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Abstract: Today, image denoising by thresholding of wavelet coefficients is a commonly used tool for 2D

image enhancement. Since the data product of spectroscopic imaging surveys has two spatial dimensions and

one spectral dimension, the techniques for denoising have to be adapted to this change in dimensionality. In

this paper we will review the basic method of denoising data by thresholding wavelet coefficients and

implement a 2D–1Dwavelet decomposition to obtain an efficient way of denoising spectroscopic data cubes.

We conduct different simulations to evaluate the usefulness of the algorithm as part of a source finding

pipeline.
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1 Introduction

The usage of the wavelet transform in astrophysics has

become very popular in recent years. Table 1 compiles the

number of publications on ADS1 in a given range of years

that have the word ‘wavelet’ contained in their abstracts.

Clearly, the usage of wavelets has gained popularity

quickly. Typical applications for wavelet transform–

basedmethods are morphological separation of sources in

images and noise removal. The success of wavelet-based

methods in astrophysics is in part due to the fact that

astrophysical data often contain information on different

angular or spectral scales. For example, an optical image

of a galaxy contains compact, bright stars as well as

extended and faint emissions from the bulge and spiral

arms.Multi-scalemethods, such as thewavelet transform,

allow researchers to investigate the different scales of an

image separately (Starck & Bobin 2010).

The most widely used type of wavelet transformation

is the so called undecimated or redundant, isotropic

wavelet transformation. This is in part due to the algorith-

mic simplicity of the method but also because undeci-

mated wavelet transforms have proven to be more

efficient for noise removal then their decimated counter-

parts. Apart from that, they also provide a number of

computational advantages when reconstructing an image

from a subset of its wavelet coefficients (Starck et al.

2010).

In this paper we review the basics of denoising based

on the undecimated wavelet transformations in Section 2

and present an extension of the wavelet transform to

three-dimensional data as proposed in Starck et al.

(2009). Section 3 describes the implementation of the

transform in Cþþ along with a description of where the

implementation departs from the original algorithm.

A first application of the algorithm is shown in Section 4,

where we use the algorithm to implement a source finder

and test the performance on simulated HI galaxies. We

close the paper with a summary and an outlook on future

applications and potential improvements to the algorithm.

2 Wavelet Denoising

The isotropic, undecimated wavelet transform (IUWT)

decomposes data D(x) into Jþ 1 subbands

DðxÞ ¼ cJ ðxÞ þ
XJ
j¼1

wjðxÞ ð1Þ

where cJ is a smooth version of the data and the details at

position x and scale j are contained in the wavelet

1
NASA Astrophysics Data System, http://adswww.harvard.

edu/

Table 1. Number of abstracts on ADS containing the word
‘wavelet’ for given date ranges

Years Number of abstracts

Until 1995 251

1996–2000 679

2001–2005 1221

Since 2006 1797
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coefficients wj(x). The IUWT can be efficiently calcu-

lated by using the so called ‘algorithme à trous’

(Holschneider et al. 1989). To calculate the IUWT one

needs to convolve the input data with increasingly larger

kernels. To calculate the next convolution, the algorithme

à trous convolves the previously convolved data again

with the same kernel with 2j zeros inserted between the

kernel values. For multidimensional transforms this

insertion of zeros is done isotropically in all dimensions.

This allows efficient calculation of even the largest scales.

At each step, two consecutive convolved versions of

the data cj(x) and cjþ1(x) are used to calculate the wavelet

coefficients wjðxÞ ¼ cjðxÞ � cjþ1ðxÞ. The number of

scales is usually chosen to be blog2 Nic, where Ni is the

number of samples per dimension in a data set, for

example an image with N1 � N2 pixels. A more detailed

description can be found in Starck et al. (2010).

When usingwavelets to denoise data, one assumes that

the signal in the data, for example the sources, can be

described by only a few relevant coefficients in each of

the detail subbands wjðxÞ; that is, that the signal is sparse
in a given wavelet representation. Consequently, one can

try to detect only the relevant coefficients and reconstruct

the image from those.

The detection is usually based on estimating the

standard deviation sj of the coefficients in a given sub-

band and only take the coefficients with absolute values

above a certain threshold tsj to be significant. t is usually
chosen to be between 3 and 5. Then, if one applies

Equation 1, with all insignificant coefficients set to zero,

one obtains a denoised approximation of the data.

Since this nonlinear denoising benefits greatly if

iterated a few times, Murtagh et al. (1995) developed

the notion of a multi-resolution support, M, that contains

information about whether the data has a significant

coefficient at a given location and scale. The multi-

resolution support is defined as follows:

Mðx; jÞ 1 if wjðxÞ is significant
0 else:

�
ð2Þ

Using this multi-resolution support, one can imple-

ment the following iterative reconstruction scheme:

1. Detect all significant coefficients wj(x) and store this

information in the multi-resolution support M(x, j).

2. Calculate the IUWT of the data D and reconstruct the

image only from the coefficients that belong to M to

obtain ~D.
3. Calculate the residual R ¼ D� ~D.
4. Calculate the IUWT of R and again only retain the

coefficients that belong to M. Add this reconstruction

to ~D.
5. Go to step 3 until the desired number of iterations is

reached.

In practice a small number of iterations (,10) is suffi-

cient. Many examples of how iteration improves the

denoising process can be found in Starck et al. (2010).

2.1 Extension to 2D–1D Data

The aforementioned decomposition and reconstruction

works very well if the relevant signal in the data is iso-

tropic or nearly isotropic. This is true for most 1D and 2D

astrophysical data like spectra and images. In the case of

imaging spectroscopic surveys like the former HI Parkes

All-Sky Survey (HIPASS; Barnes et al. 2001; Koribalski

et al. 2004), the ongoing Effelsberg-Bonn HI Survey

(EBHIS; Kerp et al. 2011; Winkel et al. 2010), the

Arecibo Legacy Fast ALFA Survey (ALFALFA;

Giovanelli et al. 2005) and future surveys with WSRT–

Apertif (Oosterloo et al. 2009) and the Australian SKA

Pathfinder (ASKAP; Johnston et al. 2008), the data is

three-dimensional with two angular and one spectral

dimension, which is referred to as a data cube. Since

spatially unresolved sources can still be resolved spec-

trally, sources generally do not have the same size among

the three different axes of the data cube. This leads to

anisotropy, which makes isotropic denoising schemes

inefficient, since the wavelet decomposition does not

match the natural shape of the sources very well. None-

theless, the sources can be considered partly isotropic in

each individual spectral slice (channel map) and are also

approximately isotropic along each line of sight. It is

therefore beneficial to split the wavelet decomposition up

into a two-dimensional angular and a one-dimensional

spectral part.

The theoretical foundation for this 2D–1D transforma-

tion is laid out by Starck et al. (2009), who applied a

2D–1D denoising to data from the Fermi LAT (Atwood

et al. 2009). Fermi LAT data has either two angular

domains and one spectral or two angular domains and

one temporal. Even though very different from radio

astronomical observations in its noise characteristics, it

is similar to data from imaging spectroscopic surveys in

terms of the dimensionality.

To calculate a wavelet representation that accounts

for this difference in axis type, they first calculate a

2D IUWT of each channel map and subsequently apply

a 1D IUWT along each pixel of this wavelet-coefficient

data cube. When applying this decomposition with J1
angular and J2 spectral scales one arrives at a decomposi-

tion of the form

DðxÞ ¼ cJ1;J2ðxÞ
þ
X
j1

wj1;J2ðxÞ þ
X
j2

wJ1; j2ðxÞ

þ
X
j1; j2

wj1; j2ðxÞ: ð3Þ

Analogous to Equation 1, cJ1;J2ðxÞ is the smooth version at

angular scale J1 and spectral scale J2. The second row

contains the coefficients that arise from either spectral

decomposition of the smooth angular scale or angular

decomposition of the smooth spectral scale. The last sum

of coefficients wj1;j2 contains the detail of the data at

angular scale j1 and spectral scale j2.
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To implement an iterative denoising scheme as

described above, one again has to construct a five-

dimensional (two angular dimensions, one spectral

dimension, and two scale indices) multi-resolution sup-

port Mðx; j1; j2Þ. Once all significant coefficients are

detected, the iterative reconstruction can be applied as

described in the previous section.

3 Implementation

3.1 Scale Selection

In general, the denoising of data is performed by

decomposing the image with the maximum number of

scales, i.e. Ji ¼blog2 Nic. There are however certain

advantages in using only a subset of decomposition scales

for both the angular and spectral regimes. This is espe-

cially true when the denoised image only serves as a mask

to find sources in the original data and complete flux

reconstruction is not of importance.

The signature of a galaxy in neutral hydrogen surveys

is typically small compared to the dimensions of the data

cube. It is therefore unlikely that onewill miss any sources

when leaving out all decomposition scales that belong to

larger spectral or angular scales. Especially for single-

dish observations, the information contained at very large

scales is most likely due to baseline errors or radio-

frequency interference (RFI). By neglecting the larger

scales, one can suppress those errors in the reconstruction

and extract sources even from suboptimal data. This

property is investigated in Section 4.3.

For this reason, the reconstruction in our algorithm is

done with a ‘physical’ subset of angular and spectral

scales that are likely to contain the signal of sources.

Likewise, the coefficients wJ1; j2 , wj1; J2 and the smooth

data cJ1;J2 , which all contain the information at the largest

scales, are not taken into account, and are not part of the

reconstructed data.

What scales are to be considered physical depends on

the type of source one is looking for. In this paper we

mainly focus on extragalactic objects, namely HI galax-

ies, which are typically not larger than a few arcminutes.

What scales then contain the desired objects depends on

their typical angular and spectral size and the respective

sampling of the dimensions on the voxels of the data cube.

Additionally, we only reconstruct the data from the

positive wavelet coefficients. This approach is different

from the usual iterative approach, where all significant

wavelet coefficients are used and the negative values of

the reconstruction are set to zero at each iteration. We

noticed that, by choosing only the positive coefficients

and using mathematical morphology (see next section),

we suppress the artifacts that arise during partial recon-

struction from wavelet coefficients (Starck et al. 2007). If

unsuppressed, these artifacts make the use of the recon-

struction as amask for source finding difficult, as they can

also lead to merging of sources. On the other hand, this

positivity constraint makes searching for negative fea-

tures, such as absorption lines, impossible.

3.2 Mathematical Morphology

Another advantage of storing the information of the

significant coefficients in the multi-resolution support is

that one can perform mathematical morphology on it

(Serra 1982). Generally, data cubes are created in such a

way that the sampling of the telescope beam fulfills the

Nyquist sampling theorem (Nyquist 1928), meaning

that it is sampled on at least two pixels in every direction

(including the diagonal). This means that real sources are

larger than a single pixel in the angular dimension and

are most likely also sampled in more than one spectral

channel. Furthermore, it is well known that significant

structures propagate through the different scales of the

IUWT. Sources will therefore be present in multiple

adjacent coefficients in the three dimensions of the data

as well as adjacent spatial and spectral scales and form

connected regions in the five-dimensional multi-

resolution support.

To further suppress the noise in the reconstruction we

perform a five-dimensional morphological opening of the

multi-resolution support.Morphological opening consists

of the successive application of an erosion followed by a

dilation. The former removes elements from the multi-

resolution support if one of its neighbors (in all five

dimensions) is 0, and the latter does the opposite, that is

adding elements to the multi-resolution support if one of

its direct neighbors is 1. This amounts to a successive

shrinking and growing of objects in the five-dimensional

multi-resolution support.

Objects spanning all five dimensions of the multi-

resolution support are not affected by this operation.

However, objects that do not span all five dimensions,

and are therefore likely to be noise artifacts, are removed.

This allows us to use much lower thresholds, of typically

1.5sj, during reconstruction. For the purposes of source

finding this is an increase in both sensitivity and

reliability.

3.3 Memory Layout and Processing

The described 2D–1D denoising has been implemented in

Cþþ using the à trous algorithm in both the two-

dimensional angular, as well as the one-dimensional

spectral transformation. The complete storage of all

wavelet coefficients would take J1� J2 the amount of

memory of the original data, which can easily exceed the

available computing resources for the typical size of a

data cube of several hundreds of MB. Here, we deal with

this major issue by performing the reconstruction on the

fly. Such a serialized method only needs to store the an-

gular smoothed version cj, the angular wavelet coeffi-

cients wj1
, and the reconstruction ~D. This way, the

memory consumption of the algorithm is greatly reduced,

being now independent of the number of angular and

spectral scales analyzed.

Another memory concern is the size of the multi-

resolution support, that has to store N1�N2�N3�
J1� J1 Boolean values, where Ni is the size of the data
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cube in pixels along the ith axis. For this purpose, the

Standard Template Library (STL) for Cþþ implements a

specialized container that is able to store Boolean values

as individual bits rather than bytes, which makes the

memory footprint of the multi-resolution support

acceptable.

The splitting of the different wavelet transformations

makes this denoising scheme a prime candidate for

parallel computing. Using the OpenMP2 library, the

angular wavelet decomposition of each spectral channel,

as well as the spectral wavelet decomposition of each line

of sight, was implemented to be computed in parallel.

4 Simulations

To examine the various aspects in the sections below, we

created 1000 simple HI galaxy templates using the GIPSY
3

task galmod. The galaxies were simple disks with ran-

dom inclination and maximum rotational velocity, while

we kept the overall brightness profile and rotation curve

fixed.

Noise was generated according to the specifications of

the WALLABY4 survey (Koribalski & Staveley-Smith

2009; also see Koribalski 2011, this PASA issue). The

models were convolved with a Gaussian beam of approx-

imately 3000 and inserted into data cubes with an rms noise

of 1.8mJy/beam. The exact specifications are, however,

not important for the simulations, since all tested quanti-

ties are given in terms of signal-to-noise ratios and the

algorithm only operates on the pixel grid of the data.

Differing beam sizes should therefore yield the same

results if the beam is sampled on the same number of

pixels.

The algorithm was run on multiple data cubes of 300

by 300 pixels and 600 channels size that each contained

20 random galaxies at random positions.

4.1 Source Scaling

Since the proposed algorithm is sensitive to the complete

source signal in the data as opposed to the peak flux, for

example, we scaled each of the 1000 galaxies to a fixed set

of integrated signal-to-noise ratios. Since the integrated

signal-to-noise ratio (ISNR) is dependent on the volume

over which it is calculated, we first determined the opti-

mal volume for each of our models. This was done by

starting with the brightest voxel of the model and suc-

cessively adding the next fainter one. This way, both the

total flux and ISNR will increase as a function of the

number of voxels added. At a certain point, the flux in

the added voxels becomes very low, since one adds the

faint ‘outskirts’ of the model. At this point the ISNR will

go down since one adds more noise than source flux. This

behavior can be seen in Figure 1. The flux at this optimal

ISNR is then scaled to yield the desired ISNRs.

4.2 Example Reconstruction

Figure 2 shows the typical result of a reconstruction by the

described algorithm. The top panel shows one of our

scaled templates. In the middle panel, the simulated noise

was added. The bottom panel shows the same data cube

after the application of the described denoising algorithm.

In general, the reconstruction does not restore the full flux

of the inserted model and also has a changed appearance

as compared to the model. This is especially true for low

2
http://openmp.org

3
http://www.astro.rug.nl/~gipsy/

4
http://www.atnf.csiro.au/research/WALLABY/

100 101 102 103 104 105

100 101 102 103 104 105

10�4

10�3

10�2

10�1

100

T
ot

al
 fl

ux

Voxels

0.01

0.1

1

In
te

gr
at

ed
 S

/N

Figure 1 Normalized total flux (top) and normalized integrated

signal-to-noise ratio (bottom) as a function of the number of voxels

added up, ordered by flux in descending order, for a given source

model.
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Figure 2 Example of a wavelet reconstruction by the described

algorithm. From top to bottom the panels show: source model only;

source model with added noise; reconstruction by the algorithm.
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signal-to-noise sources, since the reconstruction becomes

limited by noise. For more pronounced sources, however,

there is a good correlation between model flux and

reconstructed flux. This is shown in Figure 3: we plot

recovered flux of the reconstruction (left panel) as well as

the flux recovered from the data when using the recon-

struction as a mask (right panel) as a function of ISNR.

Especially for ISNR 32 and 16, the recovered flux mat-

ches the model quite well. It is also interesting to note that

the flux from the reconstruction seems to be closer to the

true flux than the flux calculated from the data. In any

case, this evaluation also shows that the masks obtained

from the reconstruction should not be used as the final

masks without further treatment.

4.3 Robustness

Since real data does not usually contain ideal noise and

sources, we evaluated the robustness of the proposed

algorithm against two common types of data defects:

baseline ripple and RFI.

To simulate these effects, we added a sine wave to one

simulated data cube with a varying phase along one

angular axis. To simulate the presence of RFI we inserted

30 single-channel spikes in the data and reran the wavelet

reconstruction. The result can be seen in Figure 4. Clearly,

the wavelet reconstruction is not affected by the rather

severe presence of RFI and baseline ripple. This is

because both the baseline ripple and RFI are present in

scales different from the scales of the sources. By care-

fully selecting which scales to reconstruct the data from,

we can exclude many such defects.

4.4 Completeness and Reliability

The twomain measures of the goodness of a source finder

are its completeness as a function of source signal and the

corresponding reliability. The completeness is expressed

as the percentage of sources that have been positively

identified by the source finder. The reliability is calcu-

lated as the number of true sources divided by the total

number of objects found by the source finder and gives a

measure of the probability that a given object is indeed a

source or a false positive.

To test the performance of the algorithm as a source

finder, we set up a simple source finding pipeline by using

several functions from the SCIPY
5 package ndimage.

After the wavelet reconstruction, the ndimage functions

label and find_objects are used to generate the

objects. For this purpose label searches the data cube

for connected objects, that is, regions where the flux is

greater than zero, and marks each region with a unique

number. find_objects then generates a list of slices

that each fully contain one of the labeled objects. Those

slices are then used to calculate various parameters like

the total flux of the reconstructed object FR, the total flux

in the original data FD when applying the reconstruction

as a mask, and various shape parameters like the size in

channels. To check whether a given object is a true

detection, we use a noise-free version of the same data

set and check for intersections with the noise-free sources

above 20% of the peak flux of a galaxy.

4.4.1 False Positives

To achieve a reasonably high completeness even for

very faint sources, one has to use very low thresholds

which will lead to an increasing number of false positives.

After the contrast enhancement, the identification of false

positives is a key task of every source finder.

Since the sources of the false positives, noise peaks, are

greatly suppressed by the algorithm, they mostly stem

from the larger wavelet coefficients where the noise peaks

are spread out over a sufficiently large volume to not be
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Figure 3 Recovered flux as a function of ISNR. The crosses show

the mean of 1000 galaxy models and the error bars indicate the

standard deviation in each bin. The left panel shows the recovered

flux as obtained from the wavelet reconstruction. The right panel

shows the recovered flux when applying the wavelet reconstruction

as a mask for data and calculating the flux from the masked data.
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Figure 4 Same as Figure 2, but for corrupted data. In addition to

the simulated noise, the middle panel shows a sinusoidal varying

baseline and added RFI spikes.
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http://scipy.org
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removed by the morphological opening. This leads to a

very low reconstructed total fluxFR and they are therefore

easily separated from the real sources.

Figure 5 shows the correlation for three parameters

from the simulation with resolved sources (see Sec-

tion 4.4.3), all directly measured from either the recon-

structed or the original data. It is evident that all false

positives cluster in one region of the respective plots and

that they exhibit very low FR and FD. Therefore, by

applying a simple cut in the parameter space of the

detections, the number of false positives can be greatly

reduced without sacrificing much of the completeness.

By only taking sources that have both FR and FD larger

than 10mJy km s�1, we exclude 96% of all false positives

but only 5% of true positives. The area in which sources

fulfill this condition is indicated by the dashed lines in

Figure 5.

4.4.2 Point Sources

We tested the completeness as a function of ISNR for

both extended sources as well as point sources. To obtain

realistic line profiles for the point sources, the extended

models were summed in each channel and the resulting

spectrum convolved with the beam. The resulting point-

source model was then scaled to the desired ISNR.

The results of the run are summarized in Figure 6.

Starting from ISNR0.5, we increased the ISNRby a factor

of two from bin to bin. Since the drop in completeness

between ISNR 8 and 4 is rather sharp, we ran additional

simulations in between those values.

The lower panel in Figure 6 shows that the source

finder is indeed sensitive to the extended signal of the

sources as we detect sources with a larger line width but

lower peak signal-to-noise than the sources we do not

detect for smaller line widths.

The reliability for these results is close to 100%. We

achieved this by applying the cut discussed in the previous

section. Note that Figure 5 was made from the run with

resolved sources.

4.4.3 Extended Sources

The second run was made with the extended galaxies

which are clearly resolved by the simulated observations.

Figure 7 shows the results of this run in a similar fashion to

Figure 6. We again cut at FR and FD# 10mJy km s�1 to

reach a reliability of 97%.

1 2 3 4

log10 (Voxels)

−4

−2

0

2
lo

g 1
0 

(F
R

/J
y 

km
 s

−
1 )

−4 −2 0 2

log10 (FD /Jy km s−1)

Figure 5 Distribution of the detection parameters FR, the flux in

the reconstruction, FD, the flux in the detection as measured on the

original data, and the number of voxels a given object occupies.

The green points indicate true detections, the red points false

detections. The dashed lines indicate 10mJy km s�1 for FR and

FD, respectively.
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Figure 6 Results from the simulation with spatially unresolved

sources. The top panel shows the completeness as a function of the

ISNR as probed in our simulations. The lower panel shows the

completeness as a function of (logarithmic) peak signal-to-noise

ratio and line width of the source. The white areas in the lower plot

have not been tested. The reliability for this plot is 99%.
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Figure 7 Same as Figure 6 for spatially extended sources. The

reliability for this plot is 97% and the fragmentation 3%.
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The boundary from 100% completeness to 0% is

substantially smoother than in the case of the point

sources. This behavior comes from the fact that extended

sources can be extended in the angular domain while at

the same time being very narrow in the spectral domain,

such as a galaxy seen face-on. This makes it substantially

easier to detect galaxieswith narrow line widths as long as

they are extended in the angular domain. This is also

evident from the lower panel in Figure 7, where one can

see that narrow line-width galaxies are detected to a lower

peak signal-to-noise ratio than large line-width galaxies.

For this simulation, we also encounter a phenomenon

usually called fragmentation. We calculate it as the

percentage of sources that have been detected two or

more times. This can occur when a source with a very

large line-width is split into two detections. Furthermore,

as mentioned in Section 3.1, wavelet denoising schemes

are generally prone to producing artifacts during the

denoising process. Because of the simple way we deter-

mine whether a source is a true or a false detection, those

artifacts can also cause multiple detections of the same

source. We are therefore confident that the fragmentation

rate will decrease somewhat as the object identification

process improves.

5 Summary

We have shown how 2D–1D wavelet denoising schemes

can be used for source finding. Even with very simple

post-processing of the denoised data, we set up an effi-

cient source-finding pipeline. Particularly because of the

algortithm’s robustness, it seems promising that it will

work well on real data, which is certainly the next test to

be passed.

Even though the splitting of the wavelet transforma-

tion into a 2D and 1D part avoids some of the difficulties

that arise with anisotropic sources, it is far from perfect.

A better denoising would involve the use of a full 3D

curvelet transformation (Candes et al. 2007; Ying et al.

2005). This transformation is, however, computationally

much more difficult and demanding on the available

hardware. We therefore think that our approach is a good

compromise between sensitivity and computational com-

plexity. But with more powerful hardware or more opti-

mized algorithms, denoising by use of the curvelet

transform might become feasible, even for the large data

sets we expect from future radio telescopes.

Furthermore we would like to stress that even though

this algorithm was developed with HI surveys in mind, it

will in principle work for every kind of data that is similar

to the data product of such a survey, such as other spectral

line surveys.
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