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Abstract

We study stationary processes given as solutions to stochastic differential equations
driven by fractional Brownian motion. This rich class includes the fractional Ornstein–
Uhlenbeck process and those processes that can be obtained from it by state space
transformations. An explicit formula in terms of Euler’s �-function describes the
asymptotic behaviour of the covariance function of the fractional Ornstein–Uhlenbeck
process near zero, which, by an application of Berman’s condition, guarantees that this
process is in the maximum domain of attraction of the Gumbel distribution. Necessary
and sufficient conditions on the state space transforms are stated to classify the maximum
domain of attraction of solutions to stochastic differential equations driven by fractional
Brownian motion.
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1. Introduction

Let (�,F ,P) be a complete probability space carrying a two-sided fractional Brownian
motion (BHt )t∈R with Hurst index H ∈ (0, 1), i.e. a centred Gaussian process with covariance
function

E(BHt B
H
s ) = 1

2 (|t |2H + |s|2H − |t − s|2H ), s, t ∈ R. (1.1)

Fractional Brownian motion has stationary increments and is self-similar, i.e. for all c ∈ R,

(BHct )
d= |c|H (BHt ), t ∈ R,

where ‘
d=’ denotes equality in distribution; in particular, BH0 = 0. A Hurst index of H = 1

2
corresponds to standard Brownian motion. Further properties can be found in [14].

Our goal is to investigate the asymptotic behaviour of partial maxima of stationary solutions
X given by a stochastic differential equation of the form

Xt −Xs =
∫ t

s

µ(Xu) du+
∫ t

s

σ (Xu) dBHu , s ≤ t, (1.2)
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for continuous functions µ and σ > 0. The integrals are interpreted pathwise as Riemann–
Stieltjes integrals. For an analytic treatment and conditions on µ and σ for the existence of
such solutions, we refer the reader to [5].

A prominent example is the Ornstein–Uhlenbeck model, which corresponds to linear µ and
constant σ . More precisely, for γ, σ > 0, we define the fractional Ornstein–Uhlenbeck process
(FOUP) by

O
H,γ,σ
t = σ

∫ t

−∞
e−γ (t−s) dBHs , t ∈ R. (1.3)

The process OH,γ,σ = (O
H,γ,σ
t )t∈R is stationary and provides a pathwise solution to the

stochastic differential equation

Ot −Os = −γ
∫ t

s

Ou du+ σ(BHt − BHs ), s ≤ t. (1.4)

As OH,γ,σ is a Gaussian process, classical results due to Pickands [11] and Berman [1] apply,
giving a limit result for partial maxima. Standard references summarizing the extreme-value
theory of Gaussian processes are [2], [10], and [12]. We present explicit calculations concerning
the FOUP in Section 2.

As was shown in [5], under certain conditions on µ and σ , the solution X to (1.2) can be
represented as a state space transform of the FOUP. Consequently, in Section 3, we investigate
the full class of processes that can be obtained from the FOUP by state space transforms. We
give condition necessary and sufficient to characterize the maximum domain of attraction for
such processes.

In Section 4, we return to the original problem. Working within the framework of [5], we
obtain conditions necessary and sufficient to characterize the maximum domain of attraction
for stationary solutions to (1.2). These results are based on asymptotic inversion results, whose
proofs can be found in Appendix C.

Our approach bears some similarity to those of Davis [8] and Borkovec and Klüppelberg [4],
who investigated the extremal behaviour of diffusion processes given as solutions to stochastic
differential equations driven by Brownian motion. Whereas they used the classical Ornstein–
Uhlenbeck process as a reference process to obtain the extreme behaviour of other families of
diffusion processes, we use the FOUP instead. In those papers, scale functions and time changes
of the classical Ornstein–Uhlenbeck process are the core arguments. Since such methods do
not exist for processes driven by fractional Brownian motion, we use a slightly different, but
related, approach.

2. Maxima of fractional Ornstein–Uhlenbeck processes

For any continuous-time process X = (Xt )t≥0, we say that it belongs to the domain of
attraction of some extreme-value distribution G, and we write X ∈ MDA(G), if there exist
normalizing constants aT > 0 and bT ∈ R, for T ≥ 0, such that

a−1
T

(
max

0≤t≤T Xt − bT

)
d−→ G,

where, throughout, ‘
d−→’ denotes convergence in distribution as T → ∞.

Possible extreme-value distributions are the Fréchet distribution �α , α > 0, the Gumbel
distribution �, and the Weibull distribution �α , α > 0. For details on standard extreme-value
theory, we refer the reader to [9] or [10].
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In this section, we derive the extreme behaviour of the FOUP given in (1.4). As it is a
Gaussian process, we can apply the theory of [1], [2], and [11]. The behaviour of partial
maxima of a Gaussian process can be related to the behaviour of the covariance function at 0
and infinity. For any t ∈ R, we define the covariance function

ρH,γ,σ (h) = E(OH,γ,σ
t O

H,γ,σ

t+h ), h ∈ R.

As the FOUP is stationary, the function ρH,γ,σ (·) does not depend on t . Throughout the paper,
we write OH ≡ OH,1,1 and ρH ≡ ρH,1,1. In the following lemma, we summarize some
properties of ρ (see Appendix A for a proof).

Lemma 2.1. (a) Symmetry: ρH,γ,σ (h) = ρH,γ,σ (|h|).
(b) Scaling property: ρH,γ,σ (h) = (σ 2/γ 2H )ρH (γ h).

(c) Asymptotic behaviour at infinity [7]:

ρH,γ,σ (h) =

⎧⎪⎨
⎪⎩

1

2

σ 2

γ
e−γ |h| for h ∈ R, if H = 1

2 ,

O(h2H−2) for h → ∞, if H �= 1
2 .

(2.1)

(d) Asymptotic behaviour for h → 0:

ρH,γ,σ (h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(2H + 1)

2

σ 2

γ 2H − σ 2

2
|h|2H + o(|h|), H < 1

2 ,

1

2

σ 2

γ
e−γ |h|, H = 1

2 ,

�(2H + 1)

2

σ 2

γ 2H − σ 2

2
|h|2H + �(2H + 1)

4

σ 2

γ 2H−2 |h|2 + o(|h|2), H > 1
2 .

We can now formulate a result for the partial maxima of a FOUP.

Theorem 2.1. Let γ, σ > 0. Then

(σ a
H,γ

T )−1
(

max
0≤t≤T O

H,γ,σ
t − σb

H,γ

T

)
d−→ �,

where

a
H,γ

T = γ−H �(2H + 1)1/2

2(log T )1/2
,

b
H,γ

T = γ−H �(2H + 1)1/2

21/2

(
2(log T )1/2 + 1 −H

2H

log log T

(log T )1/2
+ C(H, γ )

(log T )1/2

)
,

C(H, γ ) = log(γ�(2H + 1)−1/2HH2H (2π)
−1/22(1−H)/2H ),

and H2H is Pickands’ number, a constant.

Proof. We apply the following result on Gaussian processes, due to Pickands [11]
and Berman [1]; see, e.g. [10, Theorem 12.3.5]. For any normal process (Xt )t≥0 such that
Berman’s conditions hold, i.e.

E(XhX0) =
{

1 − d|h|2H + o(|h|2H ), h → 0,

o((logh)−1), h → ∞,
(2.2)
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for constants d > 0 and H ∈ (0, 1), we have

(2 log T )1/2
(

max
0≤t≤T Xt − βT (H, d)

)
d−→ �,

where

βT (H, d) = (2 log T )1/2 + 1 −H

2H

log log T

(2 log T )1/2
+ ψ(H, d)

(2 log T )1/2
,

ψ(H, d) = log(d1/2H H2H (2π)
−1/22(1−H)/2H ).

For t ∈ R, define a normal process XH,γ,σt := (ρH,γ,σ (0))−1/2O
H,γ,σ
t . Condition (2.2) for

h → ∞ is ensured by (2.1). From Lemma 2.1(d) we obtain, for d = γ 2H/�(2H + 1),

E(XH,γ,σh X
H,γ,σ
0 ) = 1 − 1

2 (ρH,γ,σ (0))
−1σ 2|h|2H + o(|h|2H ) = 1 − d|h|2H + o(|h|2H ).

Hence, for this value of d , we have

(2 log T )1/2
(

max
0≤t≤T X

H,γ,σ
t − βT (H, d)

)
d−→ �

and, therefore, with aH,γT as defined in the theorem, we obtain

(σa
H,γ

T )−1
(

max
0≤t≤T O

H,γ,σ
t − σ

γH

(
�(2H + 1)

2

)1/2

βT (H, d)

)
d−→ �.

Choosing C(H, γ ) = ψ(H, γ 2H/�(2H + 1)) proves the result.

Remark 2.1. (a) Henceforth, we write OH,γ
t ≡ O

H,γ,1
t . Setting MH,γ

T = max0≤t≤T OH,γ
t ,

we see that
b
H,γ

T

a
H,γ

T

(
M
H,γ

T

b
H,γ

T

− 1

)
d−→ �.

As bH,γT /a
H,γ

T → ∞ we conclude that MH,γ

T /b
H,γ

T

p−→ 1, where ‘
p−→’ denotes convergence in

probability. The distribution of MH,γ

T thus becomes less spread around bH,γT as T becomes
large. Consequently, bH,γT quite precisely describes the growth of the partial maxima for largeT .

(b) Observe that aH,γT b
H,γ

T → 1/δH,γ = �(2H + 1)/(γ 2H21/2). The convergence-to-types
theorem (see [9, Theorem A1.5]) allows for different scaling, namely

δH,γ b
H,γ

T (M
H,γ

T − b
H,γ

T )
d−→ �.

(c) For the definition of Pickands’ number, we refer the reader to [10]. The precise shape of the
curve H 	→ H2H is unknown, but a simulated curve can be found in [6].

3. State space transforms and extremes

In this section, we extend the result on the maximum domain of attraction for the FOUP to
more general processes. We will use the notation of Remark 2.1 throughout; in particular, we
set σ = 1.
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In [5], the authors termed a function f : R → R a state space transform (SST) if f is
continuous and strictly increasing. An SST f maps R to an open interval I = (l, r) = f (R)

called the state space of f . If we define XH,γ,ft := f (O
H,γ
t ), t ∈ R, this yields a rich class of

stationary processes driven by fractional Brownian motion on arbitrary open intervals I .
The next theorem gives necessary and sufficient conditions on the SST f to have XH,γ,f ∈

MDA(�).

Theorem 3.1. Let f : R → R be an SST with XH,γ,ft := f (O
H,γ
t ), t ∈ R, as above.

(a) Assume that

lim
y→∞

f (y + x/y)− f (y)

f (y + 1/y)− f (y)
= x for all x ∈ R. (3.1)

Then, for δH,γ as in Remark 2.1(b), we have

δH,γ

f (b
H,γ

T + 1/bH,γT )− f (b
H,γ

T )

(
max

0≤t≤T X
H,γ,f
t − f (b

H,γ

T )
)

d−→ �.

(b) Assume that there exist normalizing constants ãT > 0 and b̃T ∈ R such that

ã−1
T

(
max

0≤t≤T X
H,γ,f
t − b̃T

)
d−→ �.

Then (3.1) holds and possible choices of the normalizing constants are

ãT = 1

δH,γ

(
f

(
b
H,γ

T + 1

b
H,γ

T

)
− f (b

H,γ

T )

)
, b̃T = f (b

H,γ

T ).

Proof. LetMT ≡ M
H,γ

T and M̃T = max0≤t≤T XH,γ,ft . As f is increasing, M̃T = f (MT ).
We write bT ≡ b

H,γ

T and δ ≡ δH,γ and recall that bT → ∞ for T → ∞. Furthermore, observe
that T 	→ bT is strictly increasing for all sufficiently large T .

(a) For such T , the function gT : R → R,

gT (x) = δ
f (bT + x/(δbT ))− f (bT )

f (bT + 1/bT )− f (bT )
,

is well defined. Assumption (3.1) implies that limT→∞ gT (x) = x for all x ∈ R. Furthermore,

P

(
MT ≤ bT + x

δbT

)
= P

(
δ

f (bT + 1/bT )− f (bT )
(f (MT )− f (bT )) ≤ gT (x)

)

= P

(
δ

f (bT + 1/bT )− f (bT )
(M̃T − f (bT )) ≤ gT (x)

)
.

In particular, by Remark 2.1(b), the left-hand side converges pointwise to �(x). Thus,
Lemma B.1(a) (of Appendix B) applies.

(b) As above, we write P(MT ≤ bT + x/(δbT )) = P(ã−1
T (M̃T − b̃T ) ≤ g̃T (x)), where

g̃T (x) = ã−1
T

(
f

(
bT + x

δbT

)
− b̃T

)
. (3.2)
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By Lemma B.1(b), we find that g̃T (x) → x for all x ∈ R. In particular,

f (bT )− b̃T

ãT
= g̃T (0) → 0,

1

δ

f (bT + 1/bT )− f (bT )

ãT
= 1

δ
(g̃T (δ)− gT (0)) → 1.

By the convergence-to-types theorem, we conclude that (f (bT +1/bT )−f (bT ))/δ and f (bT )
are possible choices for ãT and b̃T , respectively. Substituting ãT = (f (bT +1/bT )−f (bT ))/δ
and b̃T = f (bT ) into (3.2) yields

(
f

(
bT + x

bT

)
− f (bT )

)(
f

(
bT + 1

bT

)
− f (bT )

)−1

= 1

δ
g̃T (δx),

and the right-hand side converges to x for all x ∈ R; thus, (3.1) holds.

The following example illustrates (3.1).

Example 3.1. Let q ∈ (0, 2] and let f : R → R be an SST given by f (x) = ex
q
, x > 0.

(a) If q ∈ (0, 2) then, for all x ∈ R, we have

lim
y→∞

f (y + x/y)− f (y)

f (y + 1/y)− f (y)
= lim
y→∞

exp(yq [(1 + x/y2)q − 1])− 1

exp(yq [(1 + 1/y2)q − 1])− 1
= x.

Therefore, XH,γ,f ∈ MDA(�).

(b) If q = 2 then, for all x ∈ R, we have

lim
y→∞

f (y + x/y)− f (y)

f (y + 1/y)− f (y)
= lim
y→∞

e2x+x2/y2 − 1

e2+1/y2 − 1
= e2x − 1

e2 − 1
.

Thus, XH,γ,f /∈ MDA(�). In fact, Theorem 3.2, below, will show that XH,γ,f ∈ MDA(�α).

Under the additional hypothesis of differentiability, the next corollary provides an efficient
method to calculate normalizing constants. This is then illustrated in Corollaries 3.2 and 3.3.

Corollary 3.1. Let f be an SST differentiable on (z0,∞), with f ′(z) > 0 for all z ∈ (z0,∞).
Assume that

lim
z→∞

f ′(z+ x/z)

f ′(z)
= 1 locally uniformly in x. (3.3)

Then
1

a
H,γ

T f ′(bH,γT )

(
max

0≤t≤T X
H,γ,f
t − f (b

H,γ

T )
)

d−→ �. (3.4)

Proof. Let x ∈ R. For all sufficiently large y > 0, we can find θy ∈ [0, 1] and θ̃y ∈ [0, 1]
such that

f (y + x/y)− f (y)

f (y + 1/y)− f (y)
= x

f ′(y + θyx/y)

f ′(y)
f ′(y)

f ′(y + θ̃y/y)
→ x, y → ∞.

Therefore, (3.1) follows from (3.3) and, consequently, XH,γ,f ∈ MDA(�).
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Furthermore, for some θ̄T ∈ [0, 1] and the quantity δH,γ in Remark 2.1(b), we have

1

δH,γ

f (b
H,γ

T + 1/bH,γT )− f (b
H,γ

T )

a
H,γ

T f ′(bH,γT )
= 1

δH,γ

1

a
H,γ

T b
H,γ

T

f ′(bH,γT + θ̄T /b
H,γ

T )

f ′(bH,γT )
→ 1;

thus, (3.4) follows by the convergence-to-types theorem.

Corollary 3.2. Let � be a slowly varying function on [x0,∞) for some x0 > 0, i.e. � : [x0,∞)

→ R
+ is measurable and limx→∞ �(tx)/�(x) = 1 for all t > 0. If f is an SST with state

space I = (l, r), differentiable on (x0,∞) and such that, for some p ∈ R,

f ′(x) = xp�(x) for all x > x0,

then XH,γ,f ∈ MDA(�).
Define

c
H,γ
p = 2(p−2)/2γ−H(p+1)�(2H + 1)(p+1)/2,

ãT = c
H,γ
p (log T )(p−1)/2�((log T )1/2).

(3.5)

Then ãT and b̃T = f (b
H,γ

T ) are a possible choice of normalizing constants.

Proof. By [3, Theorem 1.5.2], convergence in regular variation is locally uniform; thus,
locally uniformly in x,

lim
z→∞

f ′(z+ x/z)

f ′(z)
= lim
z→∞

�(z(1 + x/z2))

�(z)
= 1.

Consequently, XH,γ,h ∈ MDA(�) by Corollary 3.1.
According to (3.4), we find that aH,γT f ′(bH,γT ) ∼ ãT , as given in (3.5), and, thus, that ãT

and b̃T = f (b
H,γ

T ) are a possible choice of normalizing constants, by the convergence-to-types
theorem.

Corollary 3.3. Let � be a slowly varying function on [x0,∞) for some x0 > 0. If f is an SST
with state space I = (l, r), differentiable on (x0,∞) and such that, for some p ∈ R, q ∈ (0, 2),
and κ �= 0, we have

f ′(x) = xp�(x)eκx
q

for all x > x0,

then XH,γ,f ∈ MDA(�).
Let cH,γp be as defined in (3.5), and define

c̃
H,γ
q = 2q/2γ−qH�(2H + 1)q/2,

ãT = c
H,γ
p (log T )(p−1)/2�((log T )1/2) exp(κc̃H,γq (log T )q/2).

(a) If κ > 0 then r = ∞ and ãT and b̃T are a possible choice for the normalizing constants,
where

b̃T = (qκ)−1(b
H,γ

T )p−q+1�(b
H,γ

T ) exp(κ(bH,γT )q).

(b) If κ < 0 then r < ∞ and ãT and b̃T are a possible choice for the normalizing constants,
where

b̃T = r + (qκ)−1(b
H,γ

T )p−q+1�(b
H,γ

T ) exp(κ(bH,γT )q).
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Proof. In view of Corollary 3.2, in order to prove (3.3) it suffices that, for 0 < q < 2,

(z+ x/z)q − zq = qxzq−2 + o(zq−2) = o(1), z → ∞,

locally uniformly in x. Hence, Corollary 3.1 applies and XH,γ,f ∈ MDA(�). As q < 2,
observe that

a
H,γ

T

f ′(bH,γT )

ãT
∼ exp(O((log T )(q−2)/2 log log T )) → 1.

If κ > 0 then f (x) → ∞ as x → ∞ and, hence, r = ∞. Without loss of generality, suppose
that x0 > 0. For x ≥ x0, make the change of variable z = (log z̄)1/q ; this yields

f (x)− f (x0) = q−1
∫ exp(xq )

exp(xq0 )
z̄κ−1(log z̄)(p−q+1)/q�((log z̄)1/q) dz̄.

Karamata’s theorem [3, Theorem 1.6.1] applies for κ > 0 and, for η := ex
q → ∞,

q−1
∫ η

η0

z̄κ−1(log z̄)(p−q+1)/q�((log z̄)1/q) dz̄ ∼ (qκ)−1ηκ(log η)(p−q+1)/q�((log η)1/q).

Thus, for x → ∞, we have

f (x)− f (x0) ∼ ψ(x), ψ(x) = (qκ)−1�(x)xp−q+1eκx
q

.

Note that ãT → ∞ and ã−1
T ψ(b

H,γ

T ) = O((log T )(2−q)/2); thus,

lim
T→∞ ã

−1
T (f (b

H,γ

T )− ψ(b
H,γ

T )) = 0.

An application of the convergence-to-types theorem implies part (a).
The proof of part (b) is similar.

We now want to derive an analogue of Theorem 3.1 for the domain of attraction of the
Fréchet distribution. To this end, we use the fact that, by a logarithmic transformation, for a
suitable choice of normalizing constants âT ,

â−1
T (H, γ ) max

0≤t≤T X
H,γ,f
t

d−→ �α,

for some α > 0, if and only if

α
(

max
0≤t≤T logXH,γ,ft − log âT

)
d−→ �.

Using this result, we can translate Theorem 3.1 as follows.

Theorem 3.2. Let f : R → R be an SST.

(a) Assume that there exist a κ > 0 and a z0 ∈ R such that, for all z ≥ z0, both f (z) > 0 and

log f (z) = 1
2κz

2 + h(z), (3.6)

where h : R → R satisfies

lim
z→∞h(z+ x/z)− h(z) = 0 for all x ∈ R. (3.7)
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Then, for α = δH,γ /κ (with δH,γ as in Remark 2.1(b)),

1

f (b
H,γ

T )
max

0≤t≤T X
H,γ,f
t

d−→ �α.

(b) Assume that there exist normalizing constants âT > 0 such that

1

âT
max

0≤t≤T X
H,γ,f
t

d−→ �α.

Then a possible choice of âT is âT = f (b
H,γ

T ). Furthermore, there exist a function
h : R → R satisfying (3.7) and a z0 ∈ R such that both f (z) > 0 and log f (z) = 1

2κz
2 + h(z),

where κ = δH,γ /α, hold for all z ≥ z0.

Proof. (a) As before, let M̃T = max0≤t≤T XH,γ,ft and MT ≡ M
H,γ

T , and write bT ≡ b
H,γ

T

and δ ≡ δH,γ . Set x = α log y for y > 0. Observe that

�α(y) = �(x)

= lim
T→∞ P

(
MT ≤ bT + x

δ bT

)

= lim
T→∞ P

(
1

f (bT )
M̃T ≤ f (bT + x/(δbT ))

f (bT )

)

= lim
T→∞ P

(
1

f (bT )
M̃T ≤ y θT (α log y)

)
, (3.8)

where we have set

log θT (x) = κ

2

(
x

δ bT

)2

+ h

(
bT + x

δbT

)
− h(bT ).

Assumption (3.7) implies that yθT (α log y) → y for all y > 0. Thus, Lemma B.1(a) applies
to the limit in (3.8) and gT : R

+ → R with gT (y) := yθT (α log y).

(b) Again, let y > 0 and x = α log y. Replacing f (bT ) by âT in the proof of part (a), we obtain

�α(y) = �(x) = lim
T→∞ P

(
1

âT
M̃T ≤ g̃T (y)

)
,

where g̃T : R
+ → R is defined by

g̃T (y) = 1

âT
f

(
bT + α

δ

log y

bT

)
. (3.9)

Lemma B.1(b) applies to gT , i.e. gT (y) → y for all y ∈ R
+. Specializing to y = 1, this yields

f (bT ) ∼ âT ; thus, f (bT ) is a possible choice for âT , by the convergence-to-types theorem.
Substituting âT = f (bT ) and κ = δ/α into (3.9) yields, for T → ∞ and y ∈ R

+,

1

f (bT )
f

(
bT + 1

κ

log y

bT

)
→ y.
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Equivalently, for x ∈ R, we have

lim
z→∞

f (z+ x/z)

f (z)
= eκx.

As f (bT ) ∼ âT , where âT > 0, there exists a z0 such that f (z) > 0 for all z ≥ z0. Set
h(z) = log f (z)− 1

2κz
2 for z ≥ z0 and h(z) = 1 for z < z0. Observe that

h

(
z+ x

z

)
− h(z) = log

f (z+ x/z)

f (z)
− κx − 1

2

x2

z2 , z, z+ x

z
≥ z0.

Thus, h is a function satisfying (3.7).

Remark 3.1. (a) The boundedness of h in (3.6) does not imply (3.7). To see this, let h(x) =
sin(x2); then

h

(
z+ x

z

)
− h(x) = 2 cos

(
z2 + x + x2

2z2

)
sin

(
x + x2

2z2

)
.

Thus, for all x ∈ R \ (πZ) the limit in (3.7) does not exist.

(b) Observe that Theorem 3.2 covers Example 3.1(b) with κ = 2 and h ≡ 0 in (3.6).
Furthermore, suppose that h satisfies (3.7) and, in addition, h(z) → 0 for z → ∞. Then
the scaling constants âT depend on κ and bH,γT only; i.e. we may choose

âT = exp( 1
2κ(b

H,γ

T )2) ∼ f (b
H,γ

T ).

(c) In general, knowledge of κ alone is not sufficient to calculate the scaling constants âT .
Therefore, observe that (3.7) holds for h(x) = κpx

p, x > 0, κp �= 0, even when p ∈ [0, 2).
However, for any choice of âT we must have

âT ∼ exp( 1
2κ(b

H,γ

T )2 + κp(b
H,γ

T )p).

As bH,γT → ∞, the scaling constants âT clearly depend on both κp and p.

The following corollary complements Corollary 3.1.

Corollary 3.4. Let f be an SST differentiable on (z0,∞) for some z0 ∈ R. Assume that
f (z) > 0 for all z > z0 and that

lim
z→∞

(log f )′(z+ x/z)

z
= κ ∈ (0,∞)

locally uniformly in x. Then, for α = δH,γ /κ , we have

1

f (bT )
max

0≤t≤T X
H,γ,f
t

d−→ �α.

Proof. Set h(z) = log f (z) − 1
2κz

2. Then h is absolutely continuous on [x0,∞) and we
obtain

h(z+ x/z)− h(z) = x

∫ 1

0

(log f )′(z+ αx/z)

z
dα − κx − κx2

2z2 ,

the right-hand side of which tends to 0 for z → ∞, by dominated convergence. Theorem 3.2
then applies, and the remainder of the proof follows.
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For completeness we state the analogous results for the Weibull distribution.

Theorem 3.3. Let f : R → R be an SST with state space I = (l, r) ⊆ R, where r < ∞.

(a) Suppose that there exist a κ > 0 and a z0 ∈ R such that both r − f (z) > 0 and

log(r − f (z)) = − 1
2κz

2 + h(z),

where h : R → R satisfies (3.7), hold for all z ≥ z0. Then, for α = δH,γ /κ , we have

1

r − f (b
H,γ

T )

(
max

0≤t≤T X
H,γ,f
t − r

)
d−→ �α.

(b) Assume that there exist normalizing constants āT > 0 such that

1

āT

(
max

0≤t≤T X
H,γ,f
t − r

)
d−→ �α.

Then a possible choice of āT is āT = r − f (b
H,γ

T ). Furthermore, there exist a function
h : R → R satisfying (3.7) and a z0 ∈ R such that both r − f (z) > 0 and

log(r − f (z)) = − 1
2κz

2 + h(z),

where κ = δH,γ /α, hold for all z ≥ z0.

Proof. Set x = −α log |z| for z < 0 and α = δH,γ /κ . Observe that �α(z) = �(x). The
result follows along the lines of the proof of Theorem 3.2.

We now collect results analogous to those of Remark 3.1 and Corollary 3.4.

Remark 3.2. (a) If h satisfies (3.7) and, in addition, h(z) → 0 for z → ∞, then we may
choose

āT = exp(− 1
2κ(b

H,γ

T )2) ∼ r − f (b
H,γ

T ).

(b) For p ∈ [0, 2), κp �= 0, and h(x) = κpx
p, x > 0, we obtain

āT ∼ exp(− 1
2κ(b

H,γ

T )2 + κp(b
H,γ

T )p).

Corollary 3.5. Let f be an SST with state space I = (l, r) ⊆ R, where r < ∞. Let f be
differentiable on (z0,∞) for some z0 ∈ R, and assume that f (z) > 0 for all z > z0 and that

lim
z→∞

(log(r − f ))′(z+ x/z)

z
= −κ ∈ (−∞, 0)

locally uniformly in x. Then, for α = δH,γ /κ , we have

1

r − f (b
H,γ

T )

(
max

0≤t≤T X
H,γ,f
t − r

)
d−→ �α.

Remark 3.3. Here, we have only considered SSTs of the FOUP. However, SSTs are of course
more generally applicable to any stationary Gaussian process.
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4. Maximum domains of attraction of solutions to fractional integral equations

In this section, we return to the maximum domain of attraction problem for a family of
processes defined as solutions to the stochastic differential equation (1.2). Therefore, let I =
(l, r) ⊆ R be an open, nonempty interval and letµ, σ : I → R be a pair of continuous functions,
where σ is nonnegative.

In [5], conditions on µ and σ were obtained such that a stationary solution X to (1.2) exists
and is of the form X = XH,γ,f , for some γ > 0 and an SST f . These conditions were
summarized into the concept of H -proper triples (I, µ, σ ) (see [5, Definition 3.4]). For such
triples, the ratio µ/σ possesses a unique, absolutely continuous extension ψ : I → R, which
determines the SST f and the so-called friction coefficient γ according to the relations

γ = −σψ ′ Lebesgue almost everywhere on I , f−1 = −ψ
γ
. (4.1)

The number ξ := f (0) is called the centre of the H -proper triple (I, µ, σ ).
For the reader’s convenience, we recall that, for H -proper triples, the function z 	→ 1/σ(z)

is necessarily locally integrable and the following formula holds for the inverse function f−1:

f−1(z) =
∫ z

ξ

dw

σ(w)
, z ∈ I. (4.2)

We start with a simple example.

Example 4.1. (Fractional Vasicek model.) For σ0, γ > 0, let µ(x) = −γ (x − ξ), ξ ∈ R, and
σ(x) ≡ σ0, x ∈ R. Define an SST f : R → R by f (x) = ξ + σ0x. The triple (R, µ, σ ) is
H -proper for all H ∈ (0, 1) with friction coefficient γ , SST f , and centre ξ . For this choice
of µ and σ , observe that X = XH,γ,f is a solution to (1.2) and therefore serves as a natural
extension to the fractional case of the usual Vasicek model driven by ordinary Brownian motion.
It is a mean-reverting stationary Gaussian process. Theorem 2.1 implies that X ∈ MDA(�);
more precisely,

(σ0a
H,γ

T )−1
(

max
0≤t≤T Xt − (ξ + σ0b

H,γ

T )
)

d−→ �.

Although Example 4.1 shows that H -proper triples may exist for certain models for all
H ∈ (0, 1), they indeed only exist for Vasicek models (see [5, Remark 3.3(vii)]). When
considering more general models we restrict ourselves to a choice of H ∈ ( 1

2 , 1), which is
uncritical for most models.

Formulae (4.1) and (4.2) provide us with two different representations for f−1; the first
is based on the ratio µ/σ and the second on the integral representation (4.2). The results
of Section 3 and asymptotic inversion rules yield different characterizations of the maximum
domain of attraction.

We start with the maximum domain of attraction of the Gumbel distribution. The proof of
Theorem 4.1 can be found in Appendix C.1. The equivalence of the conditions (i), (ii), and (iii)
(of part (b)) is a direct consequence of (4.1) and (4.2).

Theorem 4.1. Let H ∈ ( 1
2 , 1). Suppose (I, µ, σ ) to be H -proper, with friction coefficient γ ,

SST f , and centre ξ . Let ψ be the absolutely continuous extension of µ/σ to I . The following
assertions are equivalent.

(a) XH,γ,f ∈ MDA(�).
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(b) There exist a z0 ∈ I and a function g : (z0, r) → R
+ such that, for all x ∈ R, there

exists a z1 ∈ (z0, r) satisfying z+ xg(z) ∈ I for all z ∈ (z1, r), and one of the following
equivalent conditions holds for all x ∈ R:

(i) lim
z↑r f

−1(z)(f−1(z+ xg(z))− f−1(z)) = x,

(ii) lim
z↑r γ

−2ψ(z)(ψ(z+ xg(z))− ψ(z)) = x,

(iii) lim
z↑r

∫ z

ξ

dw

σ(w)

∫ z+xg(z)

z

dw

σ(w)
= x.

In the case r = ∞, the proof of the following corollary illustrates a possible construction of
g as in Theorem 4.1(b). Analogous results hold for r < ∞.

Corollary 4.1. Let H ∈ ( 1
2 , 1). Suppose (I, µ, σ ) to be H -proper, with friction coefficient

γ , SST f , and centre ξ . Suppose that r = ∞ and that there exists a z0 ∈ I such that
� : (z0,∞) → R

+ is a slowly varying function. Then

(a) if there exists a p < 1 such that σ(z) = zp�(z) for all z > z0 > max{0, ξ}, we have
XH,γ,f ∈ MDA(�); and

(b) if there exists a q < 1
2 such that σ(z) = z(log z)q�(log z) for all z > z0 > max{1, eξ },

we have XH,γ,f ∈ MDA(�).

Proof. In both cases, we check condition (iii) of Theorem 4.1(b).

(a) Define g : (z0,∞) → R
+ by g(z) = σ(z)/

∫ z
ξ
σ−1(w) dw. Karamata’s theorem [3,

Theorem 1.6.1] implies that

lim
z→∞

g(z)

z
= (1 − p) lim

z→∞ �
2(z)z2p−2 = 0.

Thus, for all x ∈ R, we can find a z1 > z0 such that z + g(z)x ⊆ (z0,∞) for all z > z1.
In particular, as � is strictly positive and σ : I → R (and 1/σ ) are continuous on (z1,∞).
Consequently, for z > z1, the mean value theorem provides a θ(z) ∈ [0, 1] such that

∫ z+xg(z)

z

dw

σ(w)
= xg(z)

σ (z+ θ(z)xg(z))
.

On the other hand, by definition,

∫ z

ξ

dw

σ(w)

∫ z+xg(z)

z

dw

σ(w)
= xσ(z)

σ (z(1 + θ(z)xg(z)z−1))
.

The right-hand side tends to x for z → ∞, as g(z)/z → 0, and convergence in regular variation
is locally uniform on (0,∞) (see [3, Theorem 1.5.2]).

(b) Define g : (z0,∞) → R
+ by g(z) = σ(z)/

∫ z
ξ
σ−1(w) dw, as in the proof of part (a).

Substituting y = logw yields

∫ z

z0

σ−1(w) dw =
∫ log z

log z0

1

yq�(y)
dy.
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Karamata’s theorem [3, Theorem 1.6.1] implies that

lim
z→∞

g(z)

z
= (1 − q) lim

z→∞ �(log z)2(log z)2q−1 = 0.

Thus, for all x ∈ R, we can find a z1 > z0 such that z + g(z)x ⊆ (z0,∞) for all z > z1. The
remaining part of the proof follows along the same lines as does that of part (a).

Theorem 3.2 yields a characterization of MDA(�α) in the following theorem; see
Appendix C.2 for a proof. The equivalence of the representations (i), (ii), and (iii) (of part (b))
is a direct consequence of (4.1) and (4.2).

Theorem 4.2. LetH ∈ ( 1
2 , 1) and let (I, µ, σ ) beH -proper, with friction coefficient γ , SST f ,

and centre ξ . Letψ be the absolutely continuous extension ofµ/σ to I . The following assertions
are equivalent.

(a) There exists an α > 0 such that X ∈ MDA(�α).

(b) We have r = ∞ and there exist a κ > 0 and a function h̃ : (max{1, l},∞) → R such
that both

lim
z→∞(log z)1/2(h̃(xz)− h̃(z)) = 0 for all x > 0 (4.3)

and one of the following equivalent representations holds for all z > max{1, l}:
(i) f−1(z) = (2/κ)1/2(log z)1/2 + h̃(z),

(ii) ψ(z) = −γ ((2/κ)1/2(log z)1/2 + h̃(z)),

(iii)
∫ z

ξ

dw

σ(w)
=

(
2

κ

)1/2

(log z)1/2 + h̃(z).

If either condition (a) or condition (b) is satisfied then α = δH,γ /κ , where δH,γ is the quantity
in Remark 2.1(b).

As an application of Corollary 4.1 and Theorem 4.2, we present a family of models that,
depending on the choice of parameters, belong to either MDA(�) or MDA(�α).

Example 4.2. Let H ∈ ( 1
2 , 1), q ∈ ((1 − H), 1), σ0 > 0, a < 0, and b ≥ 0. Calculations

similar to those of [5, Section 5] show that (I, µ, σ ) with

I = R
+, µ(z) = az log z+ bz|log z|q, σ (z) = σ0z|log z|q

is H -proper. Furthermore, (4.1) shows that γ = (1 − q)|a|. We obtain two cases, as follows.
For q = 1

2 , we observe that

ψ(z) = a

σ0
(log z)1/2 + b

σ0
, z > 1.

Set κ = 1
2σ

2
0 and h̃(z) ≡ b/σ0. Theorem 4.2(b) applies to ψ ; thus, XH,γ,f ∈ MDA(�α) for

α = 2δH,γ /σ 2
0 . For q < 1

2 , Corollary 4.1(b) implies that XH,γ,f ∈ MDA(�).
Calculations show that the SST f can be explicitly written as

f (z) = exp

(
sgn

(
σ0(1 − q)z− b

a

) ∣∣∣∣ σ0(1 − q)z− b

a

∣∣∣∣
1/(1−q))

, z ∈ R.
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Hence, we could also have made our argument using the theory given in Section 3. In this
case, Example 3.1 shows that XH,γ,f /∈ MDA(G) for any extreme-value distribution G and
any q ∈ ( 1

2 , 1).

For completeness, we conclude the section with the corresponding results for MDA(�α).
The following theorem is based on Theorem 3.3; its proof can be found in Appendix C.3.

Theorem 4.3. LetH ∈ ( 1
2 , 1) and let (I, µ, σ ) beH -proper, with friction coefficient γ , SST f ,

and centre ξ . Letψ be the absolutely continuous extension ofµ/σ to I . The following assertions
are equivalent.

(a) There exists an α > 0 such that X ∈ MDA(�α).

(b) We have r < ∞ and there exist a κ > 0 and a function h̄ : (0, r − l) → R such that both

lim
z↓0

|log z|1/2(h̄(xz)− h̄(z)) = 0 for all x > 0 (4.4)

and one of the following equivalent representations holds for all z, 0 < z < min{1,
r − l}:

(i) f−1(r − z) = (2/κ)1/2|log z|1/2 + h̄(z),

(ii) ψ(r − z) = −γ (2/κ)1/2|log z|1/2 + h̄(z),

(iii)
∫ r−z

ξ

dw

σ(w)
=

(
2

κ

)1/2

|log z|1/2 + h̄(z).

If either condition (a) or condition (b) is satisfied then α = δH,γ /κ , where δH,γ is the quantity
in Remark 2.1(b).

Appendix A. Proof of Lemma 2.1

It remains to show parts (b) and (d) of Lemma 2.1.

(b) By the self-similarity of fractional Brownian motion, we obtain

ρH,γ,σ (h) = σ 2 E

(∫ 0

−∞
eγ s dBHs

∫ h

−∞
e−γ (h−s) dBHs

)

= σ 2e−γ h E

(∫ 0

−∞
es dBHs/γ

∫ γ h

−∞
es dBHs/γ

)

= σ 2

γ 2H ρH (γ h)

for h ∈ R.

(d) The closed formula stated forH = 1
2 is well known (see, e.g. [7]). Thus, by parts (a) and (b),

it suffices to investigate the case with γ = σ = 1, H �= 1
2 , and h ↓ 0.

By partial integration applied to (1.3), we observe that

∫ t

−∞
e−(t−s) dBHs = BHt −

∫ t

−∞
e−(t−s)BHs ds, t ∈ R, (A.1)
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where the integral on the right-hand side is interpreted as a Lebesgue integral (cf. [5, Proposi-
tion 2.3]).

By (A.1) and Fubini’s theorem, we have

ρH (0) =
∫ 0

−∞

∫ 0

−∞
es1+s2 E(BHs1 B

H
s2
) ds1 ds2

= 1

2

∫ 0

−∞

∫ 0

−∞
es1+s2(|s1|2H + |s2|2H − |s1 − s2|2H ) ds1 ds2

= �(2H + 1)− 1

2

∫ ∞

0

∫ ∞

0
e−(s1+s2)|s1 − s2|2H ds1 ds2.

The integral on the final line can be interpreted as a multiple of the expectation E |S1 − S2|2H ,
where S1 and S2 are independent standard exponential random variables. As S1 − S2 is a
two-sided exponential random variable, we obtain∫ ∞

0

∫ ∞

0
e−(s1+s2)|s1 − s2|2H ds1 ds2 = 1

2

∫ ∞

−∞
e−|s||s|2H ds = �(2H + 1).

Hence,
ρH (0) = 1

2�(2H + 1). (A.2)

Now let h ≥ 0 and set

φH (h) = �(2H + 1)−
∫ ∞

0
e−s(h+ s)2H ds,

ψH (h) = 1

2

(
�(2H + 1)

∫ h

0
es ds +

∫ h

0
s2H es ds −

∫ h

0
es1

∫ ∞

0
e−s2(s1 + s2)

2H ds2 ds1

)
.

By Fubini’s theorem and (1.1), we have

E

(
BHh

∫ 0

−∞
esBHs ds

)
= 1

2

∫ 0

−∞
es(h2H − s2H − (h− s)2H ) ds = 1

2 (h
2H + φH (h))

and, similarly, ψH(h) = E(
∫ 0
−∞ esBHs ds

∫ h
0 esBHs ds).

By (A.1),

ρH (h)− ρH (0) = − E

(∫ 0

−∞
esBHs ds

(
BHh − e−h

∫ h

−∞
esBHs ds +

∫ 0

−∞
esBHs ds

))

= − E

(
BHh

∫ 0

−∞
esBHs ds + (e−h − 1)E

∫ h

−∞
esBHs ds

∫ 0

−∞
esBHs ds

)

+ E

(∫ 0

−∞
esBHs ds

∫ h

0
esBHs ds

)
= − 1

2 (h
2H + φH (h))+ (e−h − 1)( 1

2�(2H + 1)+ ψH(h))+ ψH(h).

(A.3)

For H < 1
2 , we can differentiate both φH (h) and ψH(h) under the integral sign, by dominated

convergence. We obtain

φH (h) = φH (0)+ φ′
H (0+)h+ o(h) = −�(2H + 1)h+ o(h),

ψH (h) = ψH(0)+ ψ ′
H (0+)h+ o(h) = o(h).
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Equation (A.3) yields

ρH (h)− ρH (0) = − 1
2h

2H + 1
2�(2H + 1)h− 1

2�(2H + 1)h+ o(h) = − 1
2h

2H + o(h).

By (A.2) and part (b), we find that

ρH,γ,σ (h) = σ 2

γ 2H (ρH (0)+ ρH (γ h)− ρH (0)) = �(2H + 1)

2

σ 2

γ 2H − 1

2
σ 2h2H + o(h).

For H > 1
2 , both φH and ψH are twice differentiable under the integral sign, i.e.

φH (h) = −�(2H + 1)h− 1
2�(2H + 1)h2 + o(h2),

ψH (h) = − 1
4�(2H + 1)h2 + o(h2);

thus, as e−h − 1 = −h+ 1
2h

2 + o(h2), (A.3) implies that

ρH (h)− ρH (0) = − 1
2h

2H + 1
4�(2H + 1)h2 + o(h2).

By the same arguments as above, we have

ρH,γ,σ (h) = �(2H + 1)

2

σ 2

γ 2H − 1

2
σ 2h2H + �(2H + 1)

4

σ 2

γ 2H−2 h
2 + o(h2).

Appendix B. A general convergence-to-types lemma

In this section, we state a result that forms the core of Section 3. For a probability distribution
function F : R → [0, 1], we write

D<(F) = {x ∈ R : for all ε > 0, F (x − ε) < F(x) < F(x + ε)}.

Set xL := −∞ if F(x) > 0 for all x ∈ R; otherwise, set xL = sup{x ∈ R : F(x) = 0}. Set
xR := ∞ if F(x) < 1 for all x ∈ R; otherwise, set xR = inf{x ∈ R : F(x) = 1}.
Lemma B.1. Let F,Fn : R → [0, 1], n ∈ N, be probability distribution functions on R, with
F continuous.

(a) Let M = (xL, xR) and consider a function gn : M → R, n ∈ N. Let Gn = Fn ◦ gn : M →
[0, 1]. If

lim
n→∞ gn(x) = x and lim

n→∞Gn(x) = F(x)

for all x ∈ M , then

lim
n→∞Fn(x) = F(x) for all x ∈ R.

(b) Let M = D<(F) and consider a function gn : M → R, n ∈ N. Again, let Gn = Fn ◦ gn :
M → [0, 1]. If

lim
n→∞Fn(x) = lim

n→∞Gn(x) = F(x)

for all x ∈ M , then gn(x) → x for all x ∈ M .
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Proof. (a) It suffices to show that limn→∞ Fn(x) = F(x) for all x ∈ M . In contradiction to
the hypothesis, suppose that there exist an x0 ∈ M and a y0 ∈ [0, 1] and, as Fn(x) is bounded,
a subsequence n′ such that

lim
n′→∞

Fn′(x0) = y0 �= F(x0). (B.1)

Without loss of generality, suppose that n = n′. By Helly’s selection theorem, we can find
a subsequence n′ and a nondecreasing, right-continuous function F̃ : R → [0, 1] such that
limn′→∞ Fn′(x) = F̃ (x) for all continuity points x of F̃ . LetC(F̃ ) be the set of such continuity
points and let x ∈ C(F̃ ) ∩ (xL, xR). Then, for all x′ ∈ (x, xR) ∩ C(F̃ ), we have

F(x) = lim
n′→∞

Gn′(x) = lim
n′→∞

Fn′(gn′(x)) ≤ lim
n′→∞

Fn′(x′) = F̃ (x′)

and, hence, F(x) ≤ lim
x′↓x, x′∈C(F̃ ) F̃ (x′) = F̃ (x). Analogously, for all x′ ∈ (xL, x) ∩C(F̃ ),

we have

F̃ (x′) = lim
n′→∞

Fn′(x′) ≤ lim
n′→∞

Fn′(gn′(x)) = lim
n′→∞

Gn′(x) = F(x).

Hence, F̃ (x) = lim
x′↑x, x′∈C(F̃ ) F̃ (x′) ≤ F(x) and, so, F̃ (x) = F(x) for all x ∈ (xL, xR) ∩

C(F̃ ). As C(F̃ ) is dense in (xL, xR) and F is continuous, we find that x0 ∈ (xL, xR) ⊆ C(F̃ ),
contradicting (B.1).

(b) Suppose that the contrary is true. Then there exist an x ∈ D<(F) and a subsequence n′
such that gn′(x) → y ∈ R = R ∪ {∞}, where y �= x. Without loss of generality, suppose that
y ∈ [−∞, x). As F is continuous, uniform convergence of Fn → F holds. If we set F(y) = 0
whenever y = −∞, then

F(y) = lim
n′→∞

Fn′(gn′(x)) = lim
n′→∞

Gn′(x) = F(x),

contradicting our assumption that x ∈ D<(F).

Appendix C. Results on asymptotic inversion

C.1. Proof of Theorem 4.1

Theorem 4.1 is a consequence of Theorem 3.1 and the following lemma.

Lemma C.1. Let f be an SST with state space I = (l, r). The following assertions are
equivalent.

(a) The SST f satisfies (3.1).

(b) There exist a z0 ∈ I and a functiong : (z0, r) → R
+ satisfying the following properties:

(i) for all x ∈ R, there exists a z1 ∈ (z0, r) with z+ xg(z) ∈ I for all z ∈ (z1, r);

(ii) lim
z↑r f

−1(z)(f−1(z+ xg(z))− f−1(z)) = x for all x ∈ R.

Proof. We first prove that part (a) implies part (b). The SST f has representation f (z) =
v ◦ h(z) for all z > 0, where v is an arbitrary function and h(z) = ez

2/2. By combining
Exercises 0.4.3.7 and 0.4.3.8 of [13], we can find a function a : (1,∞) → R

+ such that
limz→∞[v(zx)− v(z)]/a(z) = log x for all x > 0. As both f and h are strictly increasing, so
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too is v; moreover, limz↑r v−1(z) = ∞. Let z0 = f (0). From [13, Proposition 0.9(b)], we can
find a function g : (z0, r) → R

+, satisfying part (b)(i), such that

lim
z↑r

v−1(z+ xg(z))

v−1(z)
= ex

for all x ∈ R. Part (b)(ii) follows from the fact that, for x ∈ R,

lim
z↑r f

−1(z)(f−1(z+ xg(z))− f−1(z))

= lim
z↑r 2[log v−1(z)]

[(
1 + log(v−1(z+ xg(z))/v−1(z))

log v−1(z)

)1/2

− 1

]
.

A Taylor expansion of (1 + z)1/2 now yields the assertion.
We now prove that part (b) implies part (a). Observe that, for all x ∈ R,

lim
z↑r [f

−1(z)]2
[
f−1(z+ xg(z))

f−1(z)
− 1

]
= x.

Consequently, limz↑r f−1(z + xg(z))/f−1(z) = 1, as limz↑r f−1(z) = ∞. Now define
u(z) = exp( 1

2 (f
−1(z))2), z ∈ I . Then u is strictly increasing on (f (0), r) and provides a

mapping from (f (0), r) onto (u(f (0)),∞). For all x ∈ R, we find that

lim
z↑r

u(z+ g(z)x)

u(z)

= lim
z↑r exp

(
1

2

f−1(z+ xg(z))+ f−1(z)

f−1(z)
f−1(z)(f−1(z+ xg(z))− f−1(z))

)
= ex.

Proposition 0.9(a) of [13] applies to u. There exist a z1 > u(f (0)) and a function
a : (z1,∞) → R

+ such that limz→∞(u−1(zx) − u−1(z))/a(z) = log x for all x > 0. By
monotonicity, the convergence holds locally uniformly in x on R

+. In particular, for all x ∈ R,
we have

lim
z→∞

f (z+ xz−1)− f (z)

a(ez2/2)

= lim
z→∞

u−1(ez
2/2 exp(x + x2/(2z2)))− u−1(ez

2/2)

a(ez2/2)
= x.

Therefore, for all x ∈ R, we have

lim
z→∞

f (z+ xz−1)− f (z)

f (z+ z−1)− f (z)
= lim
z→∞

f (z+ xz−1)− f (z)

a(ez2/2)

a(ez
2/2)

f (z+ z−1)− f (z)
= x.

C.2. Proof of Theorem 4.2

We prepare for the result with a technical lemma.

Lemma C.2. If h : (x0,∞) → R with limz→∞ zα(h(z+xz−β)−h(z)) = 0 locally uniformly
in x ∈ R for some x0 ∈ R, α ∈ [0, 1), and β ≥ 0, then limz→∞ zα−1−βh(z) = 0.
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Proof. We use the convention
∑l
k = 0 for l < k. Let ε > 0 and define a sequence (zn) as

follows. Choose z0 > max{1, x0} such that, for all z ≥ z0 and x ∈ [0, 1], we have

|h(z+ xz−β)− h(z)| < ε(z+ z−β)−α.

For n ≥ 1, set zn = zn−1 + z
−β
n−1. Observe that zn = z0 + ∑n−1

l=0 z
−β
l ≥ nz

−β
n . Thus,

zn ≥ n1/(1+β). In particular, zn → ∞ and |h(zn+1)− h(zn)| < ε(n+ 1)−α/(1+β) for alln ≥ 0.
Let z ≥ z0 be arbitrary. Set n1 = max{n : zn ≤ z}; then clearly n1 ≤ z1+β . By this choice

of n1, we have z ∈ [zn1 , zn1 + z
−β
n1 ) and, hence, |h(z) − h(zn1)| < ε. Finally, summing and

subtracting terms gives

|h(z)| ≤ ε + |h(z0)| + ε

n1−1∑
k=0

(1 + k)−α/(1+β) ≤ ε + |h(z0)| + ε

(
1 + 1 + β

1 − α + β
z1−α+β

)
.

Thus, lim supz→∞ zα−1−β |h(z)| ≤ ε.

Corollary C.1. (a) If x0 ∈ R and h : (x0,∞) → R with

lim
z→∞(h(z+ xz−1)− h(z)) = 0

locally uniformly in x ∈ R, then limz→∞ z−2h(z) = 0.

(b) If x0 ∈ R and h : (x0,∞) → R with

lim
z→∞(log z)1/2(h(zx)− h(z)) = 0

locally uniformly in x ∈ R
+, then limz→∞(log z)−1/2h(z) = 0.

Proof. For the choice of β = 1 and α = 0, Lemma C.2 implies part (a). To show part (b),
set g = h ◦ exp. Then limz→∞ z1/2(g(z + x) − g(z)) = 0 locally uniformly in x ∈ R and
Lemma C.2 yields limz→∞ z−1/2g(z) = 0; equivalently, limz→∞(log z)−1/2h(z) = 0.

Proof of Theorem 4.2. We first prove that part (a) implies part (b). Observe that, for all
x ∈ R,

lim
z→∞

f (z+ x/z)

f (z)
= eκx. (C.1)

This convergence is strengthened to locally uniform convergence by [3, Proposition 3.10.2].
By Theorem 3.2, having XH,γ,f ∈ MDA(�α) for α > 0 is equivalent to the existence of a
z0 ∈ R, a κ > 0, and a function h : (z0,∞) → R satisfying (3.7) such that both f (z) > 0
and log f (z) = 1

2κz
2 + h(z) hold for all z > z0. Consequently, h(z + x/z) − h(z) → 0 as

z → ∞ locally uniformly in x ∈ R; thus, z−2h(z) → 0 by Corollary C.1(a). In particular,
f−1(z) ∼ (2/κ)1/2(log z)1/2 for z → ∞.

By [3, Theorem 3.10.4], (C.1) implies that

lim
z→∞ f

−1(z)(f−1(zx)− f−1(z)) = κ−1 log x

for all x > 0 or, equivalently, that

lim
z→∞(log z)1/2(f−1(zx)− f−1(z)) → (2κ)−1/2 log x
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for all x > 0. Finally, set h̃(z) = f−1(z)− (2/κ)1/2(log z)1/2 for z > max{1, l}. Then h̃ is a
function satisfying (4.3).

We now prove that part (b) implies part (a). Observe that

lim
z→∞(log z)1/2(f−1(xz)− f−1(z)) = (2κ)−1/2 log x

for all x > 0. Now let x > 0 and x(z) → x for z → ∞. By monotonicity, for all 0 < ε < x,
we have

(2κ)−1/2 log(x − ε) ≤ lim inf
z→∞ (log z)1/2(f−1(xz)− f−1(z))

≤ lim sup
z→∞

(log z)1/2(f−1(xz)− f−1(z))

≤ (2κ)−1/2 log(x + ε).

Consequently,

lim
z→∞(log z)1/2(f−1(xz)− f−1(z)) = (2κ)−1/2 log x

holds locally uniformly in x > 0. This implies that

lim
z→∞(log z)1/2(h̃(xz)− h̃(z)) = 0

uniformly in x > 0. Corollary C.1(b) implies that f−1(z)∼ (2/κ)1/2(log z)1/2; thus, for all
x > 0, we have

lim
z→∞ f

−1(z)(f−1(xz)− f−1(z)) = κ−1 log x. (C.2)

By [3, Theorem 3.10.4], (C.2) implies that limz→∞ f (z + x/z)/f (z) = eκz. If we now set
h(z) = log f (z)− 1

2κz
2 for z ∈ R, with f (z) > 0, then h extends to a function satisfying (3.7).

C.3. Proof of Theorem 4.3

To show the equivalence of parts (a) and (b), set f̃ (z) = 1/(r−f (z)). Then f̃ is an SST with
state space J = ((r− l)−1,∞). By Theorem 3.3, havingXH,γ,f ∈ MDA(�α) for some α > 0
is equivalent to the existence of a z0 > max{1, l}, a κ > 0, and a function h : (z0, r) → R

satisfying (3.6) such that both f̃ (z) > 0 and log f̃ (z) = 1
2κz

2 + h(z) hold for all z > z0. As
in the proof of Theorem 4.2, this holds if and only if there exists a function h̃ satisfying (4.3)
such that

f̃−1(z) = (2/κ)1/2(log z)1/2 + h̃(z).

As f̃−1(1/z) = f−1(r − z), 0 < z < r − l, this is equivalent to part (b), where h̄ = h̃(1/z)
satisfies (4.4).
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