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Abstract. We calculatel-adic nearby cycles in théetale cohomology for families with log smooth
reduction using loǵetale cohomology. In particular, nearby cycles for log smooth families coincide
with tame nearby cycles, as L. Illusie expected, and nearby cycles for semistable families depend
only on the first infinitesimal neighborhood of the special fiber.
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0. Introduction

In this paper we calculatel-adic nearby cycles for log smooth families using log
étale cohomology.

The point is that, though our concerned families may not be smooth, they start
to behave as if they were smooth once equipped with natural log structures. Then
our calculation is as easy and transparent as that for usual smooth families.

Our main result (3.4.1) specializes to ((3.4.2))

THEOREM (0.1).LetX ! S = Spec(A) be a morphism of schemes withA being
a henselian discrete valuation ring. Lets be the closed point ofS and� = SpecK
the generic one. Letn > 1 be an integer invertible onS. For anyq 2 Z, we have
the nearby cycle

Rq	�Z=nZ on the product toposXs �s S (SGA7 XIII 2:1:1):

Suppose thatX has log smooth reduction in the sense explained below. Then
the action onRq	�Z=nZ of the wild inertia groupP ofK is trivial.

COROLLARY (0.1.1).In the situation of(0.1), we assume further thatX ! S is
proper. Then the action ofP on Hq(X� ;Z=nZ) is trivial, where� is the spectrum
of a separable closure ofK.

We explain what is log smooth reduction. For example, a generalized semistable
family Spec(A[x1; : : : ; xd]=(x

m1
1 � � � x

md

d � �)) with (m1; : : : ;md; p) = 1 and

(Kb. 6) INTERPRINT: S.A./J.V. PIPS Nr.: 136304 MATHKAP
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mj > 0 for eachj has log smooth reduction, wherep is the residual characteristic
exponent ofA. Further this notion has the advantage of being stable under fiber
products and base changes, unlike semistability. Precisely this means thatétale
locally onX,X is étale over Spec(A[P ]=(� � x)). HereP is a finitely generated,
saturated (commutative) monoid,� is a prime element ofA, andx is an element
of P such that

(i) the order of the torsion part ofP gp=hxi is invertible onX; and
(ii) for any a 2 P , there is anm > 1 andb 2 P such thatab = xm in P . 1

Here we review some background of this theorem. Let notation and assumptions
be the same as in (0.1) except thatX does not necessarily have log smooth reduction.
We only assume thatX is of finite type overS. Even in this general situation,
the nearby cycles are known to be an important object, which connect theétale
cohomology of the geometric generic fiber with that of the special fiber.

The conclusion of (0.1) has been proved by M. Rapoport and Th. Zink in the
following cases (1) and (2) in [RZ] Sections 2, 3:

(1) X has generalized semistable reduction whose multiplicitiesmi are all invert-
ible onS.

(2) X is étale locally a product of semistable curves.

In [I], L. Illusie pointed out this is valid also if

(3) X is the product of two semistable families;

and he stated one could expect that the conclusion is always valid wheneverX has
log smooth reduction ([I] 4.10). Note thatX has log smooth reduction if it satisfies
one of the above three conditions.

Thus (0.1) gives an affirmative answer to his expectation.

In fact (0.1) and (0.1.1) are easily deduced from the formula (3.2)(i)

R�logZ=nZ = 0

on the log vanishing cycle for a log smooth morphism. This formula is the exact
analogue of the classical result (cf. SGA7 I 2.4) on the usual vanishing cycle
for a smooth morphism. This formula also shows that, under this assumption,
R	�Z=nZ, as a complex of sheaves with Galois action, depends only on the special
fiber endowed with its natural log structure. In the case of semistable reduction,
it implies that R	�Z=nZ depends only onX 
AA=m2, wherem is the maximal
ideal ofA (see (3.3)).

As in the classical case, the above formula is reduced to a case of purity in the
log context as follows: LetS, A, n be as in (0.1). Put the canonical log structure
MS defined by the closed point onS (cf. [K1](1.5)(1)).

1 The condition (ii) is rather a technical one. See (3.4.2) and the paragraph following (0.2).
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THEOREM (0.2).Let (X;MX ) ! (S;MS) be a log smooth morphism of fs log
schemes.

Then the natural homomorphism

Z=nZ ! R+j�Z=nZ

onX log
�et is a quasi-isomorphism, wherej is the open immersion from the maximal

open subschemeXtriv of X on which the log structure is trivial (R+ means the
derived functor fromD+).

(See [K1] and [N] for the terminology on log schemes and on logétale coho-
mology.)

To prove this (0.2), we appeal to an unpublished result of K. Fujiwara and
K. Kato, the invariance ofl-adic log étale cohomology under log blowing-ups
([FK] (2.4)). Admitting this, we reduce (0.2) to the case of generalized semistable
reductionX =A[x1; : : : ; xd]=(x

m1
1 � � � x

md

d ��). In this case an induction onm1+
� � �+md works via an argument by T. Saito ([S] Prop. 60). Whenm1+� � �+md = 1,
the family is smooth, and we use the smooth base change theorem in the usualétale
cohomology. (When anmi = 0,X may no longer have log smooth reduction in
the sense explained above. Actually our proof yields the statement (3.4.1) more
general than (0.1) because (0.2) treatsX with Xtriv 6= X 
S �, that is,X that may
contain horizontal log as well. Cf. [N](7.3).)

In Section 1, we treat the casem1 + � � � + md = 1, and in Section 2, we
prove (0.2). In Section 3, we prove main results including (0.1), and discuss other
corollaries of (0.2), including a formula of SGA7 I 3.3-type. This section could be
titled ‘applications of (0.2) to the usualétale cohomology theory’. The last Section
4 could be called ‘applications of (0.2) to logétale cohomology theory’. We prove
a relative log Poincaré duality for log smooth families.

Finally we give some comments on two unpublished results that we use in this
paper. As was stated above, one of them is [FK] (2.4) which is used in (2.0.3),
(2.3)(iii), (2.4) Step 2 and (A.1.1). The other is used in (2.0.2) and (3.6). See (2.0.2)
for the detail.

CONVENTIONS. In this paper, a ring (resp. a monoid) means a commutative ring
(resp. monoid) having a unit element. A homomorphism of monoids (resp. rings)
is required to preserve the unit elements. The log structure defined by the closed
point on Spec(A) with A being a discrete valuation ring is called the canonical log
structure (cf. [K1] (1.5) (1)).

Terminology and notation in this paper are completely compatible with those in [N]
except that we take the abbreviation ‘log’ instead of ‘log.’. Definitions not given
here are referred to [K1] and [N]. In particular log structures are always considered
on theétale sites of schemes. Here we include a list of Notation for convenience.
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Notation
��� (bold-headed arrow) strict morphism (cf. [N] (1.4)).
�
X,

�
f the underlying scheme of a log schemeX and the underly-

ing morphism of schemes of that of log schemesf (cf. [N]
(1.1.2)).

Xcl, f cl Xcl = (
�
X; trivial log structure). – cl is a functor from (fs

log sch) to the category of (fs) log schemes with trivial log
structure (cf. [N] (1.1.2)).

"(X); " the forgetting log morphismX ! Xcl for an fs log scheme
X (cf. [N] (1.1.2)).

(fs log sch) the category of fs log schemes which belong to a fixed universe

ZP := Z[P ], semigroup algebra of a monoidP overZ. We regard
Z – as a functor.

P 1=n an fs monoid with a homomorphism fromP such thatP !
P 1=n is isomorphic toP n! P whereP is an fs monoid
having no invertible elements (except the unit element) (cf.
[N] (2.7)).

Xn X
ZP ZP 1=n forX ���Spec(ZP ) in (fs log sch) withP� =

1 andn > 1 an integer invertible onX (cf. [N] (2.7)).

MX the log structure of a log schemeX (cf. [N] (1.1.1)).

(M=O�)X :=MX=O�X for a log scheme X (cf. [N] (1.1.1)).

X
log
�et log étale site of an fs log schemeX (cf. [N] (2.2)).

SAX the category of sheaves ofA-modules onX log
�et for a ringA

and an fs log schemeX (cf. [N] (2.3)).

D�(X;A) the derived category D�(SAX) for � = +;�; b or empty (cf.
[N] (2.3)).

(S) the category of all quasi-compact and quasi-separated fs
log schemes over an fs log schemeS and allS-compactifiable
morphisms (cf. [N] (5.4)).

I-A-Mod(=X) the category ofA-Modules on the usualétale site of a scheme
X, on which a commutative profinite groupI acts continu-
ously. HereA is a ring (cf. [N] (4.5)).

Mapc;I(J;M) the sheaves of continuousI-maps fromJ toM for a homo-
morphism of commutative profinite groupsI ! J andI-A-
ModuleM (cf. [N] (4.7)(i)).

Xtriv the maximal open subscheme of an fs log schemeX on which
the log structure is trivial.

� Z=nZ with n an integer (cf. (3.1.5)).
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1. Log base change by standard affine maps

(1.1). In this section we prove the lemma below. This is the part of log smooth
base change theorem that is directly deduced from the usual smooth base change
theorem. In general, log smooth base change theorem fails in its naive form ((B.1)),
and it seems to be difficult to settle out a suitably restricted statement.

LEMMA. Let

U [N] �0 - X[N]

U

f 0

?

�
- X
?

f

be a cartesian diagram in(fs log sch)whereX[N] = X �Spec(Z) Spec(Z[N]) andf
is the first projection. HereSpec(Z[N]) is endowed with log structure given byN.
LetF 2 SZ

U be a logétale sheaf of Abelian groups onU that is the inverse image
of a sheaf of Abelian groups onU cl and that is killed by an integer invertible on
X. Assume that

�
� is quasi-finite and quasi-separated. Then the functorial homo-

morphism (base change morphism)f�R+��F ! R+�0�f
0�F is an isomorphism in

D+(X[N];Z).
Proof. We shall reduce to the case (1.2), where the log str. ofX is trivial, by

localization onX as follows.
First we may assume that there is a chartX ���Spec(ZP ) with P fs (= finitely

generated, saturated cf. [N] (1.2)) and having no invertible elements (except the
unit element). Here���means thatX ! Spec(ZP ) is strict, that is, the morphism
induces an isomorphism of log structures. This reduction is in order to use (1.1.1)
later. Take any pointy of X[N] and putx = f(y). Fix a log geometric point
([N] (2.5)) y(log) ! X[N], and regardy(log) ! X[N] ! X as a log geometric
point of X: x(log) ! X. It is enough to show that the natural homomorphism
': (Rq��F )x(log) ! (Rq�0�f

0�F )y(log) is an isomorphism for anyq.
On the one hand

(Rq��F )x(log) = lim
�!

X0

(Rq(" � (� �XX
0))�(F jU 0))x0

where the limit runs over the category ofX-morphismsx(log) ! X 0 with X 0

2 ObX log
�et , " = "(X 0) denotes the forgetting morphism (cf. Notation) forX 0,

U 0 = U �XX
0, andx0 is the geometric point ofX 0cl induced byx(log) ! X 0.

Further for eachX 0, considering the cartesian diagram
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U 0[N] �1 - X 0cl[N]

U 0

f1

?

"�(��XX0)
- X 0cl

?

f1 ;

we have a natural homomorphism

'X0cl : (Rq(" � �X0)�(F jU 0))x0 = (f�1 Rq(" � �X0)�(F jU 0))y0(log)

! (Rq�1�f
�
1 (F jU 0))y0(log)

where�X0 = � �XX
0 andy0(log) = y(log)! X 0�X X[N] ! X 0cl[N] defined by

y(log)= x(log)! X 0 and by the fixedy(log)! X[N]. (The first = is induced by [N]
(2.8)1.) On the other hand we have

(Rq�0�f
0�F )y(log) = lim

�!
Y 0

(Rq("�(�0�X[N] Y
0))�((f

0�F )jU�XY 0))
y0

where the limit runs over the category ofX[N]-morphismsy(log)! Y 0 with Y 0 2
Ob(X[N])log

ét , andy0 is the geometric point ofY 0cl induced byy(log)! Y 0.
Thus' can be viewed as the composition of

(Rq��F )x(log)
'1�! lim

�!

X0

(Rq�1�f
�
1 (F jU 0))y0(log)

and

lim
�!

X0

lim
�!

Y 00

Rq("�(�1�X0cl[N]Y
00))�(f

0�F jU 0�
X0clY 00)

y00

'2�! lim
�!
Y 0

Rq("�(�0�X[N] Y
0))�(f

0�F jU�XY 0)
y0

where'1 is induced by'X0cl ’s, Y 00 runs over the category ofX 0cl[N]-morphisms
y(log) ! Y 00 with Y 00 2 Ob(X 0cl[N])log

ét , andy00 is the geometric point ofY 00cl

induced byy(log)! Y 00.
We will prove that both'1 and'2 are isomorphisms. First we treat'2. We write

C1 (resp.C2) for the index category on which the limit of left-hand side (resp. right-
hand side) of'2 runs. ThenC1 andC2 are essentially the same index categories by
the next lemma (1.1.1). Further, since the underlying morphism ofY 0 ! Y 00 in
(1.1.1) is always an isomorphism, the arguments of limits in both sides are also the
same. Thus we see that'2 is an isomorphism. To prove that'1 is an isomorphism,
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it is enough to show that each'X0cl is an isomorphism. But since(� �XX
0)� is

also quasi-finite and quasi-separated by [N] (1.10), this is implied by the case of
the original statement of (1.1) for the map� = "� (��XX 0). Thus we reduce (1.1)
to the case whereX has the trivial log structure, which will be treated in (1.2).2

LEMMA (1.1.1). Let X ���Spec(Z[P ]) be a morphism in(fs log sch)with P

being an fs monoid having no invertible elements. Lety(log) ! X[N] be a log
geometric point([N](2:5)). Consider the following two categories:

C1 := the category of diagrams

y(log) - Y 0 - Y 00

X 0 � X 0[N]
?

- X 0cl[N]
?

v

X

u

?
� X[N]

?

in (fs log sch) with each square cartesian such thatu andv are log étale and of
Kummer type, and thaty(log)! X[N] coincides with the given one, and

C2 := the category ofX[N]-morphismsy(log)! Y 0 with Y 0 2 Ob(X[N])log
�et .

Then the forgetful functorh: C1! C2 satisfies the following properties:

(i) For anyB 2 ObC2, there is anA 2 ObC1 such thatHomC2(B; h(A)) 6= �.
(ii) For anyA1, A2 2 ObC1 and any�: h(A1) ! h(A2) in C2, there exists a

diagramA1
�1�! A3

�2 � A2 such that

h(A1)
� - h(A2)

h(�1)

@
@
@
@
@R

h(A3)
?

h(�2)

commutes inC2.

Proof. (i) Take a chart ofX[N]���Spec(Z[P � N]). Let y(log) ! Y 0 be in
C2. Then we may assume that there is an integern invertible onY 0 such thatY 0

has a chartY 0���Spec(Z[P 1=n � N1=n]). SinceX[N] ! X is an open map,
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Y 0 ! X[N] factors throughX 0[N]! X[N] for a certainX 0 ! X that has a chart

P 1=n  P . PuttingY 00 = (
�
Y 0; (N1=n)a) completes the construction of an object of

C1.
(ii) Let A1; A2 2 ObC1. We may assume thatA1 andA2 have the common

u, Y 0 andY 00 (but may have differentv’s), and that the top square ofAi factors
through

Y 0 - Y 00

X 0[N1=n]

?
f- X 0cl[N1=n]

?

vi

(i = 1;2). Since
�
f is an isomorphism, we have the desired construction. 2

CLAIM (1.2). Lemma(1:1) is valid if the log structure ofX is trivial.
Proof. This case is reduced to the usual smooth base change theorem as follows.

First factorU ! X intoU ! U cl ! X and apply proper base change theorem [N]
(5.1) toU ! U cl (cf. [N] (5.1.1)), then we see that we may assume that the log
structure ofU is also trivial.

Take any pointy ofX[N]. It suffices to prove that the homomorphism is bijective

for each degreeq aty. To prove this, we may suppose by [N] (4.2) that
�
X is strictly

local (i.e. the spectrum of a strictly henselian local ring) and thatf(y) =: x is its
closed point. Lett denote the coordinate ofX[N] on which the log structure lives.
On X[t; t�1], the desired bijectivity comes from the usual smooth base change
theorem SGA4 XVI 1.2. So we assume that(M=O�)X[N];y = N in the following.
We write

UfNg �00- XfNg

Uftg

"

?
- Xftg

?

"

for the diagram obtained from

U [N] - X[N]

U [t]

"

?
- X[t]

?

"
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by base change with respect toOX[t];y ! X[t]. It suffices to show that Hq(U;F ) =

(Rq��F )x(log) ! (Rq�00�"
�F 0)y(log) = lim

�!
n: invertible onXftgH

q(UfN1=ng; "�F 0) is

bijective, whereF 0 = (Uftg ! U)�F and UfN1=ng := UfNg 
ZN ZN1=n

(cf. Notation). But this map factors as

Hq(U;F )
�! lim
�!

Hq(Uft1=ng; ��nF 0)
�! lim
�!

Hq(UfN1=ng; "���nF 0);

where�n is the projectionUft1=ng = Uftg 
Z[t] Z[t1=n] ! Uftg. The bijec-
tivity of � comes from the next Lemma (1.2.1). Thus the problem reduces to a
statement in terms of the usualétale cohomology theory, namely that Hq(U;F )!
Hq(Uft1=ng; ��nF 0) is bijective for eachn. But the local acyclicity for the smooth
morphismX[t1=n] ! X (SGA4 XV 2.1) implies thatXft1=ng ! X is acyclic,
so that the above homomorphism is bijective for anyq (SGA4 XV 1.6 (iii)). This
completes the proof of (1.1). 2

LEMMA (1.2.1). Let �: U ���X be a strict morphism of fs log schemes with
�
X strictly local whose closed point is denoted byx. LetX ���Spec(ZP ) be a
chart with P being an fs monoid such thatP ! (M=O�)X;x is bijective. Let
F 2 SZ

U be the inverse image of anF0 2 SZ
Ucl such thatF0 is killed by an integer

invertible onX. Then the natural map

lim
�!
n

Hq((U cl
n )�et; (U

cl
n ! U cl)�F0)! (Rq��F )x(log);

wheren runs over the set of integers invertible onX, is an isomorphism for allq.
(See Notation forSZ

� , Un and(�)cl:)

Proof. Since(Rq��F )x(log) = lim
�!

Hq((Un)
log
�et ; (Un ! U)�F ), it is enough to

show that the map from the usualétale cohomology lim
�!

Hq(Ucl
n ; (U

cl
n ! Ucl)�F0

�
to the logétale cohomology lim

�!
Hq(Un; (Un ! U)�F ) is bijective. Letkn denote

the projectionUn ! U . We consider the Leray spectral sequence

Ei;j
2 = Hi(Ucl

n ;R
j"�"

�(kcl
n )
�F0)) Hi+j(Un; k

�
nF )

and its limit

Ei;j
2 = Hi(Ucl

1; lim�! (Ucl
1 ! Ucl

n )
�Rj"�"

�(kcl
n )
�F0)) lim

�!
Hi+j(Un; k

�
nF );

whereU cl
1 = lim

 �
U cl
n . It suffices to show that the sheaf onU cl

1 is zero forj > 0.

(As for j = 0,"�"� = id.) We investigate transition homomorphisms stalk by stalk
as follows.

SUBLEMMA. LetU ! Spec(ZP ) be a strict morphism of fs log schemes withP
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being an fs monoid having no invertible elements. Letm be an integer invertible
onU , and letkm denote the projectionUm ! U . LetF 2 SZ=mZ

U be the inverse

image of anF0 2 SZ=mZ
Ucl . Then(kcl

m)
�Rj"�F ! Rj"�k

�
mF is zero for anyj > 0.

Once this was proved, applying it with(U;P; F0) = (Un; P
1=n; (kcl

n )
�F0) for all n,

we get the desired result. The rest is to prove this sublemma. Since" is proper, [N]
(5.1) reduces this to the case where

�
U is the spectrum of a separably closed field,

replacingU by u for eachu 2 U . Then(Um)�red is a disjoint union of
�
U , and [N]

(4.7) and (4.7.1) reduce the problem to the one in terms of Galois cohomology:
the restriction Hj(I; F0)

�! Hj(mI;F0) is zero whereI = Hom((M=O�)gp
U ;
bZ0(1))

and the action ofI onF0 is trivial. But when we identifymIwith I by the multiplica-

tion bym, this� is identified with the multiplication bymj, becauseHj =
jV
H1.2

Remark(1.3). We could slightly generalize (1.1), with the aid of [FK] (2.4). See
Appendix (A.1).

2. Purity for log smooth families

(2.0). In this section we prove (0.2). See Introduction for the outline.
Though (0.2) is written in terms of loǵetale cohomology, it can be reformulated

in terms of usuaĺetale cohomology ((2.0.2)).

(2.0.1). We start from a general

CONJECTURE (log purity conjecture).LetX be an fs log scheme with
�
X locally

noetherian. Assume thatX is log regular ([T], cf. [K2]) and let j be the open
immersionXtriv ,! X. Letn be an integer invertible onX. Then for any locally
constant sheaf ofZ=nZ-modulesF onX log

�et , the adjoint homomorphism

F ! R+j�j
�F

is an isomorphism.

PROPOSITION (2.0.2).In the same notation and assumptions as in(2:0:1), assume
thatX satisfies the conclusion of(2:0:1). Then, for anyq, we have

Rq
�

j � Z=nZ =

q̂

((M=O�)gp
X 
Z Z=nZ(�1));

where
�

j is the open immersionXtriv ,!
�

X.
Proof. This comes from a basic result [KN] (2.4) of K. Kato, which we include

in Appendix (A.3). 2
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(2.0.3). In fact the Conjecture (2.0.1), suggested by [FK], is equivalent to the
classical purity conjecture of Grothendieck. The outline of the proof of this fact
in [FK] (3.6) is as follows: LetD be a divisor with simple normal crossings on
a regular locally noetherian schemeZ. Then the case of (2.0.2) for(Z;MD) is
nothing but the classical conjecture forD, whereMD is the log structure defined
by D ([K1] (1.5) (1)). Conversely (2.0.1) is reduced to the case where the log
structure ofX is defined by free monoidsNr for somer’s by using a log blowing
up ([K2] (10.4)) and [FK] (2.4). Then we reduce it to the classical conjecture by
(A.3). See (2.4) Step 2 in this paper for the similar method.

Remark(2.0.4). Thus the relative purity SGA4 XVI 3.7 implies that ifX is log
smooth over the spectrum of a field with the trivial log structure, (2.0.1) holds on
X. See [N] (7.7.1).

Remark(2.0.5). O. Gabber announced a proof of the classical purity conjecture
of Grothendieck in 1994. It implies the validity of (2.0.1) because of (2.0.3). In the
following, we prove the case (0.2) of (2.0.1) by a different method.

(2.1.1).While (0.2) is stated for log smooth morphisms, we want to work under
slightly weaker conditions on account of induction. So we introduce the weaker
condition (W) before starting the proof.

DEFINITION (W). LetA be a discrete valuation ring, and letS be an fs log scheme
Spec(A) with the canonical log structure (cf. Conventions). We say a morphism
f : X ! S in (fs log sch) is (W) if there exist ańetale covering(Xi���X) and

a chart (in the sense of [K1] (2.9))((Pi)Xi
! MXi

;NS
'i�! MS ;N

hi�! Pi) of
Xi ! X ! S with Pi fs ([N] (1.2)) for eachi satisfying the following conditions
(i) and (ii).

(i) The homomorphismhi is injective and(Pi)tor is trivial.
(ii) The induced (strict) morphismXi ! S�Z[N] Z[Pi] is étale.

By (A.2), if a morphism of fs log schemesf : X ! S is log smooth, thenf is
(W).

EXAMPLE (2.1.2). LetA and S be as in (2.1.1). Letf : X ! S be a gen-
eralized semistable family Spec(A[x1; : : : ; xd]=(x

m1
1 � � � x

md

d � �)) ! Spec(A)

that is the base change of Spec(ZNd)
Spec(Zh)- Spec(ZN) with respect to a chart

S
'! Spec(ZN), whereh: N! Nd; 1 7! (m1; : : : ;md) with m1 + � � �+md > 1,

and� is the prime element'(1) 2 A. Thenf is always (W), and is log smooth if
and only if(m1; : : : ;md) is invertible onX.
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Remark(2.1.3). The condition (W) implies thatX is log regular.

(2.2). Now we state a slight generalization of (0.2).

THEOREM.LetA be a discrete valuation ring, letS be the fs log schemeSpec(A)
with the canonical log structure(cf. Conventions). LetX be an fs log scheme.
Assume that there exists a morphism of fs log schemef : X ! S that is(W). (See
(2:1:1) above for the definition of(W):) Then(2:0:1) holds onX.

See Introduction for the outline of the proof of (2.2).
First we treat the case of generalized semistable families:

CLAIM (2.3) (m1; : : : ;md)(A;�). Let m1; : : : ;md be nonnegative integers with
m1+ � � �+md > 1. Then(2:2) is valid ifX = Spec(A[x1; : : : ; xd]=(x

m1
1 � � � x

md

d �
�)) with log structure defined byNd ! OX ; ei 7! xi (1 6 i 6 d) where� is a
prime element ofA and(ei)i is the canonical base ofNd. (Note that in this case,
there exists anf such thatf : X ! S is a generalized semistable family and is
(W) as was stated in(2:1:2):)

Proof. We write(m1; : : : ;md)(A;�) for this statement, andX(m1; : : : ;md)(A;�)
for X in this statement. We will prove(m1; : : : ;md)(A;�) by induction onm1 +
� � � +md via an argument in [S] Proposition 60. First note that the validity of the
statement is independent of the order ofm1; : : : ;md. So it is enough to show the
following facts for any(A; �).

(o) (1;0; : : : ;0)(A;�) is valid by the preliminary Lemma (1.1) as below.
(i) If m is an integer invertible onA, then there is a loǵetale covering

X(m1m;m2; : : : ; md)(A;�) ! X(m1; : : : ;md)(A;�), so (m1; : : : ;md)(A;�) )
(m1m;m2; : : : ;md)(A;�).

(ii) If p>1 is the residual characteristic ofA, thenX(m1; : : : ;md)(A[�1=p];�1=p)=

X(m1p; : : : ;mdp)(A;�), so(m1; : : : ;md)(A[�1=p];�1=p))(m1p; : : : ;mdp)(A;�).
(iii) (key step)(m1; : : : ;md)(A;�) and(m1+m2;m3; : : : ;md)(A[X](�);X

�m1�) )
(m1;m1 +m2;m3; : : : ;md)(A;�), wherem1 > 1.

To prove (o), we consider a diagram

Xtriv
j1- X 
S �

j2 - X = X(1;0; : : : ;0)(A;�)

�
? j0 - S

?

f
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in (fs log sch), where� is the generic point ofS. By [N] (7.6.5), we haveZ=nZ
�=!

R+j1�Z=nZ. By the preliminary Lemma (1.1), we havef�R+j0�Z=nZ
�=!

R+j2�Z=nZ. So it is enough to prove thatZ=nZ
�=! R+j0�Z=nZ, that is,(1;0)(A;�).

To prove this, we may assume thatA is strictly henselian. Letq be an integer, and
x the closed point ofX. We have(Rqj0�Z=nZ)x(log) = lim

�!
m̂

Hq(K(�1=m);Z=nZ)

wherem runs over the set of integers invertible onA, andK is the fraction field of
A. This is equal to Hq(

S
m
K(�1=m);Z=nZ), which isZ=nZ for q = 0 and is zero

for q > 0 respectively.
The rest is to prove (iii). To prove (iii), we blow upX0 = X(m1; : : : ;md)(A;�)

with center(x1; x2), where(xi)i is the natural coordinates onX0 on which the
log structure is endowed. There is a natural log structure on the blowing-upX 0

([FK] (2.2)) such thatX 0 is covered byX1 = X(m1;m1 +m2;m3; : : : ;md)(A;�)
andX2 = X(m1 + m2;m2;m3; : : : ;md)(A;�), and that the projectionX 0 =

X1 [X2
�0�! X0 is a blowing-up along log structure with centerhe1; e2i � Nd in

the sense of [FK] (2.2), where(ei)i is the canonical base ofNd. Hence we have
R�0�(Z=nZ

�! R+j�Z=nZ onX 0) is isomorphic toZ=nZ ! R+j�Z=nZ onX0

by [FK] (2.4) and the fact thatX 0triv ! (X0)triv is an isomorphism. (In the course
of the proof of (2.2), we use [FK] (2.4) only here and in (2.4) Step 2.) The latter
Z=nZ ! R+j�Z=nZ is a quasi-isomorphism by(m1; : : : ;md)(A;�).

On the other hand, we consider the morphism

fX1 = X(m1 +m2;m3; : : : ;md)(A[X](�);X
�m1�)

h
��� X1

induced by

X1
A[x1] A[x1](�) = A[x1](�)[x2; : : : ; xd]=(x
m1
1 xm1+m2

2 x
m3
3 � � � x

md

d � �)

= A[x1](�)[x2; � � � ; xd]=(xm1+m2
2 x

m3
3 � � � x

md

d � x
�m1
1 �):

Since h is the inverse limit of open immersions,(m1 + m2;m3; : : : ;

md)(A[X](�);X
�m1�) implies �: Z=nZ ! R+j�Z=nZ on X 0 is an isomorphism

on the image ofh by [N] (4.2).
Now we stand at a point to prove that� is a quasi-isomorphism. We study each

fiber of�0.

Let T
g
��� X0 be any strict morphism from the spectrumT of an algebraically

closed fieldk0. It is enough to show that the inverse imageK. onT 0 = T �X0 X
0

of the mapping cone of� is acyclic. Consider the cartesian diagrams
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fT1

eh0
��� T 0

�0�! T

fX1

?

��� X 0
?

�0�! X0

?

g

in (fs log sch). The fiber
�
T 0 is P1

k0
or Spec(k0). We have already shown: (a)K.

is acyclic oneh0(fT1) and (b) R�0�K
. is acyclic. When the fiber isP1

k0
, (a) implies

K
. is acyclic at the generic point ofP1

k0
. ThusK. lives on only closed points on

�
T 0, that is, for eachq, Hq(K

.
) = �

y
�y�F

q
y , wherey runs over the set of closed

points of
�
T 0, �y is the strict closed immersiony = Spec(k0)���T 0 with the

imagefyg, andF q
y = ��yHq(K

.
). On the other hand we have a spectral sequence

Ep;q
2 = Rp�0�Hq(K

.
)) 0 by (b). Since Rp�0� preserves�, the problem is reduced

to the next

CLAIM. In the situation above,(y
�y
��� T 0

�0! T )� is faithful and exact, soRp(�0 �
�y)� = 0 for p > 0 and(�0 � �y)�F q

y is zero implies thatF q
y is zero.

Proof. Thanks to [N] (4.6) and (4.7), this can be interpreted into the problem on
modules with actions of the profinite groups that are determined by the log struc-
tures. Since(M=O�)gp

T;t
! (M=O�)gp

T 0;y is surjective (t being the unique point of

T ), the homomorphismI ! J is injective whereI = Hom((M=O�)gp
T 0;y;

bZ0(1))

andJ = Hom((M=O�)gp
T;t
; bZ0(1)). Then the functor(�0 � �y)�, which is isomor-

phic to the functorMapc;I(J;�): I -Z=nZ-Mod! J-Z=nZ-Mod (cf. Notation), is
faithful and exact as is explained in [N] (4.7.1). This completes the proof of (2.3).2

(2.4). Proof of(2.2). We go through several reduction steps finally to (2.3).

Step0. We may and will assume thatA is strictly henselian by [N] (4.2) in the
following.

Step1. The statement is local onX, so that we may assume by the def-
inition of (W) that X is strict étale over the fiber productY of a diagram

S
� �j1- Spec(ZN) �

Spec(Zh)
Spec(ZP ), where � is a prime element ofA, h

is an injective homomorphism of fs monoids, andPtor is trivial.

Step2. We will show that we can assume that for anyx 2 X, (M=O�)X;x
�=

Nr(x) for somer(x) > 0. First we may assume thatX has a chart by Step 1. Now
we appeal to [FK] (2.4). By [K2] (10.4), we construct a morphismg: X 0 ! X in
(fs log sch) such that:
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(1) For eachx0 2 X 0, (M=O�)X0;x0 is a free monoid.

(2) g is log étale (and proper), andX 0triv ! Xtriv is an isomorphism.

(3) Rg�g�
' � id on D(X;Z=nZ). ([FK] (2.4).)

This construction appears in [FK] (3.6). By the fact thatX 0triv ! Xtriv is an
isomorphism and the fact (3), Rg�(Z=nZ ! R+j�Z=nZ onX 0) is isomorphic to
Z=nZ ! R+j�Z=nZ onX. FurtherX 0 ! S is also (W). So (2.2) forX reduces to
that forX 0. Thus we may and will assume that for anyx 2 X, (M=O�)X;x

�= Nr(x)

for somer(x) > 0 in the following.

Step3. We will show that in the situation of Step 1, we can assume further that
P is free. (Recall that we have already assumed that each stalk of(M=O�)X is free
in Step 2.) Take any pointx of X. PutS := ��1

x (O�X;x), a submonoid ofP . Then
the open subsetX
ZP Z[PS ] ofX containsxwherePS is the submonoidS�1P of
P gp. So we can replaceP with PS . ButPS �= (PS)

��PS=(PS)�, and(PS)� is a

free Abelian group becausePtor is trivial. FurtherPS=(PS)�
�= P=S �= (M=O)X;x

is a free monoid. HencePS �= Nr � Zr0 for somer > 0 andr0 > 0. Since any

homomorphismN! Nr � Zr0 factors asN! Nr �Nr0 id��- Nr � Zr0 for some
injection�, P can be replaced by a free monoidNr+r0 .

Step 4. Finally in the situation of Step 1, we may assume thatX itself

is lim
 �

(S
� �j1- Spec(ZN) �

Spec(Zh)
Spec(ZNd)) for somed > 1, where� is a

prime element ofA andh is an injection. ThusX is a generalized semistable
reduction. This completes the proof of (2.2).

Remark(2.5). K. Kato proved a general log smooth base change theorem for a
modified logétale site (not yet published). The same statement as (2.0.1) for the
modified sites implies (2.0.1). So another way to prove (0.2) is to reduce by this
base change theorem to the case forX = S.

3. Nearby cycles

(3.0). In this section, we calculate nearby cycles for log smooth families using
(2.2) and an easy limit argument. First we establish the formulation of log nearby
cycles and their relationships with classical nearby cycles. Then we deduce results
on classical nearby cycles including (0.1) and (0.1.1). The point is that the log
smoothness is stable under base changes, unlike semistability; so we can apply
(2.2) to each family got by base change.

SITUATION (3.1.1). LetA be a henselian discrete valuation ring. LetX ! S =
Spec(A) be a morphism of fs log schemes, whereS has the canonical log structure

(cf. Conventions). Lets be the closed point of
�
S and� the generic one. We fix
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a separable closureKsep of the fraction fieldK of A, and denote byG, I and
P the absolute Galois group, the inertia group and the wild inertia group ofK

respectively.

NOTATION (3.1.2). In (3.1.1), letL be a finite separable extension ofK. LetAL

be the integral closure ofA inL, and letSL be the fs log scheme Spec(AL)with the
canonical log structure (cf. Conventions). We define the diagram of fs log schemes

XL
s

- XL � XL
�

sL
?

- SL
?
� �L

?

(1)L

with each square cartesian obtained from

Xs
- X � X�

s
?

- S
?
� j

�
?

(1)K

by the base changeSL ! S. Note that we have the diagram((1)L)cl of fs log
schemes with trivial log structures (= schemes) and the forgetting log morphism
(1)L ! ((1)L)cl. In the following we identify(1)L and((1)L)cl with the associated
diagrams of loǵetale topoi respectively. Now we denote by

Xs(log)
i(log)- X(log) �

j(log)
X�(log)

s(log)
?

- S(log)

?
� �

?

(1)

0
BBBBBBBBB@

resp:

X tame
s

itame- X tame� jtame

X tame
�

stame
?

- Stame
?
� �tame

?

(1)tame

1
CCCCCCCCCA
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the essentially commutative diagram of topoi obtained as the 2-limit (SGA4 VI
8.1.1) lim

 �
L

((1)L), whereL runs over the set of all separable (resp. tame) extensions

ofK. These diagrams are uniquely determined up to natural equivalences. Further

we consider(1)
cl
= lim
 �
L: sep

((1)L)cl, ((1)tame)cl = lim
 �

L: tame

((1)L)cl and the diagram of

diagrams

(1) - (1)
cl

(1)tame
?

- ((1)tame)cl
?

(1)K
?

- ((1)K)cl:

?

On the other hand we define(1)cl and((1)cl)tame as those obtained from((1)K)cl

by the base changeS(log)cl ! Scl and (Stame)cl ! Scl respectively. Note that
horizontal arrows in

(1)
cl - (1)cl

((1)tame)cl
?

- ((1)cl)tame
?

are not necessarily equivalent. The groupG andG=P ‘act’ onXs(log) andX tame
s

respectively. Precisely speaking,Xs(log) (resp.X tame
s ) is the unique fiber of a fibered

topos over the category with one object associated toG (resp. G/P).

PROPOSITION (3.1.3).In (3:1:1),Xs(log) ! X tame
s is equivalent. So the action of

G onXs(log) factors throughG=P .

Proof. It is enough to show thatXL1
s

'! XL2
s induces an equivalence of topoi for

any finite extensionL1 � L2 such thatL1\Ltame
2 = L2. By using exact proper base

change theorem for sets-valued sheaves (cf. [N] (5.1)), we may assume thatK = L2

and(
�

XL2
s ) is the spectrum of a separably closed field. Then(XL1

s )cl ! (XL2
s )cl

is an equivalence and the cokernel of(M=O�)gp
XL1 ;x1

 - (M=O�)gp
XL2 ;x2

is killed
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by a power of the characteristic exponent of�(x1) wherexi is the unique point of
XLi
s (i = 1;2). Hence' induces an equivalence by an interpretation like [N] (4.6)

for this case. (Cf. the last part of the proof of Step 1 of [N] (5.6.5).) 2

In the followings we identifyXs(log) andX tame
s .

DEFINITION (3.1.4). In (3.1.1), we define the category of continuousG (resp.
G=P )-sheaves onXs(log) as follows. LetF be an object (or a sheaf of sets over)
Xs(log). As in SGA4 XIII 1.1.1, we consider an action ofG (resp.G=P ) on F
that is compatible with the action ofG (resp.G=P ) onXs(log). We call the action

continuousif for any affineU 2 Ob (Xs)
log
�et , G (resp.G=P ) acts continuously

on F(U �XsXs(log)) with the discrete topology. Thus we have defined the two
categories, which are proven to be topoi by using Giraud’s criterion (SGA4 IV
1.2 = [G] Chapitre 0 2.6). Note that the latter topos of continuousG=P -sheaves is
equivalent to(Xs)

log�
�et (as in SGA7 XIII 1.1.3). Further there is a natural morphism�

"0 id
" "

�
of essentially commutative diagrams of topoi from

fcontinuousG-sheaf overXs(log)g
� - � Xcl

s �scl � - �

to

Xs

�(P;�)

?
- s
?

splog

Xcl
s

?
- scl;

?

where� = (taking the global section),�(P;�) = (taking P -fixed part), and
splog = (takingP -fixed part) under the identificationsXs = fcontinuousG=P -
sheaf overXs(log)g, � = fcontinuousG-setg, ands = fcontinuousG=P -setg.
For the latter diagram, see SGA7 XIII 1.2. Since the latter diagram is 2-cartesian
(see [G] Chapitre VIII 0.5 for the definition),"0 is characterized as the essentially

unique morphism that makes
�

"0 id
" "

�
a morphism. In fact"0 is induced by the

projectionXs(log) ! (Xcl
s )

ur = lim
 �
L: ur

Xcl
s �scl (sL)cl(L runs through the set of all

finite unramified extensions ofK) under the identificationXcl
s �scl � = fcontinuous

G-sheaf over(Xcl
s )

urg.

(3.1.5). In the followings, we denote by'(log) (resp.'tame) the projections(1)!
(1)K (resp.(1)tame! (1)K). In (3.1.1), letn be an integer invertible onS. Put
� = Z=nZ. We denote by D+(Xs(log); G;�) (resp. D+(Xs(log); G=P;�)) the
derived category of�-Modules on the topos of continuousG (resp.G=P )-sheaves
overXs(log). Then we have natural functors

R	: D+(X� ;�)! D+(Xs(log); G;�)
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(resp: R	t: D+(X� ;�)! D+(Xs(log); G=P;�))

such thatf � R	 = i(log)�R+j(log)�'(log)� (resp.f � R	t = itame�R+jtame
� 'tame�)

wheref is the forgetful functor to D+(Xs(log);�) = D+(X tame
s ;�). They are called

log nearby cycle (resp. log tame nearby cycle). Note that R	t = R+�(P;R	�).
Further we define the log vanishing cycle R�log: D+(X;�) ! D+(Xs(log); G;�)

as the mapping cone ofi(log)�'(log)� ! R	j�.

(3.1.6). The above R	, R	t and R�log are closely related to the classical ones.
Indeed in (3.1.5) we have

R	clR+"� = R+"0�R	: D+(X� ;�)! D+(Xcl
s �scl �;�)

= D+((Xcl
s )

ur; G;�);

where R	cl := R	� in SGA7 XIII 2.1.1 and R+"� is the log forgetting functor:
D+(X�;�)! D+(Xcl

� ;�). Similarly

R	cl
t R+"� = R+"0�R	t: D+(X� ;�)! D+((Xcl

s )
ur; G=P;�);

where R	cl
t is the classical tame nearby cycle functor and R+"0: D+(Xs(log); G=P;

�) ! D+((Xcl
s )

ur; G=P;�) is induced by the above"0 in (3.1.4) or by the pro-
jectionXs(log) ! (Xcl

s )
ur. These formulas are proven by using exact proper base

change theorem [N] (5.1). Finally, forK 2 D+(X;�), we have a comparison map
R	sKs ! R	clR+"�K� where R	s := R+"0�'(log)�. Note that the target of this
map is in D+

�
(Xcl

s )
ur; G;�

�
, whereas the source is in D+((Xcl

s )
ur; G=P;�) in

virtue of (3.1.3).

THEOREM (3.2).In (3:1:5), assume thatX ! S is log smooth. Then

(i) R�log� = 0.
(ii) �

�! R	t�
�! R	� in D+(Xs(log); G;�).

(iii) R	cl
t L

�! R	clL whereL := R+"�� 2 D+(Xcl
� ;�).

(iv) R+"0��
�! R	clL in D+((Xcl

s )
ur; G;�).

(v) The comparison map(in (3:1:6)): R	s�! R	clL is an isomorphism.

In particular, the action ofP onRq	clL is trivial for anyq. Note that if the log
structure ofX� is trivial, thenL �= �.

Proof. By SGA4 VI 8.7.5 and (0.2) for eachXL (L is a finite separable extension
of K), we have� �! R+j(log)�� and� �! R+jtame

� �. Thus (i) and (ii). Actually
�
�! R	t� is deduced from� �! R	� by applying R+�(P;�) to both sides.

Next, applying R+"0� to (ii), we have (iii) and (iv) by (3.1.6). Actually (iv) contains
(iii). Finally (iv) and (v) are equivalent. 2
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64 CHIKARA NAKAYAMA

Remark(3.2.1). See (3.4) for a reformulation of (3.2) without log terms.

Remark(3.2.2). Even when we weaken the assumption of log smoothness off

to that of (W) (see (2.1.1) for (W)), we still have� �! R	t� and R+"0��
�! R	cl

t L
because (2.2) implies that (2.0.1) still holds onX �S SL for a tame extensionL of
K.

COROLLARY (3.3). In (3:1:5), suppose that the log structure ofX� is trivial.
ThenR	cl� is determined only byXs, that is, R	cl� is isomorphic toR	cl�
for another suchX 0 if there is an isomorphism ofs-log schemesXs

�= X 0s.
Further, whenXcl andX 0cl have semistable reductions,R	cl�’s are isomorphic
if Xcl
AA=m2 �= X 0cl
AA=m2 wherem is the maximal ideal ofA.

Proof. In (3.2) (v), the left-hand side is determined only byXs. The last state-
ment comes from the fact that the log structure ofX having semistable reduction
(in the sense of [K1] (3.7) (2)) depends only on

�
X 
AA=m2 (see Appendix (A.4)

for the detail). 2

Remark(3.3.1). As an application, in a forthcoming paper, we prove that the
weight spectral sequence for a proper semistable family degenerates atE2 regard-
less of whether the residue field is finite or not.

(3.4). We reformulate (3.2) without log terms for convenience.

VARIANT (3.4.1) (Illusie’s expectation).Let U
j! X ! S = Spec(A) be a

diagram of schemes withA being a henselian discrete valuation ring. Lets be the
closed point ofS and� the generic one. Letn > 1 be an integer invertible onS.
For anyq 2 Z, we have the nearby cycle

Rq	�L on the product toposXs�s S(SGA7 XIII 2:1:1);

whereL := R+j�Z=nZ. Assume that́etale locally onX, U
j! X is étale over

Spec(A[P gp]=(� � x)) ,! Spec(A[P ]=(� � x));

whereP is an fs monoid(= finitely generated and saturated monoid),x is an
element ofPrf1g such that the order of the torsion ofP gp=hxi is invertible onX,
and� is a prime element ofA. Then the action onRq	�L of the wild inertia group
of the quotient field ofA is trivial.

Proof. Since the statement is local, we may assume thatU ,! X is étale over
Spec(A[P gp] =(� � x)) ,! Spec(A[P ]=(� � x)) whereP , x, and� are as above.
We endow them with log structures byP . Then (3.4.1) reduces to (3.2) by tak-
ing it into account that Spec(A[P gp]=(� � x)) is the maximal open subscheme of
Spec(A[P ]=(� � x)) on which log structure is trivial. Note thatL = R+"�� by
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(2.0.1) forX� ((2.0.4)). 2

Remark(3.4.2). In (3.4.1), if furtherN ! P ; 1 7! x is dominating ([N] (7.3)),
that is, the condition (ii) in Introduction is satisfied anywhere,U coincides with the
generic fiberX� ofX. (OtherwiseU may be strictly contained inX�.) This case is
nothing but (0.1). Further, (0.1.1) is a direct corollary of (0.1), via SGA7 I (2.2.3),
(2.7.1) and (2.7.3).

(3.5). Next we prove an SGA7 I 3.3-type formula for the classical tame nearby
cycles R	cl

t for log smooth families. Again by using (2.2) as in the proof of (3.2),
this reduces to an easy problem on the special fiber.

THEOREM (SGA7 I 3.3-type formula for R	cl
t ). In (3:1:5), assume thatX

f! S

is log smooth. PutL := R+"��
(2:0:4)
= R+jcl

� � 2 D+(Xcl
� ;�). Let

(M=O�)gp
rel := cok(

�

f�(M=O�)gp
s

'! (M=O�)gp
Xs
)=torsion onXcl

s :

Then

(i) For anyq > 0, there is a natural,G=P -isomorphism

Rq	cl
t L �= R0	cl

t L
Z

qV
((M=O�)gp

rel
Z �(�1)):

(ii) The stalk ofR0	cl
t L at y in (Xcl

s )
ur is

(R0	cl
t L)y �= �[Ey];

where

Ey := cok(Hom('y ; bZ0(1))); a finite Abelian group. Here the action ofI=P =bZ0(1)) on the right-hand side is the one through the canonical homomorphismbZ0(1) = Hom((M=O�)gp
S;s;

bZ0(1))! Ey.
Note that if the log structure ofX� is trivial, thenL �= �.

Remark(3.5.1). We can weaken the assumption of log smoothness off to that
of (W) (see (2.1.1) for (W)) without changing the conclusion of (3.5). We treat this
generalization in the proof below.

Remark(3.5.2). The problem of giving a global formula for the sheaf R0	cl
t L

should be interesting, though we do not treat it.
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(3.6).Proof of(3.5). First note that R+	cl
t L = R+"0�� by (3.2.2). We consider

G=P -equivariant homomorphisms

Rq"0�� "0��
Z

q̂

(('cl)ur�(M=O�)gp
rel
Z �(�1))

"0��
Z Rq"��

'1

6

=== "0��
Z

q̂

(('cl)ur�(M=O�)gp
Xs

Z �(�1));

6
'2

where ('cl)ur is the projection(Xcl
s )

ur ! Xcl
s , the equality is the isomor-

phism in (A.3) and'1 is induced from the cup product. Since'2 is surjec-
tive, to prove (i), it is enough to show that there is an isomorphism of modules

(Rq"0��)y
�= ("0��)y 
Z

q̂

((M=O�)gp
rel;y
Z �(�1)) which commutes with y for

any y 2 (Xcl
s )

ur. First Rq"0�� = Rq"�(X
ur
s ! sur)�((stame! sur)��) by exact

proper base change theorem [N] (5.1) whereXur
s etc. are defined in the same way

as in (3.1.2). Thanks to [N] (4.6) and (4.7), we interpret the problem of logétale
sheaves into that on modules with actions of the profinite groups that are determined
by the log structures. Then we see that the logétale sheaf(stame! sur)�� cor-
responds via [N] (4.6) to theIs-�-module�[Is] := Mapconti(Is;�) on which
Is := Hom((M=O�)gp

S;s;
bZ0(1)) = bZ0(1) acts like z � m(�) 7! m(�z). Thus

(Rq"0��)y = Hq(Iy;�[Is]) whereIy := Hom((M=O�)gp
X;y;

bZ0(1)) which acts on

�[Is] via � = Hom('y ; bZ0(1)): Iy ! Is.
On the other hand we have an exact sequence

0! Hom((M=O�)gp
rel;y;

bZ0(1))! Iy
�! Is ! Ey ! 0:

So�[Is] is decomposed into Map(Ey;Mapconti(J;�)), whereJ = Image(�). We
consider the Hochshild-Serre spectral sequence

Ep;q
2 = Hp(J;Hq(Ker(�);Mapconti(J;�))) ) Hp+q(Iy;Mapconti(J;�)):

Since Hp(J;Mapconti(J;N)) = 0 for p > 0 andN for p = 0, we have

Hq(Iy;Mapconti(J;�)) = Hq(Ker(�);�)

=
qV
((M=O�)gp

rel;y
Z �(�1)):

Thus we have the desired isomorphism, which commutes with y. The above cal-
culation includes(R0"0��)y = Map(Ey;�) that is (ii). 2

comp3847.tex; 6/04/1998; 10:59; v.7; p.22

https://doi.org/10.1023/A:1000327225021 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000327225021


NEARBY CYCLES FOR LOG SMOOTH FAMILIES 67

Remark(3.6.1). There is another way to show (3.5) due to L. Illusie, K. Kato,
and T. Saito. Consider the different factorization of

R+"0�: D+(X tame
s ; G=P;�)

R+�2�- D+((X tame
s )cl; G=P;�)

R+�1�- D+((Xcl
s )

ur; G=P;�):

Then R+�1� = �1�.
On the other hand, since
0
@ lim
�!

L: tame

'Lcl�(M=O�)gp
XL
s

1
A
 � = (��1(M=O�)gp

rel)
Z �;

where'Lcl is the projection(X tame
s )cl ! (XL

s )
cl,

Rq�2�� =

q̂

((��1(M=O�)gp
rel)
Z �(�1))

for any q > 0. Thus we have the desiredG=P -equivariant isomorphism by the
projection formula.

COROLLARY (3.7) (Cf. SGA7 I 3.4).In (3:1:5) assume thatf is log smooth and
�
f is proper. Letl be a prime number invertible inA. LetN be the least integer

> 1 that kills the prime-to-p parts ofcok((M=O�)gp
S;s

'y�! (M=O�)gp
X;y)tor for all

y 2 Xs wherep is the residual characteristic exponent ofA. Let q be an integer
> 0 and letq0 beinffq+1; supfrankz(M=O�)gp

X;y j y 2 Xsgg. Then for anyT 2 I

(TN � 1)q
0

= 0 on Hq(Xtriv �� �;Zl):

In particular, the action of I on Hq(Xtriv �� �;Zl) is quasi-unipotent of
échelonq0.

Remark(3.7.1). Similarly to (3.5.1), we can weaken the log smoothness condi-
tion to (W) when we replace� by �tame. We treat this variant simultaneously below
in the proof (3.8).

Remark(3.7.2). Note thatXtriv is not necessarily proper overK.

(3.8).Proof of (3.7). Note that R+"��
(2:0:4)
= R+jcl

� � 2 D+(Xcl
� ;�): Letm be

an integer. We have spectral sequences

E
p;q
2 = Hp((Xcl

s )
ur;Rq	clL)) Hp+q(Xtriv �� �;Z=lmZ); I-equivariant
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E
p;q
2 = Hp((Xcl

s )
ur;Rq	cl

t L)

) Hp+q(Xtriv �� �tame;Z=lmZ); I=P -equivariant

(cf. SGA7 I 2.2.3). By (3.2), (3.5) and (3.5.1), we see thatTN acts on Rq	clL or

Rq	cl
t L trivially since the prime-to-p part of cok((M=O�)gp

S;s

'y�! (M=O�)gp
X;y

�
tor

is isomorphic toEy in (3.5). Thus we get the desired result. 2

4. Propositions on logétale cohomology

(4.1). In this section, we prove three propositions based on (2.2). The first one
(4.2) says that for a variety over a henselian discrete valuation field with log smooth
reduction thel-adic representation is determined by its special fiber endowed with
log structure. This had been already pointed out by K. Fujiwara ([F]) for the case of
semistable reduction, who applied this fact to the hypersurface case of monodromy-
weight conjecture in [F]. The second proposition (4.3) in this section is a case of
‘proper log smooth base change theorem’: In usualétale cohomology theory for
schemes, the statement ‘Rqf�Z=nZ is locally constant and constructible for any
smooth proper morphismf (n being an integer invertible on the base)’ is called
proper smooth base change theorem; in fact K. Kato recently proved it is valid
when regarded as a statement in logétale cohomology. See (4.3.1). The last one
(4.4) is a relative version of log Poincaré duality. Although we worked only on a
field in [N], for this time we work over a discrete valuation ring. All proofs of these
results are easy applications of (2.2). The second and the third ones are not the final
results.

PROPOSITION (4.2).In (3:1:5), assume thatf is log smooth and
�
f is proper. Then

for anyq 2 Z,

Hq(X tame
s ;Z=nZ) �= Hq(Xcl

� �� �;L);

whereL := R+j�Z=nZ. Note that if the log structure ofX� is trivial, thenL �=
Z=nZ.

Proof. By (3.2), we have� = R	� on X tame
s . Then R+�(X tame

s ;�) =

R+�(Xcl
s �scl �;R+"0�R	�)

(3:1:6)
= R+�((Xcl

s )
ur;R	clL) = R+(Xcl

� �� �;L) with
G-action. 2

Remark(4.2.1). The left-hand side is described as

lim
�!

m: invertible inA

Hq(Xs
ZN ZN1=m;Z=nZ):

The right-hand side is isomorphic to Hq(X�(log);Z=nZ) or Hq(Xcl
triv �� �;Z=nZ).

Note thatXtriv is not necessarily proper overK.
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PROPOSITION (4.3) (a part of proper smooth base change theorem).Letf : X !
S be a proper log smooth morphism in(fs log sch). Letn be an integer invertible
onS. Assume that

(i) f is exact.(We review the definition of exactness[K1] (4.6) for convenience
below.)

(ii)
�
S is noetherian andMS is trivial at each generic point.

ThenRqf�Z=nZ is locally constant and constructible for anyq.

(Review for [K1] (4.6). A homomorphism of integral monoidsh: Q! P is said
to beexactif Q = (hgp)�1(P ) inQgp. A morphism of log schemes with integral log

structuresf : X ! Y is said to beexactif the homomorphism((
�

f)�MY )x !Mx

is exact for anyx 2 X.)

Remark(4.3.1). By the similar proof we can replace the condition (ii) by

(ii) 0
�
S is locally noetherian and(M=O�)S is constant sheaf

without changing the conclusion of (4.3). Further recently K. Kato proved the
following general result: In (4.3), we replace both (i) and (ii) by only

(ii) 00
�
S is locally noetherian.

Let F be a locally constant and constructible sheaf ofZ=nZ-modules onX log
�et .

Then Rqf�F is locally constant and constructible for anyq. The proof is based on
the theory of modified loǵetale sites mentioned in (2.5) (not yet published). In the
following (4.3.3), we prove the case (4.3) by a different method.

Remark(4.3.2). We recall here the definition of constructibility. LetX be an
fs log scheme andA a ring. ThenF 2 Ob SAX is calledconstructibleif for any

open affineU �
�
X , there exists a finite decomposition(Ui)i2I of U consisting of

constructible reduced subschemes such that the inverse image ofF toUi is locally
constant whose local values areA-modules of finite presentation, where the log
structure ofUi is the restricted one fromX. (In (4.3),A is taken to beZ=nZ.)

(4.3.3). Proof of (4.3). Since (i) implies
�
f�(M=O�)S ! (M=O�)X is injective,

the finiteness theorem [N] (5.5.2) implies Rqf�Z=nZ is a constructibleZ=nZ-
Module for anyq. Then, by the Lemma (4.3.4) below, it suffices to show that the
cospecialization map(Rqf� Z=nZ)s(log) ! (Rqf�Z=nZ)s0(log) is bijective for any
points0 2 S and any specializations of it. To show this, taking (ii) into account, we

may assume thatMS is trivial ats0. We may assume further that
�
S is the spectrum

of a noetherian local domainA with s0 being the generic point ands being the
closed one. The rest is an induction on dimA.

The case dimA = 0 is trivial. The case dimA = 1 will be treated later. Assume
that dimA > 2. Then we can find a chain of pointss0  s1  s ( means
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specialization) such thatMS is trivial at s1 ands0 6= s1 becauseA is noetherian
and the set of the points at which the log structure is trivial is open and non empty,
hence (since dimA > 1) cannot consist ofs0 alone. Thus the induction works.

The rest is the case where dimA = 1. Taking the normalization ofAsh, we
may assume thatA is a strictly henselian discrete valuation ring. Take any chart
of S: P ! MS such thatP ! (M=O�)S;s is bijective ([N] (1.6)). Let� be a

prime element ofA. Then the modified homomorphismP ! Arf0g val�! N! A

is also a chart, whereN ! A is the homomorphism sending 1 to�. Thus we
have constructed a morphism(Spec(A), the canonical log structure) ! S (cf.
Convention). In virtue of exact proper base change theorem [N] (5.1) (cf. [N]
(5.1.1)), we thus reduce to the case whereS has the canonical log structure.

But in this case, we can use (4.2) to get the desired bijection. Note that
Hq(Xcl

� �� �;L) = Hq(X�(log), Z=nZ) = (Rqf�Z=nZ)s0(log): 2

LEMMA (4.3.4). LetX be an fs log scheme,A a ring,F a constructible sheaf of
A-modules onX ((4:3:2)), andx(log)! X a log geometric point ofX ([N] (2.5)).
ThenF is locally constant on a(log étale) neighborhood ofx if and only if for any
point x0 that is a generization ofx, the cospecialization mapFx(log) ! Fx0(log) is
bijective.

Proof. This is a log version of SGA4 IX 2.11. The proof is parallel to that of it.
See [N] (2.8) 6 for cospecialization maps. 2

PROPOSITION (4.4) (log Poincaré duality).LetA be a discrete valuation ring, let
S be the fs log schemeSpec(A) with the canonical log structure(cf. Conventions),
let � be the generic point ofS, letn be an integer invertible onS, and let

f : Y ! X

be a vertical([N] (7.3)), log smooth,S-compactifiable([N] (5.4)) morphism in
(fs log sch). Assume thatX andY are connected, andY 6= �. Assume further that
X is log smooth compactifiable overS. (Note thatf 2 Fl(S) (see Notation or
[N] (5.4)), so that we have the functorRf ! : D+(X;Z=nZ) ! D+(Y;Z=nZ) by
[N] (7.2).)

Then

Rf !Z=nZ �= Z=nZ(d)[2d];

whered = dim(Y 
S �)� dim(X 
S �).
Proof. This is a formal consequence of (2.2) and the log Poincaré duality

over a field (in [N]). In fact, writingjX and jY for the strict open immersions
X 
S � ,!I X andY 
S � ,!I Y , we have
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Rf !Z=nZ
�=! Rf !RjX�Z=nZ ((2:2))

= RjY �R(f 
S �)!Z=nZ (j� and Rf! can always interchange)

= RjY �Z=nZ(d)[2d] ([N] (7:5) (a); verticality assumption)
�= Z=nZ(d)[2d] ((2:2)): 2

Remark(4.4.1). In conjunction with the formal duality [N] (7.2), we have a
functorial isomorphism

R+f�RHom.
(K;Z=nZ(d)[2d]) �= RHom .

(Rf!K;Z=nZ)

for anyK 2 Ob D�(Y;Z=nZ) as well.

QUESTION (4.4.2). In the case thatf is not vertical, is Rf !Z=nZ isomorphic to
j!Z=nZ(d) [2d]? Herej is the strict open immersionYver=f ,!I Y . See [N] (7.3)
for notation.

QUESTION (4.4.3). What is a dualizing complex onX or onY ?

Appendix A

(A.1). As was stated in (1.3), here we generalize (1.1) slightly with the aid of a
theorem of K. Fujiwara and K. Kato [FK] (2.4).

PROPOSITION (A.1.1).Let

V
�0 - Y

U

f 0

?

�
- X
?

f

be a cartesian diagram in(fs log sch). LetF 2 SZ
U be a logétale sheaf of Abelian

groups onU that is the inverse image of a sheaf of Abelian groups onU cl and that
is killed by an integer invertible onX. Assume that

�
� is quasi-finite and quasi-

separated. Assume further thatf satisfies one of the following two conditions:
(i) f is isomorphic to the projectionX[P ] ! X for an fs monoidP whose

torsion part has an order invertible onX, whereX[P ] = X �Z ZP .
(ii) f is log smooth andX has the trivial log structure.
Then the functorial homomorphism(base change morphism) f�R+��F !

R+�0�f
0�F is an isomorphism inD+(Y;Z).
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Proof. We reduce (i) to (ii) by localizingX in the same way as in (1.1). So it
is enough to prove (ii). As in the beginning of the proof of (1.2), we may assume
thatU also has the trivial log structure by proper base change theorem [N] (5.1).
On the other hand, we blow upY along the log structure and apply [FK] (2.4) as in
(2.4) Step 2, so that we may assume that for anyy 2 Y , (M=O�)Y;y �= Nr(y) for
somer(y) > 0. Next we take a chart by (A.2) so that we may assume thatf factors

asY
u
��� X[P ] ! X whereu is a strictétale morphism andP is a torsionfree fs

monoid. Thus we may assume thatf is isomorphic toX[P ]! X for a torsionfree
fs monoidP . We may assume thatP = Nr � Zr0 for somer > 0 andr0 > 0, and
further thatr0 = 0 as in (2.4) Step 3. Finally we apply (1.1)r times. 2

(A.2). Here we include a proposition used in (2.1.1). This is a slight refinement of
[K1] (3.5). The novelty lies in the condition (iii).

PROPOSITION.Letf : X ! Y be a log smooth morphism in(fs log sch). Assume
that we are given a chartY ���Spec(ZP ) of Y with P being a torsionfree fs
monoid. Then there are a chart covering(X J���Xi���Spec(ZQi))i ([N] (1.5))

and a chart(Qi !MXi
; P !MY ; P

hi�! Qi) ofXi ! Y such thathi: P ! Qi

is an injective homomorphism of fs monoids, satisfying the following(i)–(iii):

(i) The order of(cok(hgp
i ))tor is invertible onXi.

(ii) The induced morphismXi���Y �ZP ZQi is étale.
(iii) Qi is torsionfree.

Proof.2 By [K1] (3.5) and (3.6), we may assume thatX is strict étale over
Y �ZP Z[Q� R] whereQ (resp.R) is a torsionfree (resp. torsion) fs monoid and
Spec(Z[Q�R])! Spec(ZP ) is induced by an injectionh: P ! Q�R such that
n := the order of(cok(hgp))tor is invertible onX. PutA = Z(n)[R]. Then we have
two morphisms Spec(A[Q])! Spec(ZP ) of fs log schemes: one is induced byh
via ZP ! Z(n)[Q � R] = A[Q]; the other is induced byh0 := pr1 � h: P ,! Q

via ZP ! Z(n)[Q]! A[Q].

CLAIM. In the above there is ańetale surjective morphism Spec(B) ! Spec(A)
such that induced two morphisms of fs log schemes Spec(B[Q])! Spec(A[Q])!
Spec(ZP ) are isomorphic over the base.

Proof.The difference'0 of twoP ! A[Q] is contained in (R �) (A�)tor. Take
B to be the ring obtained fromA by adding n

p
r, r 2 R. Since(cok(h0gp))tor is

killed by n, the difference'0: P ! (A�)tor extends to a': Q ! (B�)tor. We
can make a desired automorphism of Spec(B[Q]) using this' via q 7! '(q)q,
q 2 Q. 2

2 Due to a discussion with T. Tsuji and T. Kajiwara.
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By the above claim, we see thatX �AB is étale over lim
 �

(Y ���Spec(ZP )

�Spec(Zh0)
Spec(ZQ) Spec(B[Q])) which isétale overY �ZP ZQ. 2

(A.3). Here we include the theorem of K. Kato which was used in (2.0.2) and
(3.6).

THEOREM.LetX be an fs log scheme andF an Abelianétale sheaf onXcl (cf.
Notation forXcl) such that

F =
[

n: invertible onX

Ker(n: F ! F ):

Then there exists a canonical isomorphismRq"�"
�F

�= F (�q)
Z

q̂

(M
gp
X =O�X)

for anyq (cf. Notation for" = "(X)). Here(�q) means the Tate twist.

See [KN] (2.4) for the proof. The map is constructed by cup product from the con-
necting mapsMgp

X =O�X ! R1"�(Z=nZ)(1) of the logarithmic Kummer sequence
for variousn’s.

(A.4). Here we prove the proposition which we used in (3.3).

PROPOSITION (L. Illusie).Let (A; �A; k) be a discrete valuation ring and
S = Spec(A) with the canonical log structure(cf. Conventions). For i = 1;2,
let Xi ! S be a morphism of fs log schemes having semistable reductions in
the sense of[K1] (3.7) (2). Suppose that

�
X1
AA=(�2) and

�
X2
AA=(�2) are

isomorphic asA=(�2)-schemes. Then the special fibersX1
A k andX2
A k are
isomorphic asS
A k-fs log schemes.

Proof. We reduce to the next local statement.

LEMMA (A.4.1). In (A:4), we identify
�
X1
AA=(�2) with

�
X2
AA=(�2), and

write it asY . Suppose that there is a strictétaleS-morphismY ���A=(�2)[Nni ]=
(e1 � � � eri ��) (1 6 ri 6 ni, ej ’s are the canonical base ofNni) for eachi = 1;2.
Here the target is regarded as anS-log scheme byN 3 � 7! e1 � � � eri . Then

(i) Zariski locally on Y , there is a uniqueMs-isomorphism�: MX1jYs �=
MX2jYs (Ys is the special fiber ofY ) satisfying the following three conditions.

(a) There is a bijection�: I1 := fjjej 2 Nn1 is not invertible onY g
�=!

fjjej 2 Nn2 is not invertible onY g, and for eachj 2 I1, the subscheme
of Y determined by(ej) is irreducible.
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(b) For eachj 2 I1, there is an elementbj 2 �(Y;O�Y ) such that�(ej) =
bje�(j) in �(Ys;MX2jYs) andej = bje�(j) in �(Y;OY ).

(c) If there is another such(�0; b0j), then� = �0 andbj � b0j mod� for each

j 2 I1.

(ii) If further there is an isomorphism�0: MX1 !MX2 onY , then the above� is
the one restricted from�0.

Proof. We reduce to the next ring-theoretic statement.

LEMMA (A.4.2). Let(A; �A; k) be a discrete valuation ring,B = A=(�2)[x1; : : : ;

xn]=(x1 � � � xr � �) (1 6 r 6 n), andp a maximal ideal ofB. ThenAnnBsh
p
(xi) �

(�) for i = 1; : : : ; n, whereBsh
p

is the strict localization ofB at p. Further
AnnBsh

p
(�) � (�).

Proof. By [M] p. 266 Theorem 83 and Remark 1, we may assume thatk is alge-
braically closed. Then we may assume thatp = (x1; : : : ; xn; �) and replaceBsh

p
by

A=(�2)[[x1; : : : ; xn]]=(x1 � � � xr � �): In this ring, Ann(xi) � Ann(�) � (�) for
i 6 r and Ann(xi) = 0 for i > r respectively. This completes the proof of (A.4).2

Remark(A.4.3). The above proof implies that, in (A.4), it is not necessary thatXi

comes from the family overS: For twoS
AA=(�2)-fs log schemesXi (i = 1;2)
which étale locally lift to semistable families overS having the same underlying
scheme, the conclusion of (A.4) is satisfied.

Appendix B

(B.1). Here we give the counterexample that we alluded to in (1.1). Letk be a
field. Leth: hx; yi ! hx; zi be a homomorphism of fs monoidsN2! N2;x 7! x,
y 7! xz. Then the morphismf : Y := Spec(k[N2])! Spec(k[N2]) =: X induced
by h is log étale. We consider the cartesian diagram

V
�0

��� Y

Spec(k[x; x�1])

f 0

?
���
�

X
?

f

in (fs log sch) with � being a strict immersion. Thenf 0 is an isomorphism. Let
n be an integer invertible onX. We will seef�R��Z=nZ 6= R�0�f

0�Z=nZ. First
R��Z=nZ = (Spec(k[x])���X)�Z=nZ by [N] (7.6.5). Analogously, R�0�Z=nZ =
(Spec(k[x])���Y )� Z=nZ whose stalk at(0; z) with z 6= 0 is zero. Thus we have
got the desired statement.
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