DIFFERENCES OF SETS AND A PROBLEM OF GRAHAM

J. Marica and J. Schönheim (received January 14, 1969)

R. L. Graham has posed the following question:

Given n positive integers $a_1 < a_2 < \ldots < a_n$, does there exists a pair of indices i, j such that $a_i/(a_i,a_j) \ge n$? $((a_i,a_j) = g.c.d.$ of a_i and a_j).

The answer would be yes if it were possible to prove the stronger property:

(i) there exist n different ratios $a_i/(a_i,a_i)$.

However, this is not true in general as shown by a counterexample of Levin and Szemeredy; namely, the set of all non trivial divisors of 36. There are 7 divisors but only 5 distinct ratios. [This example was described in written communications from M. Levin and P. Erdös].

The following theorem is the combinatorial analogue of (i) and has been conjectured by one of us [1]. The corollary shows the relation to Graham's problem.

THEOREM. If F is a finite collection of sets then the number of distinct differences of members of F is at least as large as the number of members of F.

Canad. Math. Bull. vol. 12, no. 5, 1969

635

COROLLARY. If $a_1 < \ldots < a_n$ are squarefree integers then the number of distinct ratios $a_i/(a_i,a_i)$ is $\ge n$, so one is $\ge n$.

In order to obtain the desired result we introduce the following notation. Let $F = \{F_i\}$ be a finite collection of sets; the cardinal of F_i is denoted by $|F_i|$ and the collection of differences of members of any collection G, by ΔG . Let $k = \min|F_i \cap F_j|$ for $F_i \neq F_j$ and let F_1, F_2 be two fixed sets for which this minimum is attained, $F_1 \cap F_2 = I$, |I| = k.

LEMMA. If F is any finite non-empty collection of sets there is a partition of F into disjoint subcollections A and D, with $A \neq \phi$, satisfying $|\Delta F| \ge |A| + |\Delta D|$.

<u>Proof of Lemma</u>. Divide F into three disjoint subcollections A,B,C according to the following criteria:

(i) C = {members of F which do not contain I}. The rest of the sets do contain I and we write $F_i = F'_i + I$ where $F'_i = F_i - I$, for such sets. Then,

(ii) $B = \{F_i: \text{ for all } F_j \notin C, F'_i \cap F'_j \neq \phi\}.$ (iii) $A = \{F_i: \text{ for some } F_j \notin C, F'_i \cap F'_j = \phi\}.$

It is clear that $A \neq \phi$ since at least F_1 , F_2 are in A. If $F_i \in A$ and F_j is as in (iii) then F_j is also in A, F_i^i and F_j^i are disjoint and so appear in $\triangle A$, $(F_i - F_j = F_i^i)$. We can see that F_i^i , F_j^i do not occur in $\triangle (B \cup C)$ as follows. That each set in B has a nonempty intersection with F_i^i is immediate from the definition of B. No member Q of C can be disjoint from F_i^i ; for $|Q \cap F_i^i| \ge k$ and

636

since $Q \cap F_i \neq I$ (from (i)) $Q \cap F_i^! = Q \cap (F_i^-I) \neq \phi$. If now X, Y \in B U C then X - Y \neq $F_i^!$ because X - Y contains no element of Y while $F_i^!$ does contain some element of Y. This holds for any $F_i^!$ in A.

We have found then, that for each member F_i of A there is a difference F'_i appearing in $\triangle A$ which does not appear in $\triangle (B \cup C)$. Clearly $F_i \neq F_i$ implies $F'_i \neq F'_i$, and the lemma is proved.

<u>Proof of Theorem. (By induction)</u>. The theorem clearly holds for collections of 1 or 2 sets. If F were a collection of minimal cardinal for which it failed, then taking F = A U D as above we would have $|\Delta F| \ge |A| + |\Delta D|$; but $A \ne \phi$ so |D| < |F| and by induction $|\Delta D| \ge$ |D|. Thus $|\Delta F| \ge |A| + |D| = |F|$, a contradiction.

<u>Remark</u>. Let K(n,F) denote $|\Delta F|$ for F a collection of n sets. We have shown $K(n,F) \ge n$ and since $F_i \in F$ implies $F_i - F_i = \phi$ it is clear that $K(n,F) \le n^2 - n + 1$. It can be shown that both of these bounds are attained for each n with a suitable F. However, one can still ask which restrictions can be imposed on F in order to yield more precise but still usefull results, e.g., ϕ and U $F_i \notin F$.

<u>Acknowledgement.</u> Thanks are due to Mr. R. Winterle for calling our attention to a misleading sentence in a preprints of the manuscript.

REFERENCE

 J. Schonheim, Unsolved problem. (W.T. Tutte, Recent Progress in Combinatorics. Proc. Third Waterloo Conference, Academic Press, to appear).

University of Calgary Alberta

637