\mathscr{X}$ be a complete, homogeneous space of $G$, that is $\mathscr{X}=G / P$ for some parabolic subgroup of $G$. Write $\mathcal{O}_{\mathscr{X}}$ for the structure sheaf of $\mathscr{X}$. The sheaf of rings of differential operators on $\mathscr{X}$ is denoted by $\mathscr{D}_{x}$ and $\mathscr{D}(\mathscr{X})=\Gamma\left(\mathscr{X}, \mathscr{D}_{x}\right)$, is the ring of globally defined differential operators on $\mathscr{X}$. Then, by [4, Thm. 3.8], $\mathscr{D}(\mathscr{X})$ is isomorphic to a primitive factor of $U(\mathfrak{g})$ with trivial central character. Thus $\mathscr{O}(\mathscr{X})$ has a unique maximal ideal m , the image of the augmentation ideal of $U(\mathrm{~g})$. Note that m is idempotent and $\mathscr{D}(\mathscr{X}) / \mathrm{m} \cong \mathbb{C}$. Let $n=\operatorname{dim} \mathscr{X}$.
2.2. Denote by $\mathscr{D}_{\boldsymbol{q}}$-mod the category of $\mathscr{D}_{\boldsymbol{x}}$-modules which are quasi-coherent when considered as $\mathcal{O}_{\mathscr{x}}$-modules and by $\mathscr{D}_{\mathscr{x}}-\bmod$ the category of $\mathscr{D}(\mathscr{X})$-modules. The main structural result we use is Beilinson and Bernstein's famous theorem [2,5].

Theorem. There is an equivalence of categories between $\mathscr{D}_{x}$-mod and $\mathscr{D}(\mathscr{X})$-mod given by the mutually inverse functors:

$$
\mathscr{M} \mapsto \Gamma(\mathscr{X}, \mathscr{M}) \text { and } M \mapsto \mathscr{D}_{x} \bigotimes_{\mathscr{Q}(\mathscr{X})} M
$$

for $\mathscr{M} \in \mathscr{D}_{x}-\bmod$ and $M \in \mathscr{D}(\mathscr{X})-\bmod$.
It then follows from [3,VI.1.10], that $\mathscr{D}(\mathscr{X})$ has global dimension less than or equal to 2 n . (In fact, an easy extension of the methods of [10] will give equality here.)
2.3. An important consequence of Beilinson and Bernstein's theorem is that the exact functor $\Gamma\left(\mathscr{X}, \mathscr{D}_{x} \bigotimes_{\mathscr{o r}_{-}}\right)$induces an isomorphism in $K$-theory. Let $K_{0}(\mathscr{X})$ denote the Grothendieck group of the category of coherent $\mathcal{O}_{\mathscr{X}}$-modules. It is canonically isomorphic to the Grothendieck group of the category of vector bundles on $\mathscr{X}$. Similarly, $K_{0}(\mathscr{D}(\mathscr{X})$ ), the Grothendieck group of the category of finitely generated $\mathscr{D}(\mathscr{X})$-modules, is canonically isomorphic to the Grothendieck group of the category of finitely generated, projective $\mathscr{D}(\mathscr{X})$-modules.

Theorem [1,7]. The functor $\Gamma\left(\mathscr{X}, \mathscr{D}_{\mathscr{X}} \bigotimes_{\mathcal{O}_{x_{-}}}\right)$induces an isomorphism $\tau: K_{0}(\mathscr{X}) \rightarrow$ $K_{0}(\mathscr{D}(\mathscr{X}))$.
2.4. If $\mathscr{E}$ is a vector bundle on $\mathscr{X}$, denote by $\mathscr{D}_{\mathscr{E}}$ the sheaf of differential operators with coefficients in $\mathscr{E}$, that is:

$$
\mathscr{D}_{\varepsilon}=\mathscr{E} \bigotimes_{O_{x}} \mathscr{D}_{x} \bigotimes_{O_{x}} \mathscr{E}^{*},
$$

where $\mathscr{E}^{*}=\operatorname{Hom}_{O_{\mathscr{E}}}\left(\mathscr{E}, \mathcal{O}_{\mathscr{G}}\right)$, is the dual bundle. The natural inclusion $\mathcal{O}_{\mathscr{X}} \hookrightarrow \mathscr{D}_{8}$ makes $\mathscr{D}_{g}$ a quasi-coherent $\mathcal{O}_{\mathscr{g}}$-module. We denote by $\mathscr{D}_{8}$-mod the category of $\mathscr{D}_{8}$-modules which are quasi-coherent as $\mathcal{O}_{\boldsymbol{x}}$-modules. The following result is well known and easy to prove.

Lemma (Geometric Translation). There is an equivalence of categories between $\mathscr{D}_{6}$-mod and $\mathscr{D}_{x}$-mod given by the mutually inverse functors

$$
\mathscr{M} \mapsto \mathscr{D}_{x} \bigotimes_{o_{x}} \mathscr{E}^{*} \bigotimes_{\mathscr{T}_{E}} \mathrm{M} \text { and } \mathscr{N} \mapsto \mathscr{E} \bigotimes_{o_{x}} \mathscr{D}_{x} \bigotimes_{\mathscr{G}_{x}} \mathrm{~N}
$$

for $\mathscr{M} \in \mathscr{D}_{g}-\bmod$ and $\mathcal{N} \in \mathscr{D}_{x}-\bmod$.
2.5. Let $\mathbb{C}$ be the one-dimensional simple $\mathscr{D}(\mathscr{X})$-module, $\mathscr{D}(\mathscr{X}) / \mathrm{m}$. Consider the functors:

$$
\operatorname{Hom}_{\mathscr{Q ( X )}}(\ldots, \mathbb{C}): \mathscr{D}(\mathscr{X})-\bmod \rightarrow \bmod -\mathbb{C}
$$

and

$$
\mathbb{C} \otimes_{\mathscr{P}(\mathscr{X} L}: \mathscr{D}(X)-\bmod \rightarrow \mathbb{C}-\bmod .
$$

Since $\mathscr{O}(\mathscr{X}$ ) has finite global dimension these functors have finite (co)homological dimension. It is easy to see that there is a natural isomorphism:

$$
\operatorname{Hom}_{\mathscr{Q}(\boldsymbol{x})}(\ldots, \mathbb{C}) \cong \operatorname{Hom}_{\mathbb{C}}\left(\mathbb{C}_{\mathscr{Q ( x )}}, \mathbb{C}\right)
$$

In particular, we have the following:
Lemma. There are natural isomorphisms:

$$
\operatorname{Ext}_{\mathscr{G ( O )}}^{i}(\ldots, \mathbb{C}) \cong \operatorname{Hom}_{\mathrm{c}}\left(\operatorname{Tor}_{i}^{\mathscr{P}(\mathscr{P})}(\mathbb{C}, \ldots), \mathbb{C}\right)
$$

for each $i \geqq 0$.
Since the functors $\mathbb{C} \bigotimes_{\mathscr{P}(x) \ldots}$ and $\operatorname{Hom}_{\mathscr{G}(x)}(\ldots, \mathbb{C})$ are exact on short exact sequences of finitely generated, projective modules they induce an abelian group map $s$ : $K_{0}(\mathscr{D}(\mathscr{X})) \rightarrow K_{0}(\mathbb{C})=\mathbb{Z}$ such that for any finitely generated $\mathscr{D}(\mathscr{X})$-module $M$,

$$
s[M]=\sum_{i=0}^{2 n}(-1)^{i} \operatorname{dim}_{\mathbb{C}} \operatorname{Tor}_{i}^{(\mathscr{X})}(\mathbb{C}, M)=\sum_{i=0}^{2 n}(-1)^{i} \operatorname{dim}_{\mathbb{C}} E x t_{\mathscr{Q}(\mathscr{X})}^{i}(M, \mathbb{C}) .
$$

Theorem 2.6. Let $\mathscr{E}$ be a vector bundle on $\mathscr{X}$. There are vector space isomorphisms:
(a) $E x t_{\mathscr{O}(\mathcal{X})}^{i}\left(\Gamma\left(X, \mathscr{D} \bigotimes_{\mathscr{O}_{x}} \mathscr{E}\right), \mathbb{C}\right) \cong H^{i}\left(\mathscr{X}, \mathscr{E}^{*}\right)$.
(b) $\operatorname{Tor}_{i}^{\mathscr{Q ( X )}}\left(\mathbb{C}, \Gamma\left(X, \mathscr{D} \bigotimes_{O_{\mathscr{X}}} \mathscr{E}\right)\right) \cong H^{n-i}\left(X, \mathscr{E} \bigotimes_{O_{\mathscr{X}}} \omega\right)$,
where $\omega$ is the canonical sheaf on $\mathscr{X}$.
Proof. Note that (b) follows from (a) using Lemma 2.5 and Serre duality. Let us prove (a). Beilinson and Bernstein's theorem (2.2) implies that there is a vector space isomorphism

Geometric translation (2.4) gives another $\mathbb{C}$-linear isomorphism:

$$
\operatorname{Ext}_{\mathscr{\Phi}_{x-\max }^{i}}^{i}\left(\mathscr{D} \bigotimes_{O_{x}} \mathscr{E}, \mathcal{O}_{\mathscr{I}}\right) \cong \operatorname{Ext}_{\mathscr{T}_{\operatorname{mind}}^{i}}^{i}\left(\mathscr{D}_{\left.\mathscr{E}_{\bullet}, \mathscr{E}^{*}\right)}\right)
$$

and the next lemma shows that this latter vector space is isomorphic to $H^{i}\left(\mathscr{X}, \mathscr{E}^{*}\right)$, as required.

Lemma 2.7. Let $\mathscr{E}$ be a vector bundle on $\mathscr{X}$. If $\mathscr{M} \in \mathscr{D}_{\boldsymbol{\sigma}}-\bmod$ then

$$
\operatorname{Ext}_{\mathscr{G}_{\mathrm{G}} \mathrm{mon}}^{i}\left(\mathscr{D}_{\mathscr{E}}, \mathscr{M}\right) \cong H^{i}(\mathscr{X}, \mathscr{M}) .
$$

Proof. It is enough to show that if $\mathscr{I} \in \mathscr{D}_{\boldsymbol{G}}$-mod is an injective object then it is flasque, for then we may compute the cohomology of $\mathscr{M}$ in the category $\mathscr{D}_{\boldsymbol{g}}$-mod. To do this it is in turn sufficient to show that $\mathscr{I}$ is an injective object in the category of quasicoherent $\mathcal{O}_{\boldsymbol{x}}$-modules, by [6, Exercise III.3.6, page 217].

Suppose then that $0 \rightarrow \mathscr{F} \rightarrow \mathscr{G}$ is an exact sequence of quasi-coherent $\mathcal{O}_{\mathscr{X}}$-modules and that $f: \mathscr{F} \rightarrow \mathscr{I}$ is an $\mathcal{O}_{\boldsymbol{x}}$-module morphism. There is an induced morphism $\hat{f}$ : $\mathscr{D}_{\delta} \bigotimes_{\sigma_{x}} \mathscr{F} \rightarrow \mathscr{I}$ of quasi-coherent $\mathscr{D}_{\delta}$-modules. Note that as $\mathscr{D}_{g}$ is flat as an $\mathcal{O}_{\mathscr{x}}$-module, $0 \rightarrow \mathscr{D}_{\mathscr{B}} \bigotimes_{O_{x}} \mathscr{F} \rightarrow \mathscr{D}_{B} \bigotimes_{O_{\mathscr{E}}} \mathscr{G}$ is still exact. The injectivity of $\mathscr{I}$ ensures that $\hat{f}$ extends to a $\mathscr{D}_{\boldsymbol{g}}$-module morphism $h: \mathscr{D}_{\boldsymbol{E}} \bigotimes_{0_{g}} \mathscr{G} \rightarrow \mathscr{I}$. Now the composed morphism $\mathscr{G} \rightarrow \mathscr{D}_{\delta} \bigotimes_{0_{x}}$ $\mathscr{G} \leftrightarrows \mathscr{\mathscr { I }}$ clearly extends $f$ and so $\mathscr{I}$ is injective in the category of quasi-coherent $\mathcal{O}_{\mathscr{X}^{\prime}}$-modules, as required.

Corollary 2.8. If $\mathscr{E}$ is a vector bundle on $\mathscr{X}$ and $i>n$ then $\operatorname{Ext}_{\mathscr{A}(\mathscr{X})}^{i}\left(\Gamma\left(\mathscr{X}, \mathscr{D} \otimes \bigotimes_{O_{x}} \mathscr{E}\right), \mathbb{C}\right)=0$.
2.9. The functor $\Gamma(\mathscr{X}, \ldots)$ induces an abelian group map $\chi: K_{0}(\mathscr{X}) \rightarrow K_{0}(\mathbb{C})=\mathbb{Z}$ given by

$$
\chi[\mathscr{F}]=\sum_{i=0}^{n}(-1)^{i} \operatorname{dim}_{\mathrm{c}} H^{i}(\mathscr{X}, \mathscr{F})
$$

Note that $\chi[\mathscr{F}]$ is the Euler-Poincaré characteristic of $\mathscr{F}$. Define $\tilde{\chi}: K_{0}(\mathscr{X}) \rightarrow K_{0}(\mathbb{C})=\mathbb{Z}$ by $\tilde{\chi}[\mathscr{E}]=\chi\left[\mathscr{E}^{*}\right]$ for any locally free sheaf $\mathscr{E}$.

Theorem. There is a commutative diagram:


Proof. Let $\mathscr{E}$ be a locally free sheaf. From Theorem 2.6 and Corollary 2.8 we have that

$$
\tilde{\chi}[\mathscr{E}]=\sum_{i=0}^{2 n}(-1)^{i} E x t_{\mathscr{O}(\mathscr{C})}^{i}\left(\Gamma\left(\mathscr{X}, \mathscr{D}_{x} \bigotimes_{\mathscr{O}_{X}} \mathscr{E}\right), \mathbb{C}\right)=s\left[\Gamma\left(\mathscr{D}_{x} \bigotimes_{\mathscr{O}_{x}} \mathscr{E}\right)\right]=s \circ \tau[\mathscr{E}]
$$

2.10. One can extend the last result to certain other primitive factors of $U(\mathrm{~g})$ using the translation principle. For convenience, and for the remainder of this section only, assume that $\mathscr{X}=G / B$. Our notation is that of [2]. In particular $\mathfrak{b}$ is a Cartan subalgebra and if $\lambda \in \mathfrak{b}^{*}$ is integral, then $\mathcal{O}(\lambda)$ denotes the associated line bundle. We write $\mathscr{D}_{\lambda}$ for the sheaf of differential operators with coefficients in $\mathcal{O}(\lambda-\rho)$, where $\rho$ denotes the halfsum of the positive roots. The ring of global sections $D_{\lambda}=\Gamma\left(X, \mathscr{D}_{\lambda}\right)$ is a primitive factor of $U(\mathfrak{g})$ and has a unique maximal ideal $\boldsymbol{m}_{\lambda}$. If $\lambda$ is dominant and regular then [2] shows that $\Gamma(\mathscr{X}, \ldots)$ : $\mathscr{D}_{\lambda}-\bmod \rightarrow D_{\lambda}-\bmod$ is an equivalence of categories and, by [7], the $\operatorname{map} \tau_{\lambda}: K_{0}(\mathscr{X}) \rightarrow K_{0}\left(D_{\lambda}\right)$ induced by $\Gamma\left(\mathscr{X}, \mathscr{D}_{\lambda} \bigotimes_{0_{\mathscr{K}_{-}}}\right)$is an isomorphism. For any invertible sheaf $\mathscr{L}$, define $\chi_{\mathscr{L}}: K_{0}(\mathscr{X}) \rightarrow \mathbb{Z}$ by $\chi_{\varphi}[\mathscr{F}]=(-1)^{n} \chi\left[\mathscr{L} \bigotimes_{o_{\mathscr{I}}} \mathscr{F}\right]$. Notice that by Serre duality, if $\mathscr{E}$ is a vector bundle then $\chi_{\omega}[\mathscr{E}]=\chi\left[\mathscr{E}^{*}\right]$.

Define $s_{\lambda}$ to be the natural map $K_{0}\left(D_{\lambda}\right) \rightarrow K_{0}\left(D_{\lambda} / m_{\lambda}\right)$. Since $D_{\lambda} / \mathrm{m}_{\lambda}$ is simple artinian, we may identify the latter with $\mathbb{Z}$.

Corollary. Suppose that $\lambda \in \mathfrak{h}^{*}$ is integral, dominant and regular. Then there is a commutative diagram:


The proof of the Corollary is a routine consequence of Theorem 2.9 and the translation principle. We leave this, and the appropriate generalisation of Theorem 2.6, to the reader.

## 3. Chern characters

3.1. In this section we show that the Chern character ch: $K_{0}(\mathscr{D}(\mathscr{X})) \rightarrow H C_{0}(\mathscr{D}(\mathscr{X}))$ essentially coincides with the state $s: K_{0}(\mathscr{D}(\mathscr{X})) \rightarrow \mathbb{Z}$. Recall first the definition of the Chern character. Let $R$ be an algebra over a field $k$. Then one defines the zero-th cyclic homology group of $R$ to be the $k$-vector space

$$
H C_{0}(R)=R /[R, R],
$$

where $[R, R]$ denotes the $k$-linear span of all $x y-y x$ for $x, y \in R$. There is a natural trace map (or Chern character) ch: $K_{0}(R) \rightarrow H C_{0}(R)$ defined as follows [9]:
If $M$ is a finitely generated, projective $R$-module then $M \oplus K \cong R^{n}$, for some $n$, and so one can associate to $M$ the idempotent matrix $e \in M_{M}(R)$ given by $\left.e\right|_{M}=1_{M}$ and $\left.e\right|_{K}=0$. Now $\operatorname{ch}(M)$ is the trace of $e$ modulo $[R, R]$,

$$
\operatorname{ch}(M)=\sum_{i=1}^{n} e_{i i}+[R, R] \in H C_{0}(R)
$$

3.2. It is clear that $[\mathscr{D}(\mathscr{X}), \mathscr{D}(\mathscr{X})] \subseteq \mathrm{m}$. On the other hand, since $U(\mathrm{~g})=\mathscr{Z}(\mathrm{g}) \oplus$ $[U(\mathrm{~g}), U(\mathrm{~g})]$ it follows that $\mathscr{D}(\mathscr{X})=\mathbb{C} \oplus[\mathscr{D}(\mathscr{X}), \mathscr{D}(\mathscr{X})]$. Hence

$$
H C_{0}(\mathscr{D}(\mathscr{X}))=\mathscr{D}(\mathscr{X}) / \mathbf{m} \cong \mathbb{C} .
$$

We can thus regard ch as a map to the complex numbers.
Theorem. The image of ch is $\mathbb{Z}$ and the diagram:

commutes.

Proof. Let $\rho: \mathscr{D}(\mathscr{X}) \rightarrow \mathscr{D}(\mathscr{X}) / \mathbf{m}$ be the canonical homomorphism. It is easy to see that $s=c h \circ K_{0}(\rho)$. Moreover, the diagram

$$
\begin{aligned}
& K_{0}(\mathscr{D}(\mathscr{X})) \xrightarrow{c h} H C_{0}(\mathscr{D}(\mathscr{X})) \cong \mathbb{C} \\
& K_{0}(\rho) \downarrow \\
& K_{0}(\mathscr{D}(\mathscr{X}) / \mathrm{m}) \xrightarrow{c h} H C_{0}(\rho) \| \\
& H C_{0}(\mathscr{D}(\mathscr{X}) / \mathrm{m}) \cong \mathbb{C}
\end{aligned}
$$

commutes and $H C_{0}(\rho)$ is the identity map. Thus the Chern character ch: $K_{0}(\mathscr{D}(\mathscr{X})) \rightarrow$ $H C_{0}(\mathscr{D}(\mathscr{X}))=\mathbb{C}$ coincides with the map $s$. The result then follows from Theorem 2.9.

## REFERENCES

1. B. Angéniol and M. Lejeune-Jalabert, Le théorème de Riemann-Roch singulier pour les $\mathscr{D}$-modules, Systèmes Différentiels et Singularités (Astérisque 130, Soc. Math. de France, 1985).
2. A. Beilinson and J. Bernstein, Localisation de $\mathfrak{g}$-modules, C. R. Acad. Sc. Paris 292 (1981), 15-18.
3. A. Borel et al., Algebraic D-modules, in Perspectives in Mathematics (Academic Press, Boston, 1987).
4. W. Borho and J.-L. Brylinski, Differential Operators on Homogeneous Spaces I, Invent. Math. 69 (1982), 437-476.
5. W. Borho and J.-L. Brylinski, Differential Operators on Homogeneous Spaces III, Invent. Math. 80 (1985), 1-68.
6. R. Hartshorne, Algebraic Geometry (Graduate Texts in Math. 52, Springer-Verlag, New York, 1977.
7. T. J. Hodges, $K$-theory of $D$-modules and primitive factors of enveloping algebras of semisimple Lie algebras, Bull. Sci. Math. 113 (1989), 85-88.
8. T. J. Hodges and S. P. Smith, The global dimension of certain primitive factors of the enveloping algebra of a semisimple Lie algebra, J. London Math. Soc. 82 (1985), 411-418.
9. M. Karoubi, Homologie cyclique et K-théorie (149, Astérisque, 1987).
10. B. Shelton, The global dimension of rings of differential operators on projective spaces, Bull London Math. Soc. 24 (1992), 148-158.

Department of Mathematical Sciences
University of Cincinnati
Cincinnati, Ohio 45221-0025
USA
E-mail address: HODGES@UCBEH.SAN.UC.EDU

School of Mathematics and Statistics
Pure Mathematics Section
Sheffield University
Sheffield S3 7RH
UK
E-mail address: M.HOLLAND@
SHEFFIELD.AC.UK

