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ON THE MODIFIED FUTAKI INVARIANT
OF COMPLETE INTERSECTIONS IN

PROJECTIVE SPACES

RYOSUKE TAKAHASHI

Abstract. Let M be a Fano manifold. We call a Kähler metric ω ∈ c1(M)

a Kähler–Ricci soliton if it satisfies the equation Ric(ω)− ω = LV ω for some

holomorphic vector field V on M . It is known that a necessary condition

for the existence of Kähler–Ricci solitons is the vanishing of the modified

Futaki invariant introduced by Tian and Zhu. In a recent work of Berman

and Nyström, it was generalized for (possibly singular) Fano varieties, and the

notion of algebrogeometric stability of the pair (M, V ) was introduced. In this

paper, we propose a method of computing the modified Futaki invariant for

Fano complete intersections in projective spaces.

§1. Introduction

Let M be an n-dimensional Fano manifold, that is, M is a compact

complex manifold and c1(M) is represented by some Kähler form ω on

M . If we take holomorphic coordinates (z1, . . . , zn) of M , ω and its Ricci

form Ric(ω) are locally written as
gij̄ = g

(
∂

∂zi
,
∂

∂zj̄

)
,

ω =

√
−1

2π

∑
i,j

gij̄ dz
i ∧ dzj̄

and 
rij̄ =−∂i∂j̄ log(det(gkl̄)),

Ric(ω) =

√
−1

2π

∑
i,j

rij̄ dz
i ∧ dzj̄ .
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Since both ω and Ric(ω) are in c1(M), Ric(ω)− ω is an exact (1, 1)-form.

Therefore, there exists a real-valued smooth function κ on M such that

Ric(ω)− ω =

√
−1

2π
∂∂̄κ.

Let g be the Lie algebra consisting of all holomorphic vector fields on

M . Then, any V ∈ g can be lifted to the anticanonical bundle −KM of

M , and naturally acts on the space of Hermitian metrics on −KM . Let

h be a Hermitian metric on −KM such that ω =−
√
−1

2π ∂∂̄ log h, and let

µh,V be the holomorphy potential of the pair (h, V ) defined by this action

(cf. Definition 2.2). Then, we can easily check thatiV ω =

√
−1

2π
∂̄µh,V ,

−∆∂µh,V + µh,V + V (κ) = 0,

where ∆∂ =−gij̄ ∂2

∂zi∂zj̄
denotes the ∂-Laplacian with respect to ω. A metric

ω is called a Kähler–Ricci soliton if it satisfies the equation

Ric(ω)− ω = LV ω

for some V ∈ g, where LV denotes the Lie derivative with respect to V .

This is equivalent to the condition κ= µh,V (up to an additive constant).

In particular, in the case when V ≡ 0, this metric is a well-known Kähler–

Einstein metric. An obstruction to the existence of Kähler–Ricci solitons

was first discovered by Tian and Zhu [TZ02]. Let F be a function on g

defined by

F(V ) =− 1

c1(M)n

∫
M
eµh,V ωn,

and define the modified Futaki invariant FutV (W ) as the Gâteaux differen-

tial of F at V in the direction W , that is,

FutV (W ) =
d

dt
F(V + tW )

∣∣∣∣
t=0

=− 1

c1(M)n

∫
M
µh,W e

µh,V ωn

=
1

c1(M)n

∫
M
W (κ− µh,V )eµh,V ωn.

Hence, if there exists a Kähler–Ricci soliton ω with respect to V , then we

have κ= µh,V (up to an additive constant), and FutV (W ) must vanish.

https://doi.org/10.1017/nmj.2016.16 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.16


188 R. TAKAHASHI

Tian and Zhu showed that FutV (W ) is independent of the choice of ω ∈
c1(M). (In the case when V ≡ 0, this function coincides with the original

Futaki invariant, and its independence was shown in [Fut83].) Recently,

Berman and Nyström [BN14] generalized this obstruction to arbitrary Fano

varieties (i.e., projective normal varieties with log terminal singularities

and satisfying the property that −KM is an ample Q-line bundle), and

introduced the notion of K-stability for the pair (M, V ). (Wang, Zhou and

Zhu [WZZ14] also defined the slightly modified notion of K-stability inspired

by the algebraic formula for the modified Futaki invariant in [BN14].) It is

important to examine the sign of the modified Futaki invariant, since we can

know whether c1(M) contains a Kähler–Ricci soliton or not if we examine

the sign of the modified Futaki invariant on the central fiber for any special

test configuration, that is, check the K-polystability.

Chen, Donaldson and Sun [CDS15] and Tian [Tian15] proved that if

M is K-polystable, there exists a Kähler–Einstein metric. In the case

of Kähler–Ricci solitons, Berman and Nyström [BN14] showed that if

M admits a Kähler–Ricci soliton with respect to V , then (M, V ) is K-

polystable. They also showed that if M is strongly analytically K-polystable

and all the higher-order modified Futaki invariants of (X, V ) vanish, then

there exists a Kähler–Ricci soliton with respect to V , where strongly

analytically K-polystable means that the modified K-energy is coercive

modulo automorphisms. However, it is still an open question whether the

K-polystability of (M, V ) leads to the existence of a Kähler–Ricci soliton

with respect to V .

Motivated by the above reasons, we propose a method of calculating

the function F (therefore, the modified Futaki invariant FutV as well) for

Fano complete intersections in projective spaces. The main theorem of this

paper is as follows.

Theorem 1.1. Let M be a Fano complete intersection in CPN , that is,

M is an (N − s)-dimensional Fano variety in CPN defined by homogeneous

polynomials F1, . . . , Fs of degree d1, . . . , ds respectively, and

ω =

√
−1

2π
∂∂̄ log

(
N∑
i=0

|zi|2
)

is the Fubini–Study metric of CPN . We suppose that there exists a constant

m> 0 such that mω ∈ c1(M). Let V ∈ sl(N + 1, C) be a holomorphic vector

field on CPN such that V Fi = αiFi for some constants αi (i= 1, . . . , s).
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Then, we have m=N + 1− d1 − · · · − ds, and the function F can be

written as

F(V ) = − (N − s)!
d1 · · · dsmN−s

× exp

(
s∑
i=1

αi

) ∫
CPN

s∏
i=1

(diω + diθV − αi)emθV · emω,(1.1)

where θV := V log
(∑N

i=0 |zi|2
)
.

From the above theorem, we know that F(V ) can be written as a linear

combination of the integrals I0,l :=ml
∫
CPN (θV )lemθV ωN (0 6 l 6 s).

Although we can easily get a method of computing F using the localiza-

tion formula for orbifolds in [DT92], our formula (1.1) is still valuable since

we need not assume that M has at worst orbifold singularities. Moreover,

we also do not require the explicit geometric knowledge of M , V and ω

(local coordinates (uniformization), the zero set of V , curvature, etc.). More

concretely, in order to apply the localization formula in [DT92] directly to

our case, we have to know the following.

(1) The zero set Zero(V ) of V , where we assume that Zero(V ) consists of

disjoint nondegenerate submanifolds {Zi}.
(2) The values of integrals ∫

Zi

em(ω+θV )

det(Li,V +Ki)
,

where Li,V (W ) := [V, W ] denotes an endomorphism, and Ki is the

curvature matrix of the normal bundle of Zi.

If s(= codim(M)) = 1 and dim(Zi) = 0, the above integral can be com-

puted by taking local coordinates (or uniformization) around Zi. However,

it is very hard to compute in general.

The Futaki invariant of complete intersection was first computed by

Lu [Lu99] using the adjunction formula and the Poincaré–Lelong formula.

Then, it was also computed by many mathematicians using different

techniques (see [PS04, Hou08, AV11]). Lu [Lu03] also computed the mod-

ified Futaki invariant for smooth hypersurfaces in projective spaces. Our

formula (Theorem 1.1) extends Lu’s result [Lu03] for (possibly singular)

Fano complete intersections of arbitrary codimension. Compared with the
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Kähler–Einstein case [Lu99], our formula has in common that F(V ) is

expressed by the degree d1, . . . , ds of defining polynomials of M and the

weights α1, . . . , αs of the actions induced by the vector field V . However,

we need more knowledge of V to compute the integrals I0,l (0 6 l 6 s) (see

Section 5 for more details).

In this paper, we prove the main theorem (Theorem 1.1) based on the

calculations in [Lu99, AV11]. In Section 2, we review some fundamental

materials and results for Kähler–Ricci solitons. The standard references for

(holomorphic) equivariant cohomology theory are [BGV92, Hou08, Liu95].

We introduce an algebraic formula for F with reference to the quantization

of the modified Futaki invariant studied in [BN14]. In Section 3, we give a

proof of Theorem 1.1 by the Poincaré–Lelong formula. Then, in Section 4,

we also give another proof of Theorem 1.1 using the algebraic formula for

F (cf. Proposition 2.8). Finally, we give examples of computation of F in

Section 5.

§2. Preminaries

2.1 Holomorphic equivariant coholomogy

Let M be a complex manifold, and let G be a Lie group acting

holomorphically on M . Denote g := Lie(G) the Lie algebra of G. Then, for

each ξ ∈ g, we denote by ξRM the real holomorphic vector field on M given by

ξRM (f)(p) =
d

dt
f(exp(−tξ) · p)

∣∣∣∣
t=0

, f ∈ C∞(M), p ∈M,

and by ξM := 1
2(ξRM −

√
−1JξRM ) the complex holomorphic vector field on

M . Let C[g] be the algebra of a complex-valued polynomial function

on g. We regard each element in C[g]⊗A(M) as a polynomial function

which takes values in differential forms. The group G acts on an element

σ ∈ C[g]⊗A(M) by

(g · σ)(ξ) = g · (σ(g−1 · ξ)), g ∈G and ξ ∈ g.

Let AG(M) = (C[g]⊗A(M))G be the space of G-invariant elements in

C[g]⊗A(M). For σ ∈ C[g]⊗A(M), we define the bidegree of σ by

bideg(σ) = (deg(P) + p, deg(P ) + q),

where σ = P ⊗ ϕ (P ∈ C[g] and ϕ ∈ Ap,q(M)). For instance, bideg(ξ) =

(1, 1). Thus, AG(M) =
⊕
Ap,qG (M) has the structure of a bigraded algebra.
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We define the equivariant exterior differential ∂̄g on C[g]⊗A(M) as

(∂̄gσ)(ξ) = ∂̄(σ(ξ)) + 2π
√
−1iξM (σ(ξ)), σ ∈ C[g]⊗A(M).

Then, ∂̄g increases by (0, 1), the total bidegree on C[g]⊗A(M), and

preserves AG(M). Hence, we have a complex (AG(M), ∂̄g).

Definition 2.1. The holomorphic equivariant cohomology Hg(M) of

the pair (M, G) is the cohomology of the complex (AG(M), ∂̄g).

Let E be a G-linearized holomorphic vector bundle over M , and let

Herm(E) be the space of Hermitian metrics on E. The group G acts on

Herm(E) by the formula

(g · h)(u, v) = h(g−1 · u, g−1 · v), g ∈G and u, v ∈ E.

Hence, for ξ ∈ g, we define the real Lie derivative of g on Herm(E) by

LR
ξ h=

d

dt
exp(tξ) · h

∣∣∣∣
t=0

and the complex Lie derivative of g on Herm(M) by

Lξh= 1
2(LR

ξ h−
√
−1LR

Jξh).

We can also define the representation of g on the space of sections Γ(E) in

a similar way. Let ∇ be the Chern connection with respect to h, and put

µh,ξ = Lξ −∇ξM .

Since µh,ξ(fs) = ξMf · s+ f · Lξs− ξMf · s− f · ∇ξM s= f · µh,ξ(s) for any

f ∈ C∞(M) and s ∈ Γ(E), we have µh,ξ ∈ Γ(End(E)). Moreover, one can

show that

Lξh=−µh,ξ · h, iξM θ(h) =−µh,ξ and iξM Θ(h) =

√
−1

2π
∂̄µh,ξ,

where θ(h) = ∂h · h−1 is the connection form and Θ(h) =
√
−1

2π ∂̄(∂h · h) is

the curvature form with respect to h. Define the equivariant curvature form

Θg(h) by

Θg(h) = Θ(h) + µh,ξ.

Then, Θg(h) is ∂̄g-closed and defines an element in H1,1
g (M).

Now, let us consider the case when E = L is a G-linearized ample line

bundle. Then, µh,ξ is a complex-valued smooth function on M .
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Definition 2.2. The function µh,ξ is said to be the holomorphy

potential of the pair (h, ξ).

2.2 Kähler–Ricci soliton

Let M be an n-dimensional Fano manifold.

Definition 2.3. A Kähler metric ω on M is a Kähler–Ricci soliton if

the metric ω solves the equation

(2.1) Ric(ω)− ω = LV ω

for some holomorphic vector field V on M .

If the pair (ω, V ) is a Kähler–Ricci soliton, taking the imaginary part

of (2.1) yields LIm(V )ω = 0, so ω is invariant under the group action

generated by Im(V ). More generally, we have the following proposition.

Proposition 2.4. [BN14, Lemma 2.13] Let M be a Fano manifold, and

let V be a holomorphic vector field on M . If there exists a Kähler metric

ω that is invariant under the action of Im(V ), then there exists a complex

torus Tc acting holomorphically on M such that Im(V ) may be identified

with an element in the Lie algebra of the corresponding real torus T ⊂ Tc.

Proof. First, we check that the isometry group K of ω is a compact

Lie group. This is shown by considering the canonical embedding M ↪→
H0(M,−kKM ) and the K-invariant Hilbert norm

‖s‖2 :=

∫
M
|s|2kωn (s ∈H0(M,−kKM )).

Actually, K is identified with a subgroup of the group consisting of unitary

transformations on H0(M,−kKM ) with respect to ‖ · ‖, which yields that

K is compact. Taking the topological closure of the 1-parameter subgroup

generated by Im(V ) in K, we get a real torus T as desired. In general, any

holomorphic action of a real torus on M can be naturally extended to the

corresponding complex torus action on M .

2.3 Modified Futaki invariant

Let M be an n-dimensional Fano variety. For simplicity, let us make the

following assumptions.

https://doi.org/10.1017/nmj.2016.16 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.16


COMPUTATION OF THE MODIFIED FUTAKI INVARIANT 193

(1) M is a compact subvariety of a projective manifold N .

(2) L is an ample line bundle on N such that on the regular part Mreg of

M the isomorphism

(2.2) L|Mreg '−kKMreg

holds for some integer k.

(3) The Lie group G := Aut(M) acts on (N, L) such that the isomorphism

(2.2) is G-equivariant.

Remark 2.5. In fact, M can be embedded into

CPN ' PH0(M,−kKM )∗

for a sufficient large k, and (CPN ,O(1)) satisfies the requirement above.

We say that V is a holomorphic vector field on a Fano variety M if V is

a holomorphic vector field defined only on its regular part Mreg. Then, V

induces a local one-parameter family of automorphisms, which extends to a

family ofG since codim(M\Mreg) > 2 by the normality ofM (cf. [BBEGZ11,

Lemma 5.2]). Thus, by the assumption (3), V is given as the restriction of

some holomorphic vector field on N to M .1

Definition 2.6. A Hermitian metric h on −KMreg is said to be

admissible if hk can be extended to a Hermitian metric h̃L on L over N

under the isomorphisms (2.2).

Let h be an admissible Hermitian metric on −KMreg , and put ω :=

−
√
−1

2π ∂∂̄ log h. For holomorphic vector fields V, W , we define the function

F as

(2.3) F(V ) =− 1

c1(M)n

∫
Mreg

eµh,V ωn

and the modified Futaki invariant FutV by

(2.4) FutV (W ) =
d

dt
F(V + tW )

∣∣∣∣
t=0

=− 1

c1(M)n

∫
Mreg

µh,W e
µh,V ωn,

where µh,V denotes the holomorphy potential of (h, V ) defined on Mreg.

Since the construction of equivariant Chern curvature form is local,

1Such a vector field was called an admissible vector field in [DT92, Definition 1.2].
However, the above argument implies that every holomorphic vector field on Mreg is
automatically admissible (see also [BBEGZ11, Remark 5.3]).
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194 R. TAKAHASHI

if i : Mreg ↪→N is the embedding, we obtain

F(V ) = − 1

c1(M)n

∫
Mreg

P (Θg(h,−KMreg))

= − 1

c1(M)n

∫
Mreg

P

(
i∗

Θg(h̃L, L)

k

)

= − 1

c1(M)n

∫
Mreg

P

(
Θg(h̃L, L)

k

)
,

where P (z) := n!ez, and this shows that the integral (2.3) is finite. Moreover,

using the equivariant Chern–Weil theorem, we can show the following.

Theorem 2.7. [Hou08, Section 2.3] The functions F and FutV are

independent of the embedding M ↪→N and the choice of an admissible

Hermitian metric h on −KMreg .

On the other hand, a pluripotential theoretical formulation of FutV
was introduced by Berman and Nyström [BN14]. They also introduced

the quantized version of the modified Futaki invariant, which is defined

more algebraically in terms of the commuting action on the cohomology

H0(M,−kKM ). Let V be a holomorphic vector field on M generating a

torus action, and put

Nk := dim(H0(M,−kKM )).

We define the quantization of the function F at level k as

(2.5) Fk(V ) :=−kTrace(eV/k)H0(M,−kKM ) =−k
Nk∑
i=1

exp(v
(k)
i /k),

where (v
(k)
i ) are the joint eigenvalues for the action of Re(V ) on

H0(M,−kKM ) defined by the canonical lift of V to −KM . Additionally,

let W be a holomorphic vector field on M generating a C∗-action and

commuting with V . We define the quantization of FutV (W ) at level k as

(2.6) FutV,k(W ) :=
d

dt
Fk(V + tW )

∣∣∣∣
t=0

=−
Nk∑
i=1

exp(v
(k)
i /k)w

(k)
i ,

where (v
(k)
i , w

(k)
i ) are the joint eigenvalues for the commuting action of

Re(V ) and Re(W ). Then, we have the following.
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Proposition 2.8. In the case when M is smooth, we have the following.

(1) We have the asymptotic expansion of Fk(V ) as k→∞:

Fk(V ) = F (0)(V ) · kn+1 + F (1)(V ) · kn + · · · ,

where F (0)(V ) is proportional to F(V ).

(2) We have the asymptotic expansion of FutV,k(W ) as k→∞:

FutV,k(W ) = Fut
(0)
V (W ) · kn+1 + Fut

(1)
V (W ) · kn + · · · ,

where Fut
(i)
V (W ) is the ith-order modified Futaki invariant defined in

[BN14, Section 4.4], and Fut
(0)
V (W ) is proportional to FutV (W ).

(3) The ith-order modified Futaki invariant Fut
(i)
V (W ) is the Gâteaux

differential of F (i) at V in the direction W , that is,

d

dt
F (i)
k (V + tW )

∣∣∣∣
t=0

= Fut
(i)
V (W ).

In general, when M is a (possibly singular) Fano variety, we have the

following.

(4)

F(V ) = lim
k→∞

1

kNk
Fk(V ).

(5)

FutV (W ) = lim
k→∞

1

kNk
FutV,k(W ).

Proof. The statements (2) and (5) were shown in [BN14, Section 4.4].

The statement (3) is trivial from the definition of Futk,V (W ).

(1) As with the proof of (2) (cf. [BN14, Section 4.4]) or [WZZ14,

Lemma 1.2], Fk(V ) can be calculated by the equivariant Riemann–Roch

formula as

Fk(V ) = −kTrace(eV/k)H0(M,−kKM )

= −k
∫
M

chg(−kKM )tdg(M)

= −k
∫
M
eµh,V · ekωtdg(M)

= − 1

n!

∫
M
eµh,V ωn · kn+1 +O(kn),
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where chg (respectively tdg) denotes the equivariant Chern character

(respectively the equivariant Todd class). Thus, F (0)(V ) = c1(M)n

n! · F(V ).

(4) By definition, F(V ) can be written as

F(V ) =− 1

c1(M)n

∫
M
eµh,V ωn =−

∫
R
evνV ,

where νV is the push-forward measure of the Monge–Ampère measure
ωn

c1(M)n under µh,V . Let νVk be the spectral measure on R attached to the

infinitesimal action of Re(V ) on H0(M,−kKM ):

νVk =
1

Nk

Nk∑
i=1

δ
v

(k)
i /k

,

where δ
v

(k)
i /k

denotes the Dirac measure at v
(k)
i /k. Then, by [BN14,

Proposition 4.1], νVk converges to νV as k→∞ in a weak topology. Hence,

we have

1

kNk
Fk(V ) =− 1

Nk

Nk∑
i=1

exp(v
(k)
i /k) =−

∫
M
evνVk →−

∫
R
evνV = F(V )

as k→∞.

Remark 2.9. When M is smooth, by the equivariant Riemann–Roch

formula, we have an asymptotic expansion as k→∞:

(2.7) Nk =
1

n!
c1(M)n · kn +O(kn−1).

Combining with Proposition 2.8(1), we have

(2.8)
1

kNk
Fk(V ) = F(V ) +O(k−1)

as k→∞. In general, when M is a (possibly singular) Fano variety, we

do not know whether we can obtain the expansion (2.8). However, Proposi-

tion 2.8(4) allows us to use the equivariant Riemann–Roch formula formally

to compute the leading term of (2.8) (i.e., the limit limk→∞
1

kNk
Fk(V )) even

if M has singularities.
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§3. The calculation of the function F

Let M be an n-dimensional variety in CPN , and let X be a holomorphic

vector field on CPN . Then, X can be identified with a linear vector field∑N
i,j=0 aijz

i ∂
∂zj

on CN+1, and the traceless matrix (aij)06i,j6N ∈ sl(N +

1, C), such that the push-forward of
∑N

i,j=0 aijz
i ∂
∂zj

with the standard

projection π : CN+1 − {0}→ CPN is equal to X.

For a holomorphic vector field X, we define a complex-valued smooth

function on CN+1 − 0 by

(3.1) θX :=X

(
log

(
N∑
i=0

|zi|2
))

,

which descends to a smooth function on CPN . Let

ω =

√
−1

2π
∂∂̄ log

(
N∑
i=1

|zi|2
)
∈ c1(O(1))

be the Fubini–Study metric of CPN . Then, we have

(3.2) iXω =

√
−1

2π
∂̄θX .

We say that X is tangent to M if Re(X) leaves M invariant. If M is

a hypersurface defined by a homogeneous polynomial F of degree d, X is

tangent to M if and only if X fixes [F ] ∈ P(H0(M,O(d))), or, equivalently,

XF = γF for some constant γ. For any X that is tangent to M , equation

(3.2) can be written as

(3.3) Xi = gij̄
∂θX

∂xj̄
(i= 1, . . . , n), X =

n∑
i=1

Xi ∂

∂xi

at some smooth point in local holomorphic coordinates (x1, . . . , xn) of M ,

where (gij̄) is the matrix of ω.

Now, let M be a Fano complete intersection in CPN defined by the

homogeneous polynomials F1, . . . , Fs of degree d1, . . . , ds respectively, and

suppose that mω ∈ c1(M) for some constant m> 0. Let X be a holomorphic

vector field tangent to M , and let G be the Lie group generated by X. Using

the adjunction formula, we know that m=N + 1− d1 − · · · − ds and

(3.4) −KMreg 'O(m)|Mreg ,
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where we remark that this isomorphism is not G-equivariant. However,

studying the G-action on the normal bundle of M , Hou [Hou08, Section 3]

(also refer to [Lu99, Theorem 4.1]) showed the following.

Lemma 3.1. Let h be the Hermitian metric on O(1) such that ω =

−
√
−1

2π ∂∂̄ log h is a Fubini–Study metric of CPN , and let V be a holomorphic

vector field such that

V Fi = αiFi

for some constants αi (i= 1, . . . , s). Then, we have

(3.5) µhm,V =
s∑
i=1

αi +mθV ,

where hm is the Hermitian metric on −KMreg defined via the isomor-

phism (3.4).

Let V be a holomorphic vector field defined in Lemma 3.1. We set

Ni := {Fi = 0} ⊂ CPN (i= 1, . . . , s)

and Mi :=N1 ∩ · · · ∩Ni (i= 1, . . . , s). Then, we have

M =Ms ⊂Ms−1 ⊂ · · · ⊂M1 ⊂M0 := CPN .

We define the integrals Ik,l = Ik,l(V ) (k = 0, 1, . . . , s; l > 0) by

(3.6) Ik,l =ml

∫
Mk

(θV )lemθV ωN−k.

Lemma 3.2. For k = 1, . . . , s, Ik,0 satisfies

(3.7) Ik,0 =

(
dk −

mαk
N − k + 1

)
Ik−1,0 +

dk
N − k + 1

Ik−1,1.

Proof. We can prove (3.7) in the same way as [Lu99, Lemma 5.1]. Define

a smooth function ξi (i= 1, . . . , s) on CPN by

ξi =
|Fi|2(∑N

i=0 |zi|2
)di .

Using the Poincaré–Lelong formula, we obtain
√
−1

2π
∂∂̄ log ξk = [Nk]− dkω,
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where [Nk] is the divisor of the zero locus of Fk. Then, we have

Ik,0 =

∫
Mk

emθV ωN−k

=

∫
Mk−1

(√
−1

2π
∂∂̄ log ξk + dkω

)
∧ emθV ωN−k

=

∫
Mk−1

√
−1

2π
∂∂̄ log ξk ∧ emθV ωN−k + dkIk−1,0.

On the other hand, using the relation

V log ξk = αk − dkθV

and integrating by parts, we obtain∫
Mk−1

√
−1

2π
∂∂̄ log ξk ∧ emθV ωN−k

=− m

N − k + 1

∫
Mk−1

V (log ξk)e
mθV ωN−k+1

=− mαk
N − k + 1

Ik−1,0 +
dk

N − k + 1
Ik−1,1.

Thus, we get the desired result.

If we set V ≡ 0 and l = 0, then we obtain the following.

Corollary 3.3.

(3.8) c1(M)N−s
(

=mN−s
∫
M
ωN−s

)
= d1 · · · dsmN−s.

In order to get the explicit expression of Ik,0, we show the next lemma.

Lemma 3.4. For k = 1, . . . , s, the equation

(N − k)!

mN−k

∫
CPN

k∏
i=1

(diω + diθV − αi)emθV · emω

+
(N − k − 1)!

mN−k

k∑
i=1

∫
CPN

(diθV − αi)

https://doi.org/10.1017/nmj.2016.16 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.16


200 R. TAKAHASHI

·
∏

p∈{1,...,k}−{i}

(dpω + dpθV − αp)emθV · emω

=
(N − k − 1)!

mN−k−1

∫
CPN

k∏
i=1

(diω + diθV − αi) · ω · emθV · emω(3.9)

holds.

Proof. For i= 0, . . . , k, we define integrals Ji by

Ji :=



∫
CPN

k∏
i=1

(diθV − αi)emθV ωN (when i= 0),

d1 · · · dk
∫
CPN

emθV ωN (when i= k),∑
16p1<···<pi6k

dp1 · · · dpi
∫
CPN

(dq1θV − αq1)

× · · · (dqk−i
θV − αqk−i

)emθV ωN (otherwise),

where q1 < · · ·< qk−i and {q1, . . . , qk−i}= {1, . . . , k} − {p1, . . . , pi}. Then,

the direct computation shows that

(N − k)!

mN−k

∫
CPN

k∏
i=1

(diω + diθV − αi)emθV · emω =
k∑
i=0

(N − k)!mk−i

(N − i)!
Ji

and

(N − k − 1)!

mN−k

k∑
i=1

∫
CPN

(diθV − αi)

·
∏

p∈{1,...,k}−{i}

(dpω + dpθV − αp)emθV · emω

=
k∑
i=0

(N − k − 1)!(k − i)mk−i

(N − i)!
Ji.

Hence, the left-hand side of (3.9) is

k∑
i=0

(N − k − 1)!mk−i

(N − i− 1)!
Ji,

which is equal to the right-hand side of (3.9).
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Lemma 3.5. For k = 1, . . . , s, Ik,0 can be written as

(3.10) Ik,0 =
(N − k)!

mN−k

∫
CPN

k∏
i=1

(diω + diθV − αi)emθV · emω.

Proof. We will prove (3.10) by induction for k. When k = 1, equation

(3.10) coincides exactly with (3.7), so the statement holds.

Next, we assume that (3.10) holds for a fixed k. Then, by Lemma 3.2, we

have

Ik+1,0 =

(
dk+1 −

mαk+1

N − k

)
Ik,0 +

dk+1

N − k
Ik,1.

Since θV+tV = θV + tθV , (V + tV )Fi = (αi + tαi)Fi and

d

dt
(diω + diθV+tV − αi − tαi)

∣∣∣∣
t=0

= diθV − αi,

using the induction hypothesis, we have

mαk+1

N − k
Ik,0 =

(N − k − 1)!

mN−k−1

∫
CPN

αk+1

k∏
i=1

(diω + diθV − αi)emθV · emω

and

dk+1

N − k
Ik,1 =

dk+1

N − k
· d
dt
Ik,0(V + tV )

∣∣∣∣
t=0

= dk+1
(N − k − 1)!

mN−k

k∑
i=1

∫
CPN

(diθV − αi)

×
∏

p∈{1,...,k}−{i}

(dpω + dpθV − αp)emθV · emω

+
(N − k − 1)!

mN−k−1

∫
CPN

dk+1θV

k∏
i=1

(diω + diθV − αi)emθV · emω.

Hence, combining with Lemma 3.4, we obtain

Ik+1,0 = dk+1 (the LHS of (3.9)) +
(N − k − 1)!

mN−k−1

∫
CPN

(dk+1θV − αk+1)

×
k∏
i=1

(diω + diθV − αi)emθV · emω
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=
(N − k − 1)!

mN−k−1

∫
CPN

k+1∏
i=1

(diω + diθV − αi)emθV · emω.

Hence, the statement holds for k + 1.

Proof of Theorem 1.1. By Lemma 3.1, F can be written as

F(V ) = − 1

c1(M)N−s

∫
M

exp

(
s∑
i=1

αi +mθV

)
(mω)N−s

= − mN−s

c1(M)N−s
· exp

(
s∑
i=1

αi

)
Is,0.

Thus, combining with Corollary 3.3 and Lemma 3.5, we get the desired

formula for F .

§4. Another proof of Theorem 1.1

In this section, we give another proof of Theorem 1.1 using the algebraic

formula for F (cf. Proposition 2.8).

Lemma 4.1. [AV11, Lemma 5.1] Let B be a holomorphic vector bundle

of rank b on a manifold M , then

b∑
i=0

(−1)ich(∧iB) = cb(B)td(B)−1.

Proof. Let r1, . . . , rb be the Chern roots of B. Since ch(∧iB∗) =∑
16p1<···<pi6b e

−(rp1+···+rpi ), we obtain

b∑
i=0

(−1)ich(∧iB∗) =

b∑
i=0

(−1)i
∑

16p1<···<pi6b
e−(rp1+···+rpi )

=

b∏
p=1

(1− e−rp)

=
b∏

p=1

rp

b∏
p=1

1− e−rp
rp

= cb(B)td(B)−1.
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Now, let M be an (N − s)-dimensional Fano complete intersection in

CPN , that is, M is a Fano variety in CPN defined by homogeneous

polynomials F1, . . . , Fs, and V is a holomorphic vector field on CPN
tangent to M . We adopt the notation of Section 3. We further assume

that V ∈ sl(N + 1, C) is a Hermitian matrix, so that Im(V ) is Killing with

respect to the Fubini–Study metric ω.

Lemma 4.2. [AV11, Lemma 5.2] We have the following asymptotic

expansion of Nk as k→∞:

(4.1) Nk =
d1 · · · dsmN−s

(N − s)!
· kN−s +O(kN−s−1).

Lemma 4.3. We have the following asymptotic expansion of Fk(V ) as

k→∞:

Fk(V ) = −exp

(
s∑
i=1

αi

) ∫
CPN

s∏
i=1

(diω + diθV − αi)emθV

· emω · kN−s+1 +O(kN−s).(4.2)

Proof. This proof is essentially based on the argument in [AV11,

Lemma 5.3]. The only difference between Lemma 4.3 and [AV11, Lemma 5.3]

is the linearization of −KM , to which we have only to pay attention. In

order to avoid confusion, let L('O(m)) be a linearized line bundle on CPN
such that L|M is isomorphic to −KM as a linearized line bundle whose

linearization is determined by the canonical lift of V/k to −KM .

Let C−αi/k be a trivial bundle on CPN with linearization t · u= t−αi/k · u.

Set Li :=O(di)⊗ C−αi/k andB := L1 ⊕ · · · ⊕ Ls. Then, rankB = s, and the

section F := (F1, . . . , Fs) ∈H0(CPN , B) is invariant. Since M is complete,

the Koszul complex

0→∧sB∗→∧s−1B∗→ · · · →B∗→OCPN →OM → 0

is exact and equivariant, where OM denotes the structure sheaf of M .

Tensoring by Lk preserves the exactness and equivariance, so we obtain

χg(M, Lk|M ) =
s∑
i=0

(−1)iχg(CPN , Lk ⊗ ∧iB∗),
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where χg denotes the Lefschetz number. By the equivariant Riemann–Roch

formula and Lemma 4.1, we get

Fk(V ) = −k
s∑
i=0

(−1)iχg(CPN , Lk ⊗ ∧iB∗)

= −k
s∑
i=0

(−1)i
∫
CPN

chg(∧iB∗)ekc
g
1(L)tdg(CPN )

= −k
∫
CPN

(
s∑
i=0

(−1)ichg(∧iB∗)

)
ekc

g
1(L)tdg(CPN )

= −k
∫
CPN

cgs(B)tdg(B)−1ekc
g
1(L)tdg(CPN )

= −k
∫
CPN

s∏
i=1

(
dic

g
1(O(1))− αi

k

)
· tdg(B)−1ekc

g
1(L)tdg(CPN ).

Let h be a Hermitian metric on O(1) such that ω =−
√
−1

2π ∂∂̄ log h is the

Fubini–Study metric of the CPN . Then, by Lemma 3.1, the equivariant 1st

Chern forms for (h, V/k) and (hm, V/k) are written as

ω +
1

k
θV ∈ cg1(O(1)) and mω +

m

k
θV +

1

k

s∑
i=1

αi ∈ cg1(L)

respectively. Both tdg(B)−1 and tdg(CPN ) can be written as the form

1 +A+
∑
i>1

1

ki
Bi,

where A (respectively Bi) denotes 2l-forms (l > 1 (respectively l > 0)) not

depending on k. Hence, we have

Fk(V ) = −k exp

(
s∑
i=1

αi

) ∫
CPN

s∏
i=1

(
diω +

1

k
(diθV − αi)

)
× tdg(B)−1emθV · ekmωtdg(CPN )

= − exp

(
s∑
i=1

αi

) ∫
CPN

s∏
i=1

(diω + diθV − αi)emθV

· emω · kN−s+1 +O(kN−s).
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Proof of Theorem 1.1. By Lemmas 4.2 and 4.3, we have an asymptotic

expansion as k→∞:

1

kNk
Fk(V ) = − (N − s)!

d1 · · · dsmN−s exp

(
s∑
i=1

αi

) ∫
CPN

s∏
i=1

(diω + diθV − αi)

× emθV · emω +O(k−1).

On the other hand, by Proposition 2.8(4), 1
kNk
Fk(V ) converges to F(V ) as

k→∞. Hence, we have the desired formula.

§5. Examples

In this section, we compute F for several examples in [Lu99, Section 6].

Let M be a Fano complete intersection in CPN . We adopt the notation

of Section 3. First, we mention some results obtained as a corollary of

the localization formula in holomorphic equivariant cohomology theory

(cf. [Liu95, Theorem 1.6]).

Lemma 5.1. If V = diag(λ0, . . . , λN ) is a diagonal matrix with different

eigenvalues λ0, . . . , λN , then we have

(5.1) I0,0 =N !

N∑
i=0

emλi∏
p∈{0,...,N}−{i}(λi − λp)

.

Since the I0,l are given by the derivatives of I0,0, we can compute I0,l for

any integer l. On the other hand, by Theorem 1.1, F(V ) can be written as a

linear combination of I0,l (0 6 l 6 s). Hence, we can express F(V ) in terms

of the eigenvalues of V .

However, we can calculate F(V ) without using Theorem 1.1 in a special

case. We assume that M has at worst orbifold singularities, and V satisfies

the following conditions.

(1) V has isolated zero points {pi}.
(2) V is nondegenerate at each zero point pi, that is, for each local

uniformization π : U → U/Γi ⊂M with π(U) ∩ pi 6= ∅, π∗V vanishes

along π−1(pi) and the matrix Bi =
(
− ∂vij
∂zk

)
16j,k6N−s is nondegenerate

near π−1(pi), where (z1, . . . , zN−s) are local holomorphic coordinates

around π−1(pi) and V =
∑N−s

j=1 vij
∂
∂zj

.

In the same way as [DT92, Proposition 1.2], we have the following lemma.
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Lemma 5.2. Let M and V be as above. Then, we have

(5.2) F(V ) =−(N − s)!
d1 · · · ds

exp

(
s∑
i=1

αi

)
·
∑
i

1

|Γi|
· e

mθV (pi)

detBi
,

where |Γi| is the order of the local uniformization group Γi at a point pi.

Remark 5.3. One can extend Lemmas 5.1 and 5.2 to the case when

the zero set of V is the sum of nondegenerate submanifolds, where the word

nondegenerate means that the induced actions of V to the normal bundle

of submanifolds are nondegenerate. However, since I0,0(V ) and F(V ) are

clearly continuous with respect to V , we may think that equations (5.1) and

(5.2) hold in the sense of the limit Vε→ V of any expression. For instance,

we have the following lemma.

Lemma 5.4. Let m= 1, and let V = diag(λ0, λ1, λ2, λ2) ∈ sl(4, C) be a

holomorphic vector field on CP 3, where λ0, λ1 and λ2 are different numbers.

Then, we have

I0,0 = 6

[
eλ0

(λ0 − λ1)(λ0 − λ2)2
+

eλ1

(λ1 − λ0)(λ1 − λ2)2

+
{λ0 + λ1 − 2λ2 + (λ2 − λ0)(λ2 − λ1)}eλ2

(λ2 − λ0)2(λ2 − λ1)2

]
.(5.3)

Proof. Let ε 6= 0 be a small number. If we set Vε := diag(λ0, λ1, λ2 +

ε, λ2 − ε), then Vε has different eigenvalues. Hence, we can compute

I0,0(V ) = limε→0 I0,0(Vε) directly using (5.1).

Example 5.5. Let M ⊂ CP 3 be the zero set of a cubic polynomial F :=

z0z
2
1 + z2z3(z2 − z3), where (z0, z1, z2, z3) are homogeneous coordinates of

CP 3, and let V = diag(−7t, 5t, t, t) (t 6= 0) be a holomorphic vector field

tangent to M . We compute F by two methods.

(1) The variety M has a unique quotient singularity at p0 := [1, 0, 0, 0]. If

we restrict V to M , V has five zeros, p0 = [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0],

[0, 0, 0, 1] and [0, 0, 1, 1]. Let ζi := zi
z0

(i= 1, 2, 3) be Euclidean coordinates

defined near p0. Then, we can rewrite F near p0 in the standard form

f =
F

z3
0

= ζ2
1 − ζ3(ζ2

2 − 4ζ2
3 ).
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According to [Lu99, Example 1], we see that there is a uniformization φ :

C2→ C2/Γ⊂M defined by

φ :


ζ1 = uv(u4 − v4),

ζ2 = u4 + v4,

ζ3 = u2v2,

where Γ is the dihedral subgroup in SU(2) of type D4. Thus, we have

φ∗(V ) = 2tu ∂
∂u + 2tv ∂

∂v . Since the order of the group D4 is 8, applying

Lemma 5.2, we obtain

F(V ) = −2

3
e3t

(
1

8
· e
−7t

4t2
+

e5t

16t2
+ 3 · et

−32t2

)
= −e

−4t

48t2
− e8t

24t2
+

e4t

16t2
.

(2) By Theorem 1.1, we obtain

F(V ) = −2

3
e3t

∫
CP 3

(3ω + 3θV − 3t)eθV eω

= −e3t

{(
1− t

3

)
I0,0 +

1

3
I0,1

}
.

By Lemma 5.4, we have

I0,0 =− e−7t

128t3
+

e5t

32t3
− 3(1 + 8t)et

128t3

and

I0,1 =
(7t+ 3)e−7t

128t3
+

(5t− 3)e5t

32t3
− 3(8t2 − 15t− 3)et

128t3
.

Hence, we have

F(V ) =−e
−4t

48t2
− e8t

24t2
+

e4t

16t2
.

Example 5.6. Let M ⊂ CP 4 be the zero locus defined by{
F1 = z0z1 + z2

2 ,

F2 = z2
1 + z3z4,

and let V = diag(−7t, 3t,−2t, 5t, t) (t 6= 0) be a holomorphic vector field

tangent to M . In the same way as (2) in Example 5.5, we get

F(V ) =−e2t

{(
1− t

3
− t2

2

)
I0,0 +

(
2

3
− t

12

)
I0,1 +

1

12
I0,2

}
,
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I0,0 =
e−7t

200t4
− 3e3t

25t4
− 24e−2t

525t4
+

e5t

28t4
+

et

8t4
,

I0,1 = −(7t+ 4)e−7t

200t4
+

3(4− 3t)e3t

25t4
+

48(t+ 2)e−2t

525t4

+
(5t− 4)e5t

28t4
+

(t− 4)et

8t4

and

I0,2 =
(49t2 + 56t+ 20)e−7t

200t4
− 3(9t2 − 24t+ 20)e3t

25t4
− 96(t2 + 4t+ 5)e−2t

525t4

+
5(5t2 − 8t+ 4)e5t

28t4
+

(t2 − 8t+ 20)et

8t4
.

Hence, we have

F(V ) =−e
−5t

48t2
− e7t

24t2
+

e3t

16t2
.

Here, we remark that V has only three zero points, p1 = [1, 0, 0, 0, 0], p2 =

[0, 0, 0, 1, 0] and p3 = [0, 0, 0, 0, 1], in M . Actually, the exponents appearing

in the above expression of F(V ) are −5t= θV (p1) + 2t, 7t= θV (p2) + 2t and

3t= θV (p3) + 2t, and hence correspond to the three zero points of V .
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