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Examples of Calabi–Yau 3-Folds of
P7 with ρ = 1

Marie-Amélie Bertin

Abstract. We give some examples of Calabi–Yau 3-folds with ρ = 1 and ρ = 2, defined over Q and

constructed as 4-codimensional subvarieties of P7 via commutative algebra methods. We explain how

to deduce their Hodge diamond and top Chern classes from computer based computations over some

finite field Fp . Three of our examples (of degree 17 and 20) are new. The two others (degree 15 and

18) are known, and we recover their well-known invariants with our method. These examples are built

out of Gulliksen–Negård and Kustin–Miller complexes of locally free sheaves.

Finally, we give two new examples of Calabi–Yau 3-folds of P6 of degree 14 and 15 (defined over

Q). We show that they are not deformation equivalent to Tonoli’s examples of the same degree, despite

the fact that they have the same invariants (H3, c2 · H, c3) and ρ = 1.

1 Introduction

A projective Calabi–Yau 3-fold X is a smooth complex projective 3-dimensional va-

riety with trivial canonical sheaf (ωX ≃ OX) such that H1(X,OX) = 0. The current

interest in finding examples of projective Calabi–Yau 3-folds comes from mathemat-

ical physics. Among Calabi–Yau 3-folds, those with Picard number ρ = 1, that is,

for which the Picard lattice is generated by a single element, bear special interest. It

is indeed believed that they should form only finitely many families. In particular,

since Hodge numbers are deformation invariants, there should be a finite number

of possible Hodge invariants for these varieties. It is worth pointing out an inter-

esting approach by N.-H. Lee [7, 8] to settling this conjecture, consisting in building

families of Calabi–Yau 3-folds with ρ = 1 as double covers. A recent up-to-date list

of examples of Calabi–Yau 3-folds with ρ = 1 can be found in van Straten and van

Eckenvordt [14]. Some members of this list were constructed by F. Tonoli [13] as

embedded projective Calabi–Yau 3-folds in P6, using commutative algebra methods.

The original aim of this work was to follow Tonoli’s lead and build projective

Calabi–Yau 3-folds X (defined over Q) in P7 with ρ = 1, using commutative algebra

complexes. With this method we also obtained degenerate examples, i.e., Calabi–Yau

3-folds contained in a hyperplane. Some of these degenerate examples (degree 14

and 15), which can also be realized as Pfaffians in P6, nevertheless turn out to be

interesting, since they give the first examples of nondeformation equivalent Calabi–

Yau 3-folds of Picard number one with the same invariants (H3, c2 · H, c3).

For these constructions in codimension 4, we use two complexes of locally free

sheaves: the Gulliksen–Negård complex and the Kustin–Miller complex. This last

complex had no global version yet, so we first construct a global version of this com-

plex in Section 2.
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Passing from codimension 3 to codimension 4, some new problems arise, such as

the determination of the Hodge invariants of the Calabi–Yau 3-folds X we build; their

Hodge numbers can, indeed, no longer be computed from the Hilbert polynomial of

X. We explain in Section 3 how to deduce these numbers from a single smoothness

check computation over Fp. In the last section we present the examples we have

found by this method and give their invariants and graded Betti table.

From now on, k will always denote a perfect field, e.g., Q , C, or Fp . We will also

denote by O the structure sheaf of the ambient projective space PN
k .

2 The Commutative Algebra Complexes in Use

Let G• be a complex of locally free sheaves over PN
k of length c, such that Gc is locally

free. We will say that G• is quasi self dual if the dual complex satisfies G∨
• ≃ G•⊗G∨

c .

If a quasi self dual complex is exact and resolves a codimension c subscheme Z of

PN , Z is locally Gorenstein and subcanonical with ωZ = G∨
4 ⊗ OZ(−N − 1). Such

complexes are thus very useful for constructing subcanonical varieties X in PN , i.e.,

varieties for which ωX = OX(a) for some integer a ∈ Z. For instance, the Pfaffian

complex is quasi self dual of length 3 and can be used to construct subcanonical

varieties of codimension 3 [10]. Let us recall its construction in case the ambient

space is PN
k .

2.1 Pfaffian Complex over PN

Given a locally free sheaf E of odd rank 2s + 1 ≥ 3 on PN
k , a locally free sheaf of

rank one L, a non zero section Y ∈ H0(PN ,∧2E⊗L) defines a skew symmetric map

E∨ ⊗L∨ Ỹ
−→ E. We set M = det(E)⊗L⊗s. The Pfaffian complex associated with the

data (E,L,Y ) is then the quasi self dual complex

0 −→ (M∨)⊗2 ⊗ L∗ d∨

1−→ E∨ ⊗ L∨ ⊗ M∨ Ỹ
−→ E ⊗ M∨ d1=−∧Y (s)

−−−−−−→ O,

where Y (s) is the s-th divided power of Y

Y (s)
=

1

s!
Y ∧ · · · ∧ Y︸ ︷︷ ︸

s times

The cokernel of d1 defines a Pfaffian subscheme X of PN
k by OX = coker(d1).

Let us recall the following property of Pfaffian subschemes that we shall use later

on.

Theorem 2.1 (Buchbaum–Eisenbud) Let X be a Pfaffian subscheme of PN
k , with

N ≥ 4. Then for each point x ∈ X we have codimx(X) ≤ 3. Moreover, if X is not

empty and has codimension 4 in PN
k , then the associated Pfaffian complex is a resolution

of X. In this case, the subscheme X is thus equidimensional, locally Gorenstein, and

subcanonical with ωX = O(2c1(M) + c1(L) − N − 1). Moreover, if N ≥ 5 and X is

smooth, then X is irreducible.
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The proof follows easily from Buchbaum–Eisenbud results in [1].

To construct Calabi–Yau 3-folds in P7
k , we will need quasi self dual complexes of

locally free sheaves of length 4. Historically, the first known complex of this type is

the Gulliksen–Negård complex [2].

2.2 Gulliksen–Negård Complex over PN

This complex is locally the resolving complex of the locus of submaximal minors of a

square matrix. Let us recall in this section the properties of global Gulliksen–Negård

complex that we shall use later on. Let E and F be two locally free sheaves on PN
k of

the same rank e ≥ 3. Choose φ ∈ Hom(E,F) a morphism of O-modules. Let L

denote the locally free sheaf of rank one ∧eE ⊗ ∧eF∗. Let sφ denote the composition

∧e−1E⊗∧e−1F∗ ≃ ∧e−1E⊗F⊗O(−c1(F))
∧e−1φ
−−−→ ∧e−1F⊗F⊗O(−c1(F))

−∧−
−−−→ O.

The Gulliksen–Negård subscheme X(φ) of PN
k is defined by OX(φ) = coker(sφ). In

case X(φ) has codimension 4, the global Gulliksen–Negård complex F•,

0 → L⊗2 → E ⊗ F∗ ⊗ L → ∧eE ⊗ ∧1,e−1F
∗ ⊕ ∧eF∗ ⊗ ∧1,e−1E

→ ∧e−1
E ⊗ ∧e−1

F
∗ sφ
−→ O,

provides a locally free resolution of X(φ) [6, 12]. The Gulliksen–Negård complex

is quasi self dual and satisfies the following properties, which easily follow from [2,

théorème 4].

Theorem 2.2 (Gulliksen–Negård) Let X(φ) be a Gulliksen–Negård subscheme of

PN
k , with N ≥ 5. Let X(φ) denote the associated Gulliksen–Negård subscheme; for each

point x ∈ X(φ), we have codimx(X(φ)) ≤ 4. Suppose that X(φ) is not empty and has

codimension 4 in PN
k . Then F• is a resolution of X(φ). Thus, the subscheme X(φ) is

equidimensional, locally Gorenstein, and subcanonical with

ωX(φ) = O(−2(c1(E) − c1(F)) − N − 1).

Moreover, if N ≥ 6 and X(φ) is smooth, X(φ) is irreducible.

We will also construct Calabi–Yau 3-folds using the (global) Kustin–Miller com-

plex.

2.3 Kustin-Miller Complex (Local Version)

In order to give a coordinate-free construction of the Kustin–Miller complex, we need

to recall how Kustin and Miller constructed their famous complex [4]. In this section,

R denotes a commutative ring with unity such that 2 is not a zero divisor. Let τ denote

an odd number. Let Y denote a τ × τ alternating matrix (i.e., such that yi, j = −y j,i

for all i, j ∈ {1, . . . , τ}) with coefficients in R. Let us recall the definition and first

https://doi.org/10.4153/CJM-2009-050-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-050-2


Examples of Calabi–Yau 3-Folds of P7 with ρ = 1 1053

properties of the Pfaffian in the local situation. If F is a free module of rank τ , the

choice of a basis {e1, . . . , eτ} for F gives an isomorphism F ≃ Rτ . With any (τ × τ)

alternating matrix Z we can associate in a unique way the following τ-form:

φY =

∑

1≤i< j≤τ

Zi, jei ∧ e j ∈ Hom(R,∧2F).

If τ is even, we set τ = 2s and let Π denote the set of partitions α of {1, . . . , 2s} in

ordered pairs (i1, j1), . . . , (is, js) for which it < jt for all t ∈ {1, . . . , s}. The Pfaffian

of the matrix Z is defined to be

P f (Z) =

{∑
α∈Π

sg(α)Zi1, j1
· · ·Zis, js

if n is even,

0 if n is odd,

where sg(α) denote the sign of the permutation (i1, j1, . . . , is, js) of {1, . . .2s}.

Given any multi-index (i) = (i1, . . . , ir) ∈ {1, . . . , τ}r of length r, the submatrix

of Y obtained by removing from Y the rows and columns of index i1, . . . , ir is again

an alternating matrix; we denote by P f(i)(Y ) the Pfaffian of this matrix. Following

Kustin–Miller’s sign convention, we can assign to (i) its signed Pfaffian Y(i) as follows.

Let us define σ(i) to be 0 if (i) has a repeated index and to be the sign of the permu-

tation rearranging i1, . . . , ir in ascending order otherwise. We set |i| =
∑r

i=1 ik.

Definition 2.3 (Kustin and Miller) The signed Pfaffian Y(i) of Y associated with (i)

is

(2.1) Y(i) :=





(−1)|i|+1σ(i)P f(i)(Y ) if r < τ,

(−1)|i|+1σ(i) if r = τ,

0 if r > τ.

The Pfaffian row of Y is defined to be y := [Y1, . . . ,Yτ ]; the ideal (Y1, . . . ,Yτ ) is the

Pfaffian ideal of Y .

The (local) Pfaffian complex of Y is then

0 // R
y∨

// Rτ
Y

// Rτ
y

// R // 0.

It resolves the Pfaffian ideal of Y exactly when this ideal is 3-codimensional [1].

The data necessary to build the Kustin–Miller complex are the following:

• τ = 2s + 1 ≥ 3, an odd number,
• Y , a τ × τ alternating matrix on R,
• A, a τ × 3 matrix on R,
• b, a 1 × 3 row matrix on R,
• u and v, two non-zero scalars of R.
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Kustin and Miller also set X =
(

A
b

)
. From this data they define six other matrices

w, z,Z, S,B, and T. The scalar w is defined by

w =

∑

1≤i< j≤τ

di jkYi jk,

where di jk is the determinant of the 3 × 3 submatrices of X obtained by selecting the

rows i, j, k in this order. The row matrix z is defined to be z = ub − yA; it is the row

Pfaffian of a 3 × 3 alternating matrix Z. The (3 × τ) matrix S is defined to be the

matrix with entries

sl,k = (−1)l+1
∑

1≤i< j≤τ

Yki j

∣∣∣∣
xi,m xi,n

x j,m x j,n

∣∣∣∣ ,

where m < n and {l,m, n} = {1, 2, 3}. The row matrix b is the row Pfaffian of some

3 × 3 matrix B; the 3 × τ matrix T is then defined by T = −BAt . Kustin and Miller

define the differential maps of their length 4 complex by

d1 =
(
z vy − bS w − uv

)
,

d2 =




Z S vI3 T

0 uIτ A Y

0 y b 0


 ,

d3 =

(
0 Iτ+3

Iτ 0

)
d∨

2 ,

d4 = d∨
1 .

Theorem 2.4 (Kustin and Miller [4]) With the previous notation, the maps di are

the differentials of a self-dual complex of length 4:

G• : 0 // R
d4

// R2(τ+3)
d2

// Rτ+4
d1

// R // 0.

Moreover, this complex is generically exact.

2.4 Global Kustin–Miller Complex on PN
k

We present in this section a global version of a Kustin–Miller complex; we will give

a geometric interpretation of this construction in terms of the Kustin–Miller un-

projection in the next section. The construction given here works over any smooth

projective variety P. For simplicity, we will assume that P = PN
k .

The data required to define a global Kustin–Miller complex are the following:

• an odd number τ = 2s + 1 ≥ 3,
• a rank 3 vector bundle F on PN

k ,
• a vector bundle E of rank τ on PN

k ,
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• two line bundles L1 and L2 on PN
k ,

• a global section Y ∈ H0(PN
k ,∧

2E ⊗ L1),
• a morphism A in Hom(F,E),
• a morphism b in Hom(F,L2),
• a non-zero morphism u in Hom(L2,∧

2s+1E ⊗ L
⊗s
1 ),

• a non-zero morphism v in H0(PN
k ,L2 ⊗ L∨

1 ⊗ ∧3(F∨)),

For convenience we set M = ∧2s+1E ⊗ L
⊗s
1 , so that u ∈ Hom(L2,M). We define the

(global) morphism w by the composition

∧3F
∧3A

// ∧3E
−∧Y (s−1)

// ∧2s+1E ⊗ L
⊗s−1
1 = M ⊗ L∨

1 .

We easily define z to be Kustin–Miller in the local situation by

z = u ◦ b − y ◦ A ∈ Hom(F ⊗ L
⊗−s
1 ,∧2s+1E).

In order to construct the morphism S, we first define the morphism S0 by the com-

position

F∨ ⊗ ∧3F
Sg

// ∧2F
∧2A

// ∧2E
−∧Y (s−1)

// ∧2kE ⊗ L
⊗s−1
1 ,

where Sg is the base change matrix between F∨ ⊗ ∧3F and ∧2F with their usual

bases, i.e.,

Sg =




0 0 1

0 −1 0

1 0 0


 .

The morphism S is then defined by the composition

E ⊗ F∨ ⊗ ∧3F
⊗S0

// E ⊗ ∧2sE ⊗ L
s−1
1

−∧−
// M ⊗ L∨

1 .

Remark 1 Any triple (G,L, y), where G is a rank 3 vector bundle, L is a line bundle

on PN
k , and y is a morphism from G to ∧3G ⊗ L, gives rise to a Pfaffian complex via

the isomorphisms

H0(P
N
k ,∧

2G ⊗ L) ≃ H0(P
N
k ,G

∨ ⊗ ∧3G ⊗ L) ≃ Hom(G,∧3G ⊗ L).

Therefore, we can define the matrix Z (respectively B) to be the skew-symmetric

morphism associated with z (respectively b). We set T = −B ◦ A∨. Let us define the

following vector bundles:

G1 = (F ⊗ M∨) ⊕ (E ⊗ L1 ⊗ L∨
2 ⊗ ∧3F ⊗ M∨) ⊕ (L1 ⊗ ∧3F ⊗ M∨)

G2 = (E∨ ⊗ L∨
2 ⊗ ∧3F ⊗ M∨) ⊕ (F ⊗ L1 ⊗ L∨

2 ⊗ ∧3F ⊗ M∨) ⊕

(E ⊗ L1 ⊗ ∧3F ⊗ (M∨)⊗2) ⊕ (F∨ ⊗ ∧3F ⊗ (M∨)⊗2)
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Notice that we have G∨
2 ⊗ (L1 ⊗ L2 ⊗ (M)⊗3 ⊗ (∧3F)⊗2) ≃ G2; since we wish

our complex to be quasi self dual, this forces us to take

G4 = L1 ⊗ L2 ⊗ (M)⊗3 ⊗ (∧3F)⊗2 and G3 = G
∨
1 ⊗ G4.

Let us now define the differentials of our complex of vector bundles:

d1 =
(
z −b ◦ S + v ◦ y w − v ◦ u

)
∈ Hom(G1,OPN

k
),

d2 =




T v S Z

Y A y 0

0 b y 0


 ∈ Hom(G2,G1),

d4 = d∨
1 ⊗ G4,

d3 = d∨
2 ⊗ G4.

Theorem 2.5 With the previous notation, the morphisms di define a complex of vector

bundles

G• : 0 // G4
d4

// G3
d3

// G2
d2

// G1
d1

// OPN
k

// 0

that is quasi self dual and whose restriction to any trivializing affine open set U of the

data is a complex isomorphic to the one constructed by Kustin and Miller. Let X denote

the Kustin–Miller subscheme of PN
k defined by OX = coker(d1). Then for each x ∈ X,

we have codimx(X) ≤ 4. If this subscheme X is non-empty and 4-codimensional, then

G• resolves OX and X is equidimensional, locally Gorenstein, and subcanonical, with

ωX ≃ (ωPN
k
⊗ M⊗3 ⊗ (∧3(F∨))⊗2 ⊗ L2 ⊗ L∨

1 )|X,

Moreover, if N ≥ 6 and X is smooth, then the scheme X is irreducible.

Proof To show that the differential maps and modules we have just introduced de-

fine a complex whose restriction to any trivializing open set is isomorphic to the

Kustin–Miller complex, it is enough to show that in the local setting they give a co-

ordinate free description of the Kustin–Miller complex. So we can assume that we

are working with free R-modules, so that we can replace E by R2s+1, F by R3, and the

line bundles L1 and L2 by R. Let us denote by {e1, . . . , eτ} the canonical basis of

E := R2s+1 and by { f1, f2, f3} the canonical basis of F := R3. We can now replace the

homomorphisms Y,A, b by their matrices (u and v become scalars). We only have to

check that our coordinate free constructions of S and w match the Kustin and Miller

ones. Let us first work on the construction of S. The morphism ∧2A can be described

as

fm ∧ fn 7→
∑

i< j

∣∣∣∣
ai,m ai,n

a j,m a j,n

∣∣∣∣ ei ∧ e j .
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Let us denote by { f ∗1 , f ∗2 , f ∗3 } the dual basis of { f1, f2, f3}; the matrix Sg maps F∨ to

∧2F via f ∗l 7→ (−1)(l+1) fm ∧ fn with m < n and {l,m, n} = {1, 2, 3}. Thus, in order

to show that our coordinate free construction of S coincides with

( f ∗l ; ek) 7→ (−1)l+1
∑

1≤i< j≤τ

Yki j

∣∣∣∣
ai,m ai,n

a j,m a j,n

∣∣∣∣ ,

we only have to check that the morphism idE ∧Y (s−1) : ∧2 E ⊗ E → ∧2s+1E ≃ R

coincides with

(2.2) (ei ∧ e j ; ek) 7→ Yki je1 ∧ · · · ∧ e2s+1.

Indeed, by skew-symmetry of A we have

∣∣∣∣
ai,m ai,l

a j,m a j,n

∣∣∣∣ =

∣∣∣∣
am,i am, j

an,i an, j

∣∣∣∣ .

In order to prove (2.2), let us first remark that the morphism −∧Y (s−1) : R → ∧2s−2E

corresponds to

1 7→
1

(s − 1)!

( ∑

i1< j1

Yi1, j1
ei1

∧ e j1

)
∧ · · · ∧

( ∑

is−1< js−1

Yis−1, js−1
eis−1

∧ e js−1

)
.

This can be rewritten as

1 7→
∑

t 6=i

∑

α∈Πi, j,t

Yαeα,

where Πi, j,t is the set of partitions of {1, . . . , 2s + 1} \ {i, j, t} by pairs

(i1, j1), . . . , (is−1, js−1)

for which ir < jr for all r ∈ {1, . . . s−1}, Yα stands for the product Yi1, j1
· · ·Yis−1 , js−1

,

and eα for the wedge product ei1
∧ e j1

∧ · · · ∧ eis−1
∧ e js−1

. Remark now that

∑

α∈Πi, j,t

Yαeα =

∑

α∈Πi, j,t

sg(α)Yαωi, j,t = P fi, j,t(Y )ωi, j,t ,

where ωi, j,t is the wedge product of the er for r 6= i, j, t written in increasing order

of indices. Relation (2.2) can then be deduced from the following observation (using

the Kustin–Miller sign convention (2.1)): if t > j > i, we have

P fi, j,t(Y )et ∧ ei ∧ e j = (−1)|(i, j,t)|+1Yti jσ(t, i, j)et ∧ ei ∧ e j ∧ ωt,i, j

= Yti j e1 ∧ · · · ∧ e2s+1.
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Similarly, we can show that our coordinate free construction of w coincides with the

Kustin–Miller one. This shows the first part of the theorem.

Let us assume that our global complex resolves a subscheme X of PN
k , so that OX =

coker(d1). Then localizing at any point x ∈ X, we have codimx(X) ≥ 4. Applying

[4, Corollary 2.6], we deduce that codimx(X) = 4 and that G•,x is a resolution of

OX,x. The subscheme X is thus equidimensional of codimension 4 in PN
k . Since G•

resolves X, we deduce that X is locally Gorenstein. Since G• is quasi self dual, X is

subcanonical with ωX ≃ (ωPN
k
⊗ M⊗3 ⊗ (∧3(F∨))⊗2 ⊗ L2 ⊗ L∨

1 )|X.

Remark 2 (Shifts of the data) Let N be a line bundle on PN
k . If we replace E by

E′
= E⊗N, L1 by L′

1 = L1 ⊗ (N∨)⊗2, F by F ′
= F ⊗N, and L2 by L′

2 = L2 ⊗N,

keeping the data morphisms Y,A, b, u, v, these new data define the same Kustin–

Miller complex.

Remark 3 (Global Kustin–Miller complex and unprojection) Assume that the

two Pfaffian subschemes of PN , X0 and X1, associated with (F,M ⊗ det(F∨),Z)

and (E,∧2E⊗L1,Y ) respectively, are 3-codimensional. Assume also that the section

X1 ∩ (u) is of codimension 4. Localizing the data at some fixed point z ∈ PN , we can

use Kustin and Miller’s observation in [5, Example 2.2]. The localized complex G•,z

resolves the section by (vz) of the unprojection of spec(OX1,z)∩(uz) in spec(OX0,z) (see

[11] for further details on Kustin–Miller unprojection). The global Kustin–Miller

scheme X is 4-codimensional, provided that v is generic in Hom(PN ,L2 ⊗ L∨
1 ⊗

∧3(F∨)) 6= 0. Notice that in this case ωX = ωX1
(deg(u) + 2 deg(v)). Let us also

point out that the existence of a global version of the Kustin–Miller complex shows

that in this very special case, there is a global version of unprojection with complexes,

even though, in general, such a process cannot be carried out globally because of the

non-vanishing of certain Ext1(∗, ∗) groups.

In order to build Calabi–Yau 3-folds of Kustin–Miller type in P7, we will therefore

look for vector bundles E and L1, such that the Pfaffian complex associated with

(E,∧2E ⊗ L1,Y ) is exact for Y generic and such that ωX1
= OX1

(a), with a ∈ Z such

that a = 2 deg(M) − 8 + deg(L1) ≤ −2. Indeed,

w − u ◦ v ∈ Hom(O(− deg(u) − deg(v)),O)

is one of the defining equations of X, so that we need deg(u) + deg(v) ≥ 2, unless X

is contained in a hyperplane.

3 Smoothness Check and Computation of Invariants

3.1 Smoothness Check

The Jacobian criterion cannot be used in practice and the Gröbner basis computation

exceeds the CPU capacity of most computers. The top Chern class c3 of a Calabi–Yau

3-fold in P7 is not a function of the coefficients of its Hilbert polynomial, unlike

Calabi–Yau 3-folds in P6. Therefore, we cannot adapt Tonoli’s smoothness criterion

[13] to our situation. This type of extremely efficient smoothness test originates
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in the famous article [3] on computer-based construction of surfaces in projective

space. We use instead the following coarse smoothness test, which is, nonetheless,

faster than the Jacobian criterion and has the advantage of giving for free the top

Chern class of the Calabi–Yau in case the test is positive.

Let I = (g1, . . . , gs) denote a generating ideal for Xk in P7
k ; let S = k[x0, . . . , x7]

denote the polynomial ring of P7
k . If h1, h2, h3 are polynomials of I, let I4(h1, h2, h3)

denote the ideal generated by the 4 × 4 minors of the matrices



∂h1

∂x0

∂h2

∂x0

∂h3

∂x0

∂h
∂x0

∂h1

∂x1

∂h2

∂x1

∂h3

∂x1

∂h
∂x1

...
...

...
...

∂h1

∂x7

∂h2

∂x7

∂h3

∂x7

∂h
∂x7



,

where h varies in {g1, . . . , gs}. We denote by Jac3(h1, h2, h3) the ideal of 3 × 3 mi-

nors of the Jacobian matrix of ideal (h1, h2, h3). We can now state our very coarse

smoothness criterion.

Theorem 3.1 (Coarse smoothness test) Let Xk be a 3-dimensional subscheme of P7
k

where (k is a perfect field). Let I denote a defining ideal of Xk in PN
k . Suppose that

there exist two triples of polynomials of the same degree e in the ideal I, ( f1, f2, f3) and

(g1, g2, g3), such that

(i) the vanishing loci V (I4( f1, f2, f3) + I) and V (Jac3( f1, f2, f3) + I) are both one

dimensional and have the same Hilbert polynomial;

(ii) the vanishing loci V (I4(g1, g2, g3) + I) and V (Jac3(g1, g2, g3) + I) are both one

dimensional and have the same Hilbert polynomial.

(a) If dim(V ( Jac3( f1, f2, f3)+ Jac3(g1, g2, g3)+I) = 0 and Xk is equidimensional,

then Xk has only isolated hypersurface singularities.

(b) If V ( Jac3( f1, f2, f3) + Jac3(g1, g2, g3) + I) = ∅, then Xk is smooth.

The proof of this theorem is obvious; it is only worthwhile to state, because it

dramatically improves in practice the efficiency of the Jacobian criterion.

3.2 Determination of c3

If the coarse smoothness test is positive for the reduction modulo p of a Calabi–Yau

3-fold X defined over Z, we can deduce the value of the top Chern class c3 of XC from

the results of the computations made over Fp, thanks to the following formula.

Theorem 3.2 (Computation of c3) Let X be a subscheme of P7 of Kustin–Miller or

Gulliksen–Negård type over Z, such that XFp
is a Calabi–Yau 3-fold, for some prime

number p. Let I be a defining ideal of XFp
in P7

Fp
. Suppose, moreover, that for a triple

of polynomials of I of same degree e we have dim(V (Jac3( f1, f2, f3) + I)) = 1. Let pa

denote the arithmetical genus of C = V (Jac3( f1, f2, f3) + I). Then the third Chern class

of XC is given by

c3

2
= d(−14e3 + 84e2 − 180e + 140) + 3ec2 · H − 8c2 · H + 1 − pa,
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where PHXFp
:= d

3!
x3 − c2·H

12
x is the Hilbert polynomial of XFp

(or XC).

Proof For i = 1, 2, 3, the polynomial fi induces a section σi of N∨
XFp

. Since XFp
is

smooth by assumption, the curve C coincides with the degeneracy locus D3 of the

section σ1 ∧ σ2 ∧ σ3.

Let us first notice that, using Hirzebruch–Riemann–Roch, for any integer h, we

find the following.

Lemma 3.3 Let h be an integer. Then

χ(N∨
XC

(h)) =
c3

2
+ d

( 2h3

3
− 4h2 + 4h −

4

3

)
+

2H · c2

3
(2h − 1),

where N∨
XC

is the conormal bundle of XC, c2 and c3 are the second and third Chern classes

of XC, and H denotes the class of a hyperplane section of XC.

Proof From the exact sequence 0 → N∨
XC

→ Ω
1
P7

C
|XC

→ Ω
1
XC

→ 0 we deduce the

following expressions:

c1(N∨
XC

) = c1(Ω1
P7

C
|XC

) = −8H,

c2(N∨
XC

) = c2(Ω1
P7

C
|XC

) − c2 = 28H2 − c2,

c3(N∨
XC

) = c3(Ω1
P7

C
|XC

) + c3 − c1(N∨
XC

) · c2 = c3 − 56d + 8H · c2.

From these relations, we deduce

c1(N∨
XC

⊗ O(h)) = (−8 + 4h)H,

c2(N∨
XC

⊗ O(h)) = (28 + 6h2 − 24h)H2 − c2,

c3(N∨
XC

⊗ O(h)) = d(4h3 − 24h2 + 56h − 56) + c2 · H(8 − 2h) + c3.

These last relations allow us to compute an expansion of the Chern character

Ch(N∨
XC

⊗ O(h)) up to terms of order ≥ 3:

4−(8−4h)H+(4H2−8hH2 +c2 +2h2H2)+d
( 2h3

3
−4h2 +4h−

4

3

)
+

c3

2
+hc2 ·H+· · · .

Thus, using Td(X) = 1 + c2

12
, Hirzebruch–Riemann–Roch gives

χ(N∨
XC

⊗ O(h)) =
c3

2
+ d

( 2h3

3
− 4h2 + 4h −

4

3

)
+

2c2 · H

3
(2h − 1).

For h = −3e+8, we may now find a second expression ofχ(N∨
XC
⊗O(h)), in terms

of the Hilbert polynomials of XFp
and C = V (Jac3( f1, f2, f3) + I).

Lemma 3.4 Under the assumption of the theorem, we have, for any integer h,

χ(N∨
XFp

⊗ O(h)) = χ
(
N

∨
XQ

⊗ O(h)
)

= χ(N∨
XC

⊗ O(h)).
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Proof Let us first show

χ(N∨
XFp

⊗ O(h)) = χ(N∨
XQ

⊗ O(h)).

As we have already seen, there exist an open affine subset U of spec(Z), and a

U -scheme X
φ
−→ U , such that for all p ∈ U , the fiber Xp is a smooth Calabi–Yau

3-fold of Gulliksen–Negård or Kustin–Miller type (X0 = XQ and Xp = XFp
). The

coherent sheaf N∨
U := ĨU/I2

U is flat over U , since N∨
U is locally a locally free sheaf of

rank 4. The function p → χ(N∨
Xp

) is thus (locally) constant on U (see for instance

[9, §5]). Therefore, χ(N∨
XQ

) = χ(N∨
XFp

). The remaining equality follows easily by

field extension.

Similarly, the Hilbert polynomial of XFp
coincides with the Hilbert polynomial of

XQ , hence also with the Hilbert polynomial of XC. Since XFp
is smooth,

V (Jac3( f1, f2, f3) + IXFp
)

coincides with the dependency locus on XFp
of the sections σ1, σ2 and σ3 of N∨

XFp
,

that is to say, the maximal degeneracy locus D3(φ; XFp
) := {x ∈ XFp

| rgx(φ) ≤ 2} of

the morphism

O
⊕3
X (−e)

φ=( σ1 σ2 σ3 )
−−−−−−−−→ N∨

XQ
.

Such a degeneracy locus is resolved by the Eagon–Northcott complex in case C =

D3(φ; XFp
) has expected codimension 2 in XFp

(XFp
is regular at every point, since Fp

is a perfect field and XFp
is smooth):

0 −→ O
⊕3
X (−4e) ⊗ ∧4NXFp

φ
−→ N∨

XFp
⊗ ∧4NXFp

⊗ OX(−3e) −→ OX −→ OC −→ 0.

We remark that

∧4(N∨
XFp

) ≃ (∧3
Ω

1
XFp

)−1 ⊗ ∧7(Ω1
P7) ≃ OXFp

⊗ O
7
PFp

(−8).

Thus, since χ(OX) = 0, from the previous exact sequence we get

χ(N∨
XFp

⊗ OX(−3e + 8)) = 3PHXFp
(−4e + 8) + 1 − pa.

Using the other expression forχ(N∨
XFp

⊗OX(−3e+8)), obtained using the previous

lemmas, we find the expression of c3/2 announced in the theorem.

3.3 Determination of ρ and of the Hodge Diamond

3.3.1 Invariants of Calabi–Yau 3-folds

Let us recall that the Hodge numbers hi, j of a complex projective variety X are de-

fined by hi, j := hi(X,∧ j
ΩX)) and satisfy Hodge duality: hi, j

= h j,i . So, the Hodge
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diamond of a Calabi–Yau 3-fold X has the following shape:

1

0 0

0 h1,1 0

1 h1,2 h1,2 1

0 h1,1 0

0 0

1

A Calabi–Yau 3-fold thus has only two Hodge invariants: h1,1 and h1,2. Using Hirze-

bruch–Riemann–Roch, we find that

χ(ΩX) = −
c3

2
= h1,2 − h1,1.

By Serre duality, we have h1,2
= h1(θX), where θX = (ΩX)∗ = ∧2

ΩX is the tan-

gent bundle of X; the number h1,2 is thus the dimension of the space of first order

infinitesimal complex deformations of X. Using the long exact sequence of coho-

mology associated with the exponential sequence 0 → Z → OX → O∗
X → 0 and

the vanishing h1(X,OX) = h2(X,OX) = 0, we get an abelian group isomorphism

between Pic(X) = H1(X,O∗
X) and H2(X,Z). Since the rank of H2(X,Z) is b2, the

second Betti number of X, we get b2 = h1,1
= rank(Pic(X)) =: ρ. Thus the second

Hodge invariant of a Calabi–Yau 3-fold is nothing but the Picard number ρ of X.

Therefore, if X is projective, we have h1,1
= ρ ≥ 1, since the Picard lattice contains

the rank 1 sublattice generated by H the class of a hyperplane. Finally, the invari-

ants of a Calabi–Yau 3-fold of degree d in P7 satisfy the following further properties.

Using Hirzebruch–Riemann–Roch, we find the following expression for the Hilbert

polynomial of X

PHX(t) =
d

3!
t3 +

c2 · H

12
t.

Moreover, if X is linearly normal, we have c2 · H = 96 − 2d. Let us also recall how to

relate ρ = h1,1 and h1,2 to the cohomology of the normal bundle NX .

Proposition 3.5 Let X be a Calabi–Yau 3-fold of degree d in P7. We have

h1,1
= h2(X, θX) = h1(X,NX) − h2(X,NX) + 1,

h1,2
= h0(X,NX) − 8h0(X,OX(1)) + 1.

Proof By Kodaira vanishing, we have hi(X,OX(1)) = 0 for i > 0. Applying this

vanishing to the long exact sequence of cohomology of the short exact sequence

0 −→ OX −→ O
⊕8
X (1) −→ θX|P7 −→ 0,

we get hi(X, θX|P7 ) = 0 for i ≥ 3 or i = 1 and h2(X, θX|P7 ) = h3(X,OX) = 1. We

also get h0(X, θX|P7) = 8h0(X,OX(1)) − 1. By Serre duality, we get h1,1
= h2(X, θX).

Applying Hom(−,OX) to the following exact sequence

0 −→ N
∗
X −→ ΩP7 ⊗ OX −→ ΩX −→ 0,
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we get

0 −→ H0(X, θX|P7 ) −→ H0(X,NX) −→ H1(X, θX) −→ H1(X, θX|P7) −→ · · · .

The formula follows from the previously established vanishing results.

Thus, if we know the value of c3, to get the two Hodge invariants, it is enough to

know h1,1
= ρ or h0(NX) to get the third invariant. We give in the next section an

algebraic criterion that guarantees ρ = 1.

3.3.2 Determination of ρ

One can compute ρ directly by computer; but on many examples the computation

exceeds the machine capacity. We explain here how to show that ρ = 1 on several

examples by computing h0(X,NX); it is often a much faster computation provided

that we can use the following observation.

Theorem 3.6 Let k be a perfect field. Let Xk be a smooth 3-dimensional variety in Pr
k.

Let I be the saturated ideal of Xk in Pr
k. We denote by S the polynomial ring k[x0, . . . , xr]

and by R the quotient ring S/I. Let P
φ
−→ L be a presentation matrix of I ⊗S R as

R-module. We set N = HomR(I ⊗ R,R), so that Ñ = NX . Assume the following:

(i) The projective dimension of R as S-module is at most r.

(ii) dimk(P∗
0 ) = h0(X, P̃∗) and dimk(L∗

0 ) = h0(X, L̃∗) − ǫ where ǫ ≥ 0.

(iii) If ǫ ≥ 1, assume, moreover, that

dimk(N0) − 8h0(X,OX(1)) + 1 +
c3

2
≤ 1 − ǫ.

Then we have h0(X,NX) = dimk(N0) + ǫ.

Proof By assumption, since N is a locally free R-module, N is the kernel of the trans-

pose of φ, so that we have the following sequences of k-vector spaces:

0 −→ H0(X,NX) −→ H0(X, L̃∗)
ψ
−→ H0(X, P̃∗),

0 −→ N0 −→ L∗
0

φ∗

−→ P∗
0.

By assumption on the projective dimension of R as S-module, we have

Extr+1
S (L, S(−r − 1)) = 0,

so the exact sequence of comparison with local duality simplifies to

0 −→ L∗
0 −→ H0(X, L̃∗) −→ Extr

S(L, S(−r − 1)) −→ 0.

In particular, the k-vector space L∗
0 is a sub-vector space of H0(X, L̃∗). Similarly, P∗

0

is a sub-vector space of H0(X, P̃∗). By assumption, we get H0(X, P̃∗) = P∗
0 . If ǫ = 0,

then clearly h0(X,NX) = dimk(N0). If ǫ ≥ 1, then ψ is of the form (φ∗ | c1 · · · cǫ) for

some column matrices c1, . . . , cǫ. Thus, by the dimension formula dimk ker(ψ) ≤
dimk ker(φ∗)+ǫ. Assume that ker(ψ) = ker(φ∗)⊕kλ, for λ ≤ ǫ−1; using assumption

(iii) we would get ρ ≤ 0. This gives a contradiction, so that the theorem holds.
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4 Examples Found Using Macaulay2

4.1 Examples of Calabi–Yau 3-Folds in P7

We have gathered here the examples of Calabi–Yau 3-folds of P7 that we have found

and the invariants computed over Fp by the method explained in Section 2. For all of

these examples ρ = 1. In this table, KM means of Kustin–Miller type and GN means

of Gulliken-Negård type.

H3 c3 c2 · H h0(X,H) type ρ comments

15 −150 66 8 KM 1 (G(2, 5) ∩ P7) ∩ (3)

17 −112 62 8 GN 2†? seems to be new

17 −108 62 8 KM 1 seems to be new

18 −162 72 9 KM 2† projection of σ(P2 × P2) ∩ (3)

20 −64 56 8 GN 2† seems to be new

†Our computation shows that h1(X,ΩX) = 2 over the finite field used for the construction. By
semi-continuity, we can only deduce that 1 ≤ ρ ≤ 2. G. Kapustka has informed us that he can show
that for our examples of degree 18 and 20 the correct Picard number is 2.

4.1.1 Degree 15 of Kustin–Miller Type

Let us choose E = O7, F = O3, L1 = O(1), and L2 = O. Then, choosing ran-

dom morphisms A,Y, u, v, we get a 4-codimensional subscheme of P7
F101

. Those mor-

phisms are clearly reduction modulo p of morphisms A,Y, u, v defined over Z. The

theory explained in Section 3 applies, and we show that the Kustin–Miller subscheme

XF101
is a smooth Calabi–Yau 3-fold, reduction modulo p of a smooth Calabi–Yau

3-fold defined over Q (hence over C). The minimal graded free resolution of this

Calabi–Yau XF101
has the following Betti table

0 1 − − − −
1 − 5 5 − −
2 − 1 − 1 −
3 − − 5 5 −
4 − − − − 1

The complex Calabi–Yau 3-fold thus obtained has the following Hilbert polyno-

mial

PHX(t) =
5

2
t3 +

11

2
t,

thus c2 ·H = 66 as expected. Using duality, the numbers h1(X,NX) (resp. h2(X,NX))

can be easily computed with Macaulay2 using the command

hilbertFunction({0},Ext^5(I/I^2,S^{-8}))

Both vanish, so that ρ = 1. The coarse smoothness test (Theorems 3.1 and 3.2) over

F101 gives c3 = −150, thanks to a Macaulay2 computation.

Remark 4 The simplest idea for constructing a Calabi–Yau 3-fold is to use the

adjunction formula. So, for instance, we can build a Calabi–Yau 3-fold by taking a
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generic enough degree 3 section of a Fano 4-fold Y in P7 such that KY = −3HY .

Recall the section Y by two generic hyperplane sections of the Plücker embedding in

P9 of the Grassmanian of lines in P4, G(1, 4). Taking a generic enough hypersurface

section of degree 3 of Y , we thus get a Calabi–Yau 3-fold X of degree 15 in P7 with

the same invariants ρ = 1, c2 · H = 66 c3 = −150. (see [14]). This construction

leads to a Calabi–Yau 3-fold with the same syzygies as our example of degree 15.

4.1.2 Degree 17 of Gulliksen–Negård Type

Let us choose E = O3 and F = O2 ⊕ O(2). Then, taking a random morphism φ in

Hom(E,F) over F101, we find a morphism reduction modulo p of some morphism

φ in Hom(E,F) defined over Z. The theory explained in Section 2 thus applies and

we show that the Gulliksen–Negård subscheme XF101
is a smooth Calabi–Yau 3-fold,

reduction modulo p of a smooth Calabi–Yau 3-fold defined over Q (hence over C).

The minimal graded free resolution of this Calabi–Yau XF101
has the following Betti

table:

0 1 − − − −
1 − 3 2 − −
2 − 6 12 6 −
3 − − 2 3 −
4 − − − − 1

The complex Calabi–Yau 3-fold thus obtained has the Hilbert polynomial

PHX(t) =
17

6
t3 +

31

2
t,

thus c2 ·H = 62 as expected. Using duality, the numbers h1(X,NX) (resp. h2(X,NX))

can be easily computed with Macaulay2 using the command

hilbertFunction({0},Ext^5(I/I^2,S^{-8}))

We find that h1(X,NX) = 1 and h2(X,NX) = 0 over F101, so that h1(X,ΩXF101
) = 2.

Thus, by semicontinuity we can only deduce that ρ ≤ 2 over the complex field. Georg

Kaputska has informed us he can prove that ρ = 2.

The coarse smoothness test (Theorems 3.1 and 3.2) over F101 gives c3 = −112,

thanks to a Macaulay2 computation.

4.1.3 Degree 17 of Kustin–Miller Type

Let us choose E = O5, F = O(−1)⊕O2, L1 = O(1), and L2 = O(1). Then, choosing

random morphisms A,Y, u, v, we get a 4-codimensional subscheme of P7
F101

. Those

morphisms are clearly reduction modulo p of morphisms A,Y, u, v defined over Z.

The theory explained in Section 2 applies, and we show that the Kustin–Miller sub-

scheme XF101
is a smooth Calabi–Yau 3-fold, reduction modulo p of a smooth Calabi–

Yau 3-fold defined over Q (hence over C). The minimal graded free resolution of this
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Calabi–Yau XF101
has the following Betti table:

0 1 − − − −
1 − 3 − − −
2 − 4 12 4 −
3 − − − 3 −
4 − − − − 1

The complex Calabi–Yau 3-fold thus obtained has the Hilbert polynomial

PHX(t) =
17

6
t3 +

31

2
t,

thus c2 ·H = 62 as expected. Using duality, the numbers h1(X,NX) (resp. h2(X,NX))

can be easily computed with Macaulay2 using the command

hilbertFunction({0},Ext^5(I/I^2,S^{-8}))

We find that both numbers vanish over F101, so that ρ = 1. The coarse smooth-

ness test (Theorems 3.1 and 3.2) over F101 gives c3 = −108, thanks to Macaulay2

computation.

4.1.4 Degree 18 of Kustin–Miller Type

Let us choose E = ΩP7 (1), F = O(−1)3, L1 = O(1), and L2 = O(−1). Then,

choosing random morphisms A,Y, u, v, we get a 4-codimensional subscheme of P7
F107

.

Those morphisms are clearly reduction modulo p of morphisms A,Y, u, v defined

over Z. The theory explained in Section 2 applies, and we show that the Kustin–Miller

subscheme XF107
is a smooth Calabi–Yau 3-fold, reduction modulo p of a smooth

Calabi–Yau 3-fold defined over Q (hence over C). The minimal graded free resolu-

tion of this Calabi–Yau XF107
has the following Betti table:

0 1 − − − − − − −
1 − − − − − − − −
2 − 21 55 71 56 28 8 1

3 − 1 8 8 8 1 − −
4 − − − − 1 − − −

The complex Calabi–Yau 3-fold obtained this way has the Hilbert polynomial

PHX(t) = 3t3 + 6t , thus c2 ·H = 72. Therefore, X is not linearly normal; it is the pro-

jection of some Calabi–Yau 3-fold of P8. The coarse smoothness test (Theorems 3.1

and 3.2) over F107 gives c3 = −162, thanks to a Macaulay2 computation.

Remark 5 Consider the Segre embedding σ of P2×P2 into P8. Its image σ(P2×P2)

is a well-known Fano 4-fold of degree 9 such that KY = −3HY . Taking a section of

this by a generic enough degree 3 hypersurface in P8, we get a Calabi–Yau 3-fold of

degree 18 such that ρ = 1, c2 · H = 72, and c3 = −162. A generic projection to P7

of such a Calabi–Yau 3-fold has the same syzygies as our example of degree 18. The

fastest way to estimate ρ with Macaulay2 is to directly compute ρ for the 3-fold Y in

P8 via the command
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HH^1(cotangentSheaf(Y))

We find that h1(X,ΩXF101
) = 2, so again we can only deduce that ρ ≤ 2.

4.1.5 Degree 20 of Gulliksen–Negård Type

Let us choose E = O4 and F = O(1)4. Then, taking a random morphism φ in

Hom(E,F) over F101, we find a morphism reduction modulo p of some morphism

φ in Hom(E,F) defined over Z. The theory explained in Section 2 thus applies, and

we show that the Gulliksen–Negård subscheme XF101
is a smooth Calabi–Yau 3-fold,

reduction modulo p of a smooth Calabi–Yau 3-fold defined over Q (hence over C).

The minimal graded free resolution of this Calabi–Yau XF101
has the following Betti

table:
0 1 − − − −
1 − − − − −
2 − 16 30 16 −
3 − − − − −
4 − − − − 1

The complex Calabi–Yau 3-fold thus obtained has the Hilbert polynomial

PHX(t) =
10

3
t3 +

16

3
t,

thus c2 · H = 56 as expected. Using the locally free resolution found over F101, the

required vanishing in Theorem 3.6 is easy to establish. Thus, we find ρ = 1. The

coarse smoothness test (Theorems 3.1 and 3.2) over F101 gives c3 = −64, thanks to a

Macaulay2 computation.

Remark 6 Thus, we have h1,2
= 33; it is the dimension of the first order complex

infinitesimal deformation of X. It is worth pointing out that this number is not the

number of first order infinitesimal deformations of XF101
over F101. This last number

is 34, as shown by an easy Macaulay2 calculation.

4.2 Examples of Non Deformation Equivalent Calabi–Yau 3-Folds Sharing the
Same Invariants

Our search for good vector bundles E of (odd) low rank defined over Z, such that

the Pfaffian subscheme X1 associated with the data (E,∧2E(1),Y ) had expected codi-

mension 3, gave us two vector bundles for which deg(u)+deg(v) = 1 (see Remark 3).

Thus, constructing a Kustin–Miller subscheme out of any of these bundles gives a

3-dimensional subvariety X contained in some hyperplane. It is thus presumably a

Calabi–Yau 3-fold of P6, hence a Pfaffian subscheme of P6. The two such examples

of Calabi–Yau 3-folds of P6 are new examples of degree 14 and 15. Both examples are

not arithmetically Cohen–Macaulay and linearly normal. Since c3 only depends on d

for linearly normal Calabi–Yau 3-folds of P6, these examples have the same invariants

as the examples of degree 14 and 15 that were already known (cf. [13]), provided that

we can show that ρ = 1. Notice that h1,2
= h0(X,NX) − 48 for every linearly normal
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Calabi–Yau 3-fold of P6. It is thus enough to show that both examples of degree 14

(respectively 15) NX have the same number of global sections. We use the method ex-

plained in Theorem 3.6. We shall show here that our new examples in degree 14 and

15 do have Picard number one and are not deformation equivalent to the previously

known examples.

4.2.1 Syzygies and Deformations of Calabi–Yau 3-Folds in P6

Let us recall the meaning of deformation equivalence.

Definition 4.1 Two smooth algebraic varieties over C are said to be deformation

equivalent if there exists a smooth morphism X
φ
−→ T, of smooth complex algebraic

varieties X with T connected such that the following condition holds: there exist

s, t ∈ T such that the fiber Xs coincides with X0 and the fiber Xt coincides with X1.

In case of deformation equivalent embedded projective Calabi–Yau 3-folds, we

can even assume that φ is an embedded deformation.

Proposition 4.2 Let X0 and X1 be two deformation equivalent Calabi–Yau 3-folds of

P6. Any deformation φ giving the equivalence is induced by an embedded deformation

in P6. That is to say, we have the following diagram

X

φ
��

33
33

33
⊂ T

π1

����
��
��
�

× P6

π2

��

T P6

Proof We have the global Zariski–Jacobi sequence that relates deformations and em-

bedded deformations

0 −→ T
0
X −→ T

0
P6 (OX) −→ T

1
X|P6 −→ T

1
X −→ T

1
P6 (OX) −→ T

2
X|P6 · · · ,

where T1
X|P6 is the space of embedded deformations of X in P6 and T1

X the space of

complex deformations of X. We have T1
P6 (OX) = H1(X, θX|P6 ), thus using the fact

that X is a Calabi–Yau and the long exact sequence of cohomology associated with

0 −→ OX −→ O7
X(1) −→ θX|P7 −→ 0,

we get h1(X, θX|P7 ) = 0. Therefore, T1
P6 (OX) = 0 for i = 1 . This shows that

T1
X|P6 ։ T1

X is surjective.Therefore, any deformation of X is induced by an embedded

deformation of X in P6.

Thus, if two Calabi–Yau 3-folds X1 and X2 are deformation equivalent by φ, their

Betti tables cannot be arbitrary. Let us denote by IX the ideal sheaf of X in T × P6.

Take some graded free presentation of IX ,

S2 =

s2⊕
j=0

O
β2, j

T×P6 (− j − 2)
R

−→ S1 =

s1⊕
j=0

O
β1, j

T×P6 (− j − 1)
F

−→ IX −→ 0.
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Due to the flatness assumption, we have the following very elementary property used

in the examples below.

Proposition 4.3 Let s = min{ j | β1, j 6= 0}. For all t ∈ T, we have h0(P6, IXt
(s)) 6=

0 and h0(P6, IXt
( j)) = 0 for all j < s. That is to say, the minimal degree of generators

of the saturated ideal defining Xt does not depend on t and is exactly s + 1.

Proof Since by flatness assumption, the graded free presentation of IX specializes to

a presentation of IXt
, we have h0(P6, IXt

( j)) = 0 for all j < s. To show the remaining

assertion we only must show that h0((P6, IXt
(s)) 6= 0 for all t ∈ T. Since IXt

(s) =

(IX)t for all t ∈ T, the function t 7→ h0((P6, IXt
(s)) 6= 0 is upper semicontinuous

on T. It is thus enough to show that h0((P6, IXt
(1)) 6= 0 for t generic in T. We

can assume for simplicity that T is an affine variety over C, T = spec(R). Then,

by assumption β1,s 6= 0, there exists a non-zero polynomial F of degree s + 1 in

IX ⊂ R[x0, . . . , x6]. We have F =
∑

fImI , where fI is some polynomial in R and

(mI) is a basis of (C[x0, . . . , x6])s. Assume that h0((P6, IXt
(s)) = 0 for t generic in T.

For t generic in T, we then have fi(t) = 0 for all i = 0, . . . , 6, so that the vanishing

locus of ( f0, . . . , f6) in T is exactly T. Thus the ideal ( f0, . . . , f6) = (0) and F = 0.

This is clearly a contradiction.

Remark 7 A similar result holds replacing T by spec(Z), assuming one has a flat

family of schemes X over some Zariski open subspace of spec(Z). Hence, the number

s = min{ j | β1, j(Xp) 6= 0} does not depend on p in U .

4.2.2 Degree 14

Take E = ΩP7 ⊕ O(1) and L1 = O(1). Choose a random morphism

Y ∈ Hom(P
6,∧2E ⊗ L1)

over F101. Then Y is the restriction modulo 101 of a morphism Y in

Hom(P
6,∧2

E ⊗ L1)

over Z. The associated Pfaffian subscheme XF101
is a smooth Calabi–Yau 3-fold of

degree 14 in P6(applying Tonoli’s smoothness test) and is the restriction modulo 101

of a Calabi–Yau 3-fold defined over Z. The Hilbert polynomial of this Calabi–Yau

3-fold is 7
3
t3 + 14

3
t , so that c2 ·H = 56, c3 = −98 and h1,2

= 50 (ρ = 1). The minimal

graded free resolution of XF101
has the following Betti table:

0 1 − − − − − −
1 − 1 − − − − −
2 − − − − − − −
3 − 14 35 35 21 7 1

4 − − − 1 − − −

Let us compute ρ. Using the Pfaffian resolution of X, we get Hi(X,OX(m)) = 0

for all i > 0 and m ≥ 2. Let R denote the quotient ring

k[x0, . . . , x6]

IX
,

https://doi.org/10.4153/CJM-2009-050-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-050-2


1070 M.-A. Bertin

where IX is the saturated ideal defining X. The Betti table shows that X is 5-regular, so

that h0(X,OX(t)) = dimk(Rt) for t ≥ 5. Moreover, a simple Macaulay2 computation

gives h0(X,OX(2)) = dimk(R2) + 1 and h0(X,OX(t)) = dimk(Rt) for 5 ≥ t ≥ 3.

Using Macaulay2, we find that

0 −→ N −→ R1(2) ⊕ R144
φ∗

−−→ ⊕R35(5).

We thus find ǫ = 1. Using Macaulay2 again, we find dimk(N0) = 97. Then Theo-

rem 3.6 gives h0(X,NX) = 98, so that we find that h1,2
= 50 and ρ = 1.

The known example of degree 14 can be obtained taking E = O7 and L1 = O(1)

[13]. It has the same invariants as our example. Its Betti table is the following:

0 1 − − −
1 − − − −
2 − 7 7 −
3 − − − −
4 − − − 1

Clearly for the first example of degree 14 we have min{ j | β1, j(XC) 6= 0} = 1,

whereas min{ j | β1, j(XC) 6= 0} = 2 in the second example. Thus, these two exam-

ples cannot be deformation equivalent, even though they have the same invariants

(H3, c2 · H, c3, ρ) = (14, 56,−98, 1).

4.2.3 Degree 15

Let E2
0,3 denote the first syzygy module, the kernel of the morphism O10 ψ

−→ O2(1)

defined by the matrix

(
x0 x1 x2 x3 x4 x5 x6 0 0 0

0 0 0 x0 x1 x2 x3 x4 x5 x6

)
.

This type of syzygy bundle can be thought of as a generalization of Ω(1). Take E =

E2
0,3 ⊕ O(1) and L1 = O(1). Choose a random morphism Y ∈ Hom(P6,∧2E ⊗ L1)

over F101. Then Y is the restriction modulo 101 of a morphism Y in Hom(P6,∧2E⊗
L1) over Z. The associated Pfaffian subscheme XF101

is a smooth Calabi–Yau 3-fold of

degree 15 in P6(applying Tonoli’s smoothness test) and is the restriction modulo 101

of a Calabi–Yau 3-fold defined over Z. The Hilbert polynomial of this Calabi–Yau

3-fold is 5
2
t3 + 9

2
t , so c2 · H = 54, c3 = −78 and h1,2

= 40 (ρ = 1). The minimal

graded free resolution of XF101
has the following Betti table:

0 1 − − − − − −
1 − 1 − − − − −
2 − − − − − − −
3 − 4 4 − − − −
4 − 19 70 99 70 26 4
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Let us compute ρ. Using the Pfaffian resolution of X, we get Hi(X,OX(m)) = 0

for all i > 0 and m ≥ 2. Let R denote the quotient ring k[x0,...,x6]
IX

, where IX

is the saturated ideal defining X. The Betti table shows that X is 5-regular, so

that h0(X,OX(t)) = dimk(Rt ) for t ≥ 5. Moreover, a simple Macaulay2 com-

putation gives h0(X,OX(2)) = dimk(R2) + 2, h0(X,OX(3)) = dimk(R2) + 4, and

h0(X,OX(t)) = dimk(Rt ) for 5 ≥ t ≥ 4. Using Macaulay2, we find that

0 −→ N −→ R1(2) ⊕ R195 ⊕ R4(4)
φ∗

−−→ ⊕R70(6) ⊕ R4(5).

We thus find ǫ = 2. Using again Macaulay2, we find dimk(N0) = 86. Then Theo-

rem 3.6 gives h0(X,NX) = 88, so that we find that h1,2
= 40 and ρ = 1.

The known example of degree 15 can be obtained taking E = Ω(1) ⊕ O3 and

L1 = O(1) [13]. It has, of course, the same invariants as our example. Its Betti table

is the following:

0 1 − − − − − −
1 − − − − − − −
2 − 3 − − − − −
3 − 11 34 35 21 7 1

4 − − − 1 − − −

Clearly for the first example of degree 15 we have min{ j | β1, j(XC) 6= 0} = 1,

whereas min{ j | β1, j(XC) 6= 0} = 2 in the second example. Thus, these two ex-

amples cannot be deformation equivalent, even though they have the same Hodge

invariants

Remark 8 Use the family of vector bundles Et
0,3 with t ≥ 1 defined to be the kernel

of the morphism O4+3t ψ
−→ Ot(1) defined by the matrix




x0 x1 x2 x3 x4 x5 x6 0 0 0 . . . 0 0 0

0 0 0 x0 x1 x2 x3 x4 x5 x6 . . . 0 0 0
...

...
...

. . .
. . .

...
...

...

0 0 0 . . . x0 x1 x2 x3 x4 x5 x6 0 0 0

0 0 0 . . . 0 0 0 x0 x1 x2 x3 x4 x5 x6



.

The generic Pfaffian subscheme associated with (Et
0,3 ⊕ O(1),O(1)) always seems to

be 3-codimensional; it gives a locally Gorenstein subscheme Xt of degree 13 + t for

which ωXt
= OXt

. Unfortunately, Tonoli’s smoothness test over F101 fails for Xt , for

t ≥ 3.

The libraries of Macaulay2 programs that I have built to construct those Calabi–

Yau 3-folds and compute their invariants are available upon request.
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