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Low-order modelling of three-dimensional
surface waves in liquid film flow on a rotating
disk
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Using low-dimensional numerical simulations, we investigate the characteristics of
complex and three-dimensional surface waves in a liquid film flowing over a rotating disk,
focusing on large flow rates from a nozzle. Existing integral boundary layer (IBL) models,
which are based on spatially averaged variables along the direction normal to the disk
surface, have primarily focused on the formation of axisymmetric waves under relatively
small flow rates. In this study, an extended IBL model that accounts for both laminar and
turbulent regimes is developed by considering the non-uniformity of the local flow rate in
the spreading film flow and incorporating closure models dependent on the local Reynolds
number. Our numerical results successfully capture the generation of concentric waves by
an impinging circular liquid jet and their transition into three-dimensional solitary waves.
These findings are in good agreement with visualization images and time-series data of
free-surface fluctuations from a displacement sensor. The backscattering of small-scale
three-dimensional turbulence into large-scale horizontal turbulence inside the film plays
a critical role in determining the transition of wave modes and the nonlinear dynamics of
the waves in the turbulent regime. Furthermore, the behaviour of three-dimensional waves
in the downstream region, including frequent wave coalescence in the transition region
and the breakup of small-scale solitons, is distinct from that of gravity-driven falling film
flows. The amplitude of the three-dimensional waves is inversely related to the generalized
Reynolds number defined for rotating films.

Key words: thin films

1. Introduction

Viscous liquid films spreading over a horizontally rotating disk are widely encountered
in engineering applications such as spin coating, chemical reactions, and heat and mass
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transfer enhancement because they rapidly reach a fully wetted state. However, in typical
scenarios, the flow of these films is accompanied by the formation of large-amplitude
surface waves near the inlet region. The surface waves undergo a series of transitions as
they propagate outwards along the film. The modelling and control of these waves are
crucial, significantly affecting the performance and effectiveness of applications based on
liquid film flow over a rotating disk (Aoune & Ramshaw 1999).

Low-order modelling of surface waves in film flow typically relies on integral boundary
layer (IBL) models. These models exclude the vertical components of the velocity and
pressure fields from the full Navier–Stokes equation, introduce the assumption of a
polynomial velocity profile and describe the dynamics of a liquid film as a function of
thickness and depth-averaged velocity. Integral boundary layer models are often used
because they require lower computational cost than full three-dimensional simulations.
Since Shkadov (1968) derived pioneering two-dimensional equations, the application
of the integral formulation has been popular in modelling gravity-driven liquid film
flows. Ruyer-Quil & Manneville (2000) presented an improved weighted residual integral
boundary layer (WRIBL) model that implements the Galerkin method with polynomial
basis functions in assuming the local velocity profile. The WRIBL model is a valuable tool
for modelling the dynamics of solitary waves in gravity-driven films (Chang & Demekhin
2002; Craster & Matar 2009; Kalliadasis et al. 2012; Ruyer-Quil et al. 2014). Integral
boundary layer equations for resolving three-dimensional waves have also been developed.
Since Demekhin & Shkadov (1985) suggested the IBL approach for both the spanwise
and streamwise directions in computing three-dimensional surface waves, the dynamics
of three-dimensional solitary waves have been studied within the IBL framework (Scheid,
Ruyer-Quil & Manneville 2006; Demekhin et al. 2007). Recently, the IBL models have
been applied for the investigation of three-dimensional waves in more practical conditions
such as film flows on moving (Ivanova et al. 2023) or cylindrical (Ding & Wong 2017)
surfaces and film flows with surfactant (Batchvarov et al. 2021).

As for the modelling of surface waves in film flow over a rotating disk, integral
formulations based on two-dimensional equations have been used to obtain steady
axisymmetric solutions (Miyasaka 1974a; Sisoev, Tal’drik & Shkadov 1986) and explore
the characteristics of linear stability (Charwat, Kelly & Gazley 1972; Sisoev & Shkadov
1987, 1990). Furthermore, Sisoev, Matar & Lawrence (2003) introduced a set of
two-dimensional IBL equations under axisymmetric assumptions. Numerical solutions
of this axisymmetric IBL model revealed the emergence of a group of surface waves
known as axisymmetric waves, which arise due to convective instability in the downstream
(outward) region. Subsequent investigations have focused on the spatiotemporal evolution
of these axisymmetric waves and their impacts on heat and mass transfer (Matar, Sisoev
& Lawrence 2004; Sisoev, Matar & Lawrence 2005; Kim & Kim 2009; Prieling & Steiner
2013). The axisymmetric waves predominantly occur under relatively small flow rates
and high viscosities, where the dynamics of surface waves are strongly influenced by
centrifugal and Coriolis forces. However, the structures of surface waves are more intricate
and typically three dimensional in larger inlet-flow-rate conditions. That is, existing IBL
models have only been successful in capturing axisymmetric wave patterns.

Dynamics of surface waves under large inlet-flow-rate conditions are much different
from those of axisymmetric waves. The spatial distribution of the local flow rate is
non-uniform due to the radial spreading of the liquid from the inlet, and so various
wave regimes emerge locally along the flow path. These are clearly different from the
aforementioned axisymmetric waves. The regimes observed sequentially from upstream
to downstream in the radial direction include input, first laminar-wave, turbulent,
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Surface waves in film flow on a rotating disk

and second laminar-wave regimes (Butuzov & Pukhovoi 1976). The wave regimes
observed under large-flow-rate conditions can be simplified as large-scale laminar waves
that form upstream and subsequently undergo breakup, leading to the generation of
three-dimensional waves. The breakup of concentric laminar waves, known as wave
turbulization, gives rise to a chain of three-dimensional solitary pulses, often referred to
as Λ solitons (Charwat et al. 1972; Miyasaka 1974b; Butuzov & Pukhovoi 1976; Thomas,
Faghri & Hankey 1991; Leneweit, Roesner & Koehler 1999; Li et al. 2019). The primary
objective of the present work is to establish a novel IBL model capable of capturing the
formation of the Λ-soliton regime, thereby providing valuable physical insights into the
dynamics and characteristics of these three-dimensional waves.

In this study the classical IBL equations are extended to encompass the modelling
of wave turbulization in the film flow spreading over a rotating disk. It is widely
acknowledged that the behaviours of Λ solitons in gravity-driven falling films are governed
by the Reynolds number, which is defined as the ratio of the volumetric flow rate per unit
transverse width to the kinematic viscosity (Adomeit & Renz 2000; Demekhin et al. 2007,
2010). Given that the flow rate in a spreading film is not uniformly distributed (unlike
in falling films), we employ the local Reynolds number, which is proportional to the
non-uniform local flow rate. In the region with low local Reynolds number, the flow is
considered laminar, and the assumptions of existing IBL models are valid. However, in the
region near the inlet with high local Reynolds number, the flow can be approximated as
turbulent shallow water with strong surface tension. A similar approach was suggested
by Mendez et al. (2021) for high-Reynolds-number film flow in jet wiping processes.
In line with this approach, the present work suggests a shallow-water model specifically
tailored for turbulent films spreading over a rotating disk. Furthermore, our modelling
considers, for the first time in the modelling of film flows, the effect of internal turbulent
structures, referred to as sub-depth scale turbulent structures. A depth-averaged model
proposed for turbulent shallow water (Hinterberger, Fröhlich & Rodi 2007) is modified
and integrated into the governing equations. The IBL formulation proposed in this paper
is a comprehensive model that covers both laminar and turbulent regimes, with the aim of
describing the transition from two- to three-dimensional surface waves. By analysing the
wave structures obtained from low-order numerical simulations, the distinct features of the
three-dimensional waves in rotating films are elucidated.

In § 2, our problem and experimental set-up are described, followed by an explanation of
the proposed modelling strategy. A detailed derivation of the IBL equations is provided in
§ 3. The numerical methods adopted to solve the IBL equations are presented in § 4. In § 5,
numerical results are validated against experimentally obtained visualization images and
film thickness data, and the effects of the backscatter model on the dynamics of the film
flow are examined. The interaction modes between three-dimensional waves and variations
in their scales under different flow conditions are also discussed. Finally, concluding
remarks are presented in § 6.

2. Problem description and modelling strategy

2.1. Problem description
The flow configuration considered throughout the present study is illustrated in figure 1(a).
Liquid is supplied by a circular jet discharged vertically from a nozzle. The circular liquid
jet is chosen as the inflow configuration because it is more extensively used than collars
and slot jets. Hereafter, dimensional parameters are denoted with a hat symbol (·̂). The
liquid jet from the nozzle, with inner diameter d̂ and volume flow rate Q̂, impinges on
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Figure 1. (a) Schematic and (b) visualization image for flow configuration and surface wave regimes. In panel
(b) the angular velocity of the disk is Ω̂ = 52.4 rad s−1, and the volume flow rate of the liquid jet at the nozzle
exit is Q̂ = 12.5 mL s−1.

Ω̂ Disk angular velocity 30.0–420.0 (rad s−1)
Q̂ Nozzle volume flow rate 10.0–50.0 (mL s−1)
Ĥ Nozzle vertical position (height) 5–20 (mm)
d̂ Nozzle inner diameter 3 (mm)
ν̂ Liquid kinematic viscosity 1.00 × 10−6 (m2 s−1)
σ̂ Liquid surface tension 0.072 (kg m s−2)
ρ̂ Liquid density 998.2 (kg m−3)
ĝ Gravitational acceleration 9.81 (m s−2)

Table 1. Input parameters (liquid: water at 20 ◦C).

the centre of a disk rotating with angular velocity Ω̂ . The distance from the nozzle exit
to the surface of the disk is Ĥ. The origin of the coordinate system is fixed at the centre
of the rotating disk, and the coordinate system rotates together with the disk. Here ûr,
ûθ and ûz represent the radial, angular and vertical components of velocity, respectively.
The ranges of the input parameters are presented in table 1. The selected ranges of the
nozzle flow rate Q̂ and disk angular velocity Ω̂ encompass conditions that induce the
generation of three-dimensional waves for the working fluid. For smaller values of Q̂ and
Ω̂ , other regimes of waves, including axisymmetric waves and gravity waves, may occur
downstream. Exact ranges of Q̂ and Ω̂ for each wave regime are presented in Appendix A.
When a circular liquid jet impinges on a flat surface, a thin viscous boundary layer is
formed in the vicinity of the stagnation zone (Wang & Khayat 2018). The thickness of
the boundary layer increases radially until it merges with the liquid–gas interface at r̂ =
r̂0 (figure 1a). Upstream of the merger point, the long-wave approximation required for
integral modelling is no longer valid. Therefore, modelling the region of r̂ < r̂0 relies on
the theory of impinging liquid jets.

2.2. Experimental set-up
To validate the IBL model, visualization and sensor experiments are conducted. The
experimental apparatus (figure 2) provided by SEMES Co., Ltd.consists of a rotating-disk
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Surface waves in film flow on a rotating disk
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Figure 2. Experimental set-up.

module and an impinging-jet module, along with their respective control units. In the
rotating-disk module a silicon disk of diameter 0.3 m is mounted on a vacuum chuck.
The centre of the disk is securely fixed to the vacuum chuck by imposing a negative
pressure of −95 Pa through a vacuum pump. A servo motor rotates the chuck and disk at
the designated angular velocity Ω̂ . Deionized water at a temperature of 20 ◦C is discharged
from the nozzle. The control units for the motor motion, nozzle position and mass flow rate
are all integrated into the apparatus.

The film flow is visualized using a high-speed camera (FASTCAM MINI-UX 50,
Photron, Inc.) at a sampling rate of 2000 frames per second. The camera is positioned at
a vertical distance of 50 cm above the disk, and an LED light source is used to illuminate
the disk surface. To measure the displacement of the water–air interface, a confocal
displacement sensor (CL-P015N, Keyence Co., Ltd.) with a resolution of 0.25 μm is
installed above the rotating disk. The vertical displacement of the interface is measured at
multiple points with a sampling frequency of 104 Hz. The measurement points are located
at r̂ = 43 and 109 mm from the disk centre. For detailed information on the measurement
method and data processing of the confocal chromatic sensors in film flows, see Hu et al.
(2021) and Ubara, Sugimoto & Asano (2022). The time series of interface displacement
include the mechanical vibration of the motor–disk system, which has a much slower
time scale than the dynamics of surface waves. To remove the signal corresponding
to mechanical vibration, a baseline filtering method based on sparsity (Ning, Selesnick
& Duval 2014) is employed. A cutoff frequency of 10 times the rate of disk rotation
(10Ω̂/2π) is applied. As a result, the data obtained from the sensor experiment capture
the vertical fluctuations of film thickness.

2.3. Modelling strategy
Figure 1(b) presents a visualization of the typical transitional surface waves formed
on a rotating film flow. In the upstream region, concentric waves are generated from
the impingement zone of the liquid jet and propagate downstream (outwards). These
two-dimensional waves are accompanied by azimuthal instabilities, which become
more pronounced as Ω̂ increases. Once the concentric waves reach a critical radius,
three-dimensional solitary waves begin to develop. In the downstream region, coherent
wave structures known as Λ solitons emerge, characterized by their resemblance to
the Greek letter lambda (Demekhin et al. 2007). As the film spreads outwards, these
solitons undergo horizontal expansion while their peak thickness decreases. Additionally,
smaller-scale solitons are formed between the larger ones.

985 A4-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

27
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.274


D.J. Kim and D. Kim

Aforementioned observations are consistent with the experimental study of Butuzov &
Pukhovoi (1976), where the transition from the concentric-wave regime to the Λ-soliton
regime is referred to as wave turbulization. The criteria for this transition have been
described in terms of the local Reynolds numbers, which are defined based on the radial
flow rate (ReL,r = Q̂/2πr̂ν̂) and tangential velocity (ReL,t = Ω̂ r̂2/ν̂) at a given location.

In this study we consider the local flow rate per unit width, denoted as q̂ =| ∫ ĥ
0 (ûr, ûθ ) dz|,

as a pivotal variable governing the wave behaviours. The time-averaged horizontal flow
rate, 〈q̂〉, is the root mean square of the radial and tangential flow rates, which are roughly
proportional to ReL,r and ReL,t, respectively (Kim & Kim 2009). Since the local flow rate
q̂ is determined by disk angular velocity Ω̂ as well as nozzle flow rate Q̂, the choice of
q̂ as a key variable allows us to explore the influence of both the flow conditions on the
dynamics of three-dimensional waves, as presented in § 5.3.

According to Demekhin et al. (2007), in gravity-driven falling film flows, the transition
from two-dimensional waves to three-dimensional waves and roll waves occurs as
the global Reynolds number (ReG = Q̂/ν̂L̂) increases. The global Reynolds number is
calculated based on the total inlet discharge rate divided by the transverse width L̂ of the
domain. Flows with ReG above a certain threshold are considered to be turbulent or within
the transition regime, and are characterized by non-polynomial velocity profiles along the
direction normal to the disk surface and vortical structures in regions of high flow rate.
Regarding the threshold value for this transition, it is generally accepted that laminar
film flow occurs for Reynolds numbers below ReG ≈ 75 (Ishigai et al. 1972; Karimi &
Kawaji 1999; Demekhin et al. 2007). At higher flow rates, occasional turbulent spots are
observed when wave solitons interact. A fully turbulent film flow is typically considered
for Reynolds numbers above ReG ≈ 200 (Adomeit & Renz 2000).

The investigation of a rotating film flow in this work accounts for the transition of
wave regimes by considering the local flow rate q̂, which significantly decreases as the
film spreads outwards; see figure 3. Hence, we adopt the local Reynolds number ReL
proportional to q̂ to determine whether a region is subjected to laminar or turbulent
conditions: ReL = q̂/ν̂. Specifically, ReL in proximity to the jet impingement point exceeds
the criterion of transition from the laminar to turbulent regime given in previous studies
on falling films, and so the region near the jet impingement is turbulent. By contrast,
the downstream region with lower local flow rates (and local Reynolds numbers) is
predominantly laminar. Consequently, to develop accurate IBL equations for a rotating
film with three-dimensional solitary waves, it is essential to incorporate both laminar and
turbulent models, taking into account the local Reynolds number.

The concept of the turbulent regime in the film flow discussed in this study should not be
confused with the wave turbulization proposed by Butuzov & Pukhovoi (1976). The term
interfacial turbulence is commonly employed to describe the complex dynamics of solitary
waves. As the system of solitary waves exhibits robust coherent structures, continuously
interacting with each other as quasiparticles, it is often referred to as weak and dissipative
turbulence (Denner et al. 2018). Therefore, wave turbulization indicates the transformation
of concentric waves into a group of three-dimensional waves exhibiting spatiotemporal
chaos. The system of irregular solitary waves is typically associated with low-flow-rate
conditions. By contrast, the turbulence discussed in this study emerges when the local flow
rate is beyond the range in which solitary waves are observed. In this context, turbulence
refers to a hydrodynamic state characterized by the presence of internal vortex structures
(Hwang & Chang 1987; Adomeit & Renz 2000) and the dominance of roll waves, along
with a power-law velocity distribution in the vertical direction (Brauner 1989). This study
emphasizes the presence of turbulent film flow in the upstream region where the local
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Impinging jet-induced

concentric waves

Sub-depth scale

disturbance

Three-dimensional

solitary wave

r̂

〈R
e L

〉

Figure 3. Time-averaged local Reynolds number 〈ReL〉 with respect to radial position r̂.

flow rate is large. The turbulent structures in the upstream region are correlated with
the generation of chaotic solitary waves, known as wave turbulization, in the downstream
region.

Before proceeding with integral modelling, it is crucial to understand the source of
concentric waves in the upstream region. Although the exact mechanism remains unclear,
it is widely accepted that various interfacial flow phenomena arising from different nozzle
configurations affect the formation of concentric waves (Charwat et al. 1972). In this study
the concentric waves in the upstream region are caused by shear-induced disturbances on
the surface of the circular liquid jet prior to impingement. The inception of disturbances
on the jet interface is related with turbulent jets that are characterized by the jet Reynolds
number 4Q̂/(ν̂πd̂) exceeding approximately 4000 for a smooth circular nozzle (Lienhard
2006). In the current study the liquid jets under consideration are turbulent, falling within
the range of 4Q̂/(ν̂πd̂) = 4200–21 000. For scenarios with smaller Q̂ or Ĥ, concentric
waves can be suppressed according to Wang et al. (2023). The comprehensive analysis
about the effect of disk angular velocity Ω̂ on the initiation of concentric waves has
not been conducted. Nevertheless, we assume that the effect of Ω̂ is negligible for the
following reasons. Generation of concentric waves in the impinging zone occurs before the
interface is influenced by disk rotation, and the tangential velocity by disk rotation is small
near the disk centre; the effect of Ω̂ becomes significant only after the boundary layer
merger (r̂ > r̂0). Moreover, concentric waves are observed on a liquid film even without
disk rotation (Ω̂ = 0) when a turbulent liquid jet impinges on a solid surface (Lienhard
2006).

To investigate the effects of liquid jet disturbance, concentric waves are visualized in the
upstream region under various nozzle heights (figure 4). The volume flow rate Q̂ and disk
angular velocity Ω̂ are the same in all cases. As the vertical distance between the nozzle
and the disk increases, concentric waves with larger amplitudes and wavelengths appear.
Furthermore, the concentric waves exhibit greater azimuthal disturbances when the nozzle
is placed closer to the disk. Previous studies reported that surface disturbances on circular
liquid jets are significantly influenced by the distance from the nozzle (Lienhard, Liu &
Gabour 1992; Bhunia & Lienhard 1994). Thus, our experimental findings indicate that the
concentric waves in the upstream region are induced by the temporal fluctuations of the
impinging jet due to disturbances on the jet interface. The concentric waves are modelled
with an oscillatory input, having statistical characteristics that match the results from the
sensor experiment. The modelling of the oscillatory input is discussed in § 4.3.
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(a) (c)(b)

Figure 4. Formation of concentric surface waves in the upstream region under different nozzle heights Ĥ;
for all cases, Q̂ = 16.7 mL s−1 and Ω̂ = 52.4 rad s−1. Results are shown for (a) Ĥ = 40 mm, (b) Ĥ = 20 mm,
(c) Ĥ = 15 mm.

3. Integral modelling of film flow

The derivation of low-dimensional models for both laminar and turbulent regimes
follows a similar process involving depth integration and long-wave assumptions. The
governing equations integrated along the vertical direction include closure terms that
should be determined by different assumptions regarding the velocity profiles in the
vertical direction. The closure terms depend on whether the flow is in the laminar or
turbulent regime. In this section we first present the depth integration and long-wave
formulation, and then consider the application of closure models based on specific velocity
profiles for laminar and turbulent conditions.

3.1. Integral formulation of governing equations
The film flow is described by mass and momentum conservation equations, with
boundary conditions applied on the liquid–gas interface (ẑ = ĥ) and the disk surface
(ẑ = 0). The governing equations and boundary conditions are transformed into a set of
depth-integrated equations, employing the methodology presented by Kim & Kim (2009)
to derive IBL equations. As mentioned in § 2.1, the IBL equations presented below are
applicable for r̂ > r̂0, irrespective of the local Reynolds number. To make the governing
equations and boundary conditions dimensionless, the following normalization is adopted:

r = r̂

l̂
, z = ẑ

δ̂
, t = 1

Ω̂
,

ur = ûr

û0
, uθ = ûθ

û0
, h = ĥ

δ̂
, uz = ûz

δ̂Ω̂
, p = p̂

ρ̂ l̂2Ω̂2
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.1)
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Surface waves in film flow on a rotating disk

The dimensional pressure and time are denoted by p̂ and t̂, respectively. The characteristic
length scales for the horizontal direction, l̂ = (9Q̂2/4π2ν̂Ω̂)1/4, and the vertical direction,
δ̂ = (ν̂/Ω̂)1/2, are chosen following Rauscher, Kelly & Cole (1973). The reference
horizontal velocity û0 is defined as l̂Ω̂ . For a detailed discussion on scaling parameters
and normalization, see Kim & Kim (2009). The scaling proposed by Kim & Kim (2009),
which uses a universal length scale for both the radial and azimuthal directions, is more
suitable for modelling three-dimensional waves than scaling based on the Ekman number
(Sisoev et al. 2003). This is because the velocity fluctuations resulting from continuous
interactions among solitary waves in the downstream region means that the velocity scale
in the azimuthal direction is no longer distinct from that in the radial direction. The same
scaling holds upstream because the influence of the inertia force surpasses that of the
rotational body forces.

The governing equations and boundary conditions are formulated using the long-wave
approach, which assumes that the ratio between the horizontal length scale l̂ and the depth
scale δ̂ is much smaller than unity. In this study a dimensionless long-wave parameter
ε = δ̂/l̂ � 1 is introduced. The product of ε and the global Reynolds number, defined
as ReG = û0δ̂/ν̂, is of order unity. The global Reynolds number, therefore, does not
appear explicitly in the normalized governing equations and boundary conditions. The
dimensionless governing equations in the reference frame rotating with the disk are then
presented as

1
r

∂

∂r
(rur) + 1

r
∂uθ

∂θ
+ ∂uz

∂z
= 0, (3.2a)

∂ur

∂t
+ ur

∂ur

∂r
+ uθ

r
∂ur

∂θ
+ uz

∂ur

∂z
− u2

θ

r
= −∂p

∂r
+ r + 2uθ + ∂2ur

∂z2

+ ε2
(

∂2ur

∂r2 + 1
r

∂ur

∂r
+ 1

r2
∂2ur

∂θ2 − 2
r2

∂uθ

∂θ
− ur

r2

)
, (3.2b)

∂uθ

∂t
+ ur

∂uθ

∂r
+ uθ

r
∂uθ

∂θ
+ uz

∂uθ

∂z
+ uruθ

r
= −1

r
∂p
∂θ

− 2ur + ∂2uθ

∂z2

+ ε2
(

∂2uθ

∂r2 + 1
r

∂uθ

∂r
+ 1

r2
∂2uθ

∂θ2 + 2
r2

∂ur

∂θ
− uθ

r2

)
, (3.2c)

ε2
(

∂uz

∂t
+ ur

∂uz

∂r
+ uθ

r
∂uz

∂θ
+ uz

∂uz

∂z

)
= −∂p

∂z
− εFr−1 + ε2 ∂2uz

∂z2

+ ε4
(

∂2uz

∂r2 + 1
r

∂uz

∂r
+ 1

r2
∂2uz

∂θ2

)
, (3.2d)

where Fr = Ω̂2 l̂/ĝ is the Froude number. Equation (3.2a) is the dimensionless continuity
equation, whereas (3.2b–d) are the dimensionless momentum equations in the r, θ and z
directions, respectively.

The boundary condition on the disk surface (z = 0) is the no-slip condition, and the
kinematic boundary condition is imposed on the film surface (z = h). The dimensionless
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forms of these boundary conditions are

ur = uθ = uz = 0, at z = 0, (3.3a)

∂h
∂t

+ ur
∂h
∂r

+ uθ

r
∂h
∂θ

= uz, at z = h. (3.3b)

Tangential and normal stress balance conditions should also be imposed on the film surface
(z = h). Here, the shear stress induced by the gas flow above the film surface is neglected
(stress-free condition). These boundary conditions are(

ε2 ∂uz

∂r
+ ∂ur

∂z

)[
1 − ε2

(
∂h
∂r

)2
]

+ 2ε2
(

∂uz

∂z
− ∂ur

∂r

)
∂h
∂r

− ε2 1
r

∂h
∂θ

[
1
r

∂ur

∂θ
+ ∂uθ

∂r
− uθ

r
+
(

∂uθ

∂z
+ ε2 1

r
∂uz

∂θ

)
∂h
∂r

]
= 0, at z = h, (3.4a)(

ε2 1
r

∂uz

∂θ
+ ∂uθ

∂z

)[
1 − ε2

(
1
r

∂h
∂θ

)2
]

+ 2ε2
(

∂uz

∂z
− 1

r
∂uθ

∂θ
− ur

r

)
1
r

∂h
∂θ

− ε2 ∂h
∂r

[
1
r

∂ur

∂θ
+ ∂uθ

∂r
− uθ

r
+
(

∂ur

∂z
+ ε2 ∂uz

∂r

)
1
r

∂h
∂θ

]
= 0, at z = h, (3.4b)

−p − ε3κWe + 2ε2

[
1 + ε2

(
∂h
∂r

)2

+ ε2

r2

(
∂h
∂θ

)2
]−1

×
[

∂uz

∂z
−
(

∂ur

∂z
+ ε2 ∂uz

∂r

)
∂h
∂r

+ ε2 ∂ur

∂r

(
∂h
∂r

)2

−
(

∂uθ

∂z
+ ε2

r
∂uz

∂θ

)
1
r

∂h
∂θ

+ ε2
(

1
r

∂ur

∂θ
+ ∂uθ

∂r
− uθ

r

)
1
r

∂h
∂θ

∂h
∂r

+ ε2
(

1
r

∂uθ

∂θ
+ ∂ur

∂r

)
1
r2

(
∂h
∂θ

)2
]

= 0,

at z = h, (3.4c)

where κ denotes the mean curvature of the free surface and We = σ̂/ρ̂Ω̂2 l̂δ̂2 is the
Weber number. Boundary conditions (3.4a,b) concern the stress balance in the tangential
direction, whereas (3.4c) is the stress balance in the normal direction. The unknown film
thickness and small ε make numerical solutions from governing equations (3.2) subject to
boundary conditions (3.3) and (3.4) challenging. Hence, the boundary layer approximation
is introduced along with depth integration to simplify the equations.

Before the integral approach is employed to relate the film thickness h with the
horizontal velocity components ur and uθ , terms of O(ε2) and higher orders are neglected
in accordance with the first-order long-wave approximation. The stress-free boundary
condition (3.4) then yields

∂ur

∂z

∣∣∣∣
z=h

= 0,
∂uθ

∂z

∣∣∣∣
z=h

= 0, p|z=h = −εκW, (3.5a–c)

where W = ε2We(= σ̂/ρ̂Ω̂2 l̂3). By applying the pressure on the free surface (3.5c) and
the long-wave approximation (ε � 1), the following pressure distribution is obtained by
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Surface waves in film flow on a rotating disk

integrating the vertical component of the momentum balance equation (3.2d) from an
arbitrary location z to z = h along the z direction:

p = −εκW + εFr−1(h − z). (3.6)

Incorporating the pressure equation (3.6), simplified stress-free boundary conditions
(3.5a,b) and other boundary conditions (3.3), the continuity equation (3.2a) and
momentum conservation equations in the r and θ directions (3.2b,c) are integrated
along the z direction from z = 0 to z = h using the Leibniz integral rule. To
facilitate the presentation of the integrated equations, we introduce the depth-averaged
velocity components ūr(= (1/h)

∫ h
0 ur dz) and ūθ (= (1/h)

∫ h
0 uθ dz). Consequently, the

depth-integrated equations, which establish the relationship between h, ūr and ūθ , are
expressed as

∂h
∂t

+ 1
r

∂

∂r
(rūrh) + 1

r
∂

∂θ
(ūθh) = 0, (3.7a)

∂ ūrh
∂t

+ 1
r

∂

∂r
(ru2

r h) + 1
r

∂

∂θ
(uruθh) − u2

θh
r

= −∂hp̄
∂r

+ p|z=h
∂h
∂r

+ rh

+ 2ūθh − ∂ur

∂z

∣∣∣∣
z=0

, (3.7b)

∂ ūθh
∂t

+ 1
r

∂

∂r
(ruruθh) + 1

r
∂

∂θ
(u2

θh) + uruθh
r

= −1
r

∂hp̄
∂θ

+ p|z=h
1
r

∂h
∂θ

− 2ūrh − ∂uθ

∂z

∣∣∣∣
z=0

, (3.7c)

p̄ = −εκW + 1
2
εFr−1h, (3.7d)

where the terms rh, 2ūrh and 2ūθh on the right-hand side come from the centrifugal and
Coriolis forces, respectively. The gravitational body force is incorporated into the pressure
equation (3.7d) in terms of Fr−1, which comes from (3.6). The mean curvature κ of the
free surface is expressed as κ = ∇ · [∇h/(|∇h|2 + 1)1/2]. Here, the gradient operator ∇
is defined in the horizontal coordinates as ∇ = (∂/∂r)er + (1/r)(∂/∂θ)eθ .

The variables of the governing equations (3.7) are h, ūr and ūθ ; the depth-averaged
pressure p̄ in (3.7d) is a function of h. Thus, the equations are not closed because of the
convective terms (u2

r , uruθ , u2
θ ) and bottom shear terms (∂ur/∂z|z=0, ∂uθ /∂z|z=0). In the

Kapitza–Shkadov IBL equations, the convective and bottom shear terms are closed by
assuming a self-similar velocity profile (Kalliadasis et al. 2012). A specific form of the
velocity profile enables the closure terms to be defined in terms of the film thickness and
depth-averaged velocity components:

u2
r = kAū2

r , uruθ = kBūr ūθ , u2
θ = kCū2

θ , (3.8a–c)

∂ur

∂z

∣∣∣∣
z=0

= fr
ūr

h
,

∂uθ

∂z

∣∣∣∣
z=0

= fθ
ūθ

h
. (3.8d,e)

Here kA, kB, kC, fr and fθ are constants determined by the velocity profile along the
vertical direction. These closure models, based on a single self-similar polynomial velocity
profile, have successfully predicted the laminar film flow up to the global Reynolds number
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Sub-depth scale 

disturbance

r

z

(b)(a)

Figure 5. Schematics of velocity profiles along the vertical direction for two flow regimes based on the local
Reynolds number ReL. The solid line denotes the instantaneous velocity profile and the dashed line is the
time-averaged velocity profile. Results are shown for (a) ReL ≤ 100 and (b) ReL > 100.

ReG ≈ 75 in falling films (Demekhin et al. 2007; Denner et al. 2018). However, the velocity
profile deviates from the polynomial distribution for ReG > O(102), as mentioned in § 2.3.
Given the high local flow rate in the region near the jet impingement zone, it is essential
to encompass the vertical velocity profile under high-Reynolds-number conditions in the
closure models.

In this study we propose that the velocity profile along the z direction should be chosen
locally at any instant, in terms of the local Reynolds number ReL = q̂/ν̂ based on the local
horizontal flow rate. We can express ReL, using the IBL equation variables ĥ and ¯̂u as

ReL = ĥ| ¯̂u|
ν̂

, (3.9)

where ¯̂u denotes the depth-averaged horizontal velocity vector in dimensional form:

(1/ĥ)
∫ ĥ

0 (ûr, ûθ ) dẑ. As mentioned in § 2.3, the flow field is divided into laminar and
turbulent film flow based on the local Reynolds number ReL. The critical Reynolds number
Re∗, which acts as a threshold between these two regimes, is set to 100, following the
criterion proposed by Mendez et al. (2021). Figure 5 conceptually illustrates velocity
profiles in the laminar and turbulent film flow regimes. For regions with ReL ≤ 100, the
closure models for the laminar film flow are based on a polynomial velocity profile. By
contrast, a power-law velocity profile is used to describe turbulent film flow for regions
with ReL > 100, where sub-depth scale vortical structures emerge near the bottom.

3.2. Closure model for laminar regime
In the laminar regime the closure terms are determined based on a self-similar polynomial
velocity profile in the vertical direction. The shape of the velocity profile is considered
to be independent of ReL in this regime, as experimentally verified under a low flow rate
(Dietze, Al-sibai & Kneer 2009). The following velocity profile assumption introduced by
Sisoev et al. (2003) in the Kapitza–Shkadov method for rotating films has been widely
adopted: ur = 3ūr(η − 1

2η2) and uθ = 5ūθ
1
4 (2η − η3 + 1

4η4), where η = z/h varies from
0 to 1. The parabolic and quartic velocity profiles are obtained as asymptotic solutions
of the governing equations in the limit of a large Ekman number (Shkadov 1973). The
primary assumption underlying the derivation of separate profiles in the r and θ directions
is the dominance of viscous and body forces over inertia forces. However, the present study
is characterized by relatively large flow rates, so this assumption is no longer applicable.
Thus, we suggest a single quartic velocity profile for both radial and tangential directions.
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Surface waves in film flow on a rotating disk

Both the radial and tangential velocity profiles are assumed to follow the quartic
formulations

ur(r, θ, z, t) = 5
4

ūr(r, θ, t)
(

2η − η3 + η4

4

)
, (3.10a)

uθ (r, θ, z, t) = 5
4

ūθ (r, θ, t)
(

2η − η3 + η4

4

)
. (3.10b)

These velocity profiles satisfy the boundary conditions (3.3a) and (3.5a,b). Quartic profiles
were partially adopted by Kim & Kim (2009), where the time-averaged film thickness
acquired from the numerical results of IBL equations was found to be in good agreement
with experimental results. A rationale behind adopting the quartic profile is extensively
discussed in Appendix B. The closure terms in (3.8) for the laminar regime (ReL ≤ Re∗,
where Re∗ = 100) are calculated from (3.10) as

kA = kB = kC = kl = 155
126

, fr = fθ = 5
2
, (3.11a,b)

where kl denotes the advection closure constant in the laminar regime.
Despite numerous benefits of using more advanced and complicated mathematical

models, including the wall-resolved inner boundary layer approach that accurately predicts
the threshold of linear stability, the Kármán–Pohlhausen-type integral approach employed
in the present work is sufficient to capture the dynamics of three-dimensional solitary
waves (Chang, Demekhin & Kopelevitch 2006), which still remain elusive for rotating
films. Moreover, it excels in integrating the power-law profiles in the high-ReL regime into
the IBL framework.

3.3. Closure model for turbulent regime
Next, we present closure models for the turbulent regime (ReL > Re∗). Analysis of
the film flows in this regime often involves mixing length theory (King 1966; Geshev
2014) and shallow-water assumptions (Mukhopadhyay, Chhay & Ruyer-Quil 2017; James
et al. 2019; Mendez et al. 2021), as well as investigation of the characteristics of
roll waves (Nakoryakov, Ostapenko & Bartashevich 2012; Yu & Chu 2022). Among
these approaches, the one particularly suitable to IBL formulations is the shallow-water
dynamics (James et al. 2019). The shallow-water equations, which are derived through the
long-wave approximation and depth averaging, exhibit compatibility with the framework
of the present study. In turbulent shallow water, the power-law velocity profile is assumed
instead of the polynomial profile. We refer to the shallow-water model proposed for
liquid films undergoing jet wiping (Mendez et al. 2021) and develop a turbulent closure
model that is specifically tailored for rotating films. In addition to the velocity profile, the
influence of sub-depth scale turbulent structures on the horizontal momentum balance, as
suggested in studies on shallow-water flows, is also incorporated. Regarding film flows
over a rotating disk, this is the first application of the shallow-water model to the IBL
equations, to the best of our knowledge.

The turbulent flow requires the modelling of length scales to be divided into resolved and
unresolved components. The resolved scales encompass greater horizontal flow structures,
whereas the unresolved scales represent smaller internal structures. To address both
scales, the velocity components are initially decomposed into filtered (resolved) and
sub-grid scale (unresolved) components. This decomposition allows for the derivation
of filtered versions of the depth-averaged equations, drawing inspiration from the
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literature on depth-averaged large-eddy simulations (DA LES) for turbulent shallow waters
(Hinterberger et al. 2007; van Prooijen & Ujittewaal 2009). In these simulations, the
grid size is typically comparable to the water depth, leading to the term sub-depth scale
instead of sub-grid scale. The filtered velocity is then assumed to have a power-law profile
along the vertical direction, which is used to derive the closure equations (3.8). As for the
unfiltered components, sub-depth scale stress is interpreted as a random force vector field
applied to the governing equations of the resolved scale, which is referred to as a stochastic
backscatter model.

3.3.1. Filtered formulation
To capture the influence of turbulent structures, the concept of filtering, commonly used in
DA LES, is introduced to the IBL formulation. Let us decompose the velocity vector u =
(ur, uθ , uz) into u = ũ + u′, where ũ denotes the thickness-based Favre-filtered velocity
ũ = hu/h; the underline marker (·) denotes a spatial filter ϕ(x) = ∫

D ϕ(x′)G(x′ − x) d x′
(Hinterberger et al. 2007). The pressure is similarly decomposed. Filtering the continuity
and horizontal momentum equations (3.2a–c) yields

1
r

∂

∂r
(rũr) + 1

r
∂ ũθ

∂θ
+ ∂ ũz

∂z
= 0, (3.12a)

∂ ũr

∂t
+ ∂ ũ2

r

∂r
+ 1

r
∂ ũruθ

∂θ
+ ∂ ũruz

∂z
− ũ2

r − ũ2
θ

r
= −∂ p̃

∂r
+ r + 2ũθ + ∂2ũr

∂z2 , (3.12b)

∂ ũθ

∂t
+ ∂ ũθur

∂r
+ 1

r
∂ ũ2

θ

∂θ
+ ∂ ũθuz

∂z
+ 2ũruθ

r
= −1

r
∂ p̃
∂θ

− 2ũr + ∂2ũθ

∂z2 , (3.12c)

where the long-wave approximation still holds for the filtered velocity scales. By applying
the Favre-filtering technique to the governing momentum equation in the z direction (3.2d)
and the corresponding boundary conditions (3.3) and (3.4), the velocity and pressure
terms of O(ε2) and lower are replaced with their respective Favre-filtered variables.
Consequently, the filtered vertical momentum equation and boundary conditions yield the
filtered pressure, which is equivalent to (3.6) with h replaced by h:

p̃ = −εκ̃W + εFr−1(h − z). (3.13)

Here κ̃ = ∇ · [∇h/(|∇h|2 + 1)1/2].
In the filtered equations (3.12), all terms except advection terms are expressed with

ũr, ũθ , ũz and p̃. The distinction between the filtered advection and the advection of the
filtered velocity, denoted as ∂(ũiuj − ũiũj)/∂xj in Cartesian tensor notation, plays a crucial
role in LES, giving rise to the concepts of sub-grid scale stress and eddy viscosity.
In the present work, the filtered velocity products ũ2

r , ũ2
θ , ũruθ , ũruz, ũθuz are likewise

decomposed into ũ2
r , ũ2

θ , ũrũθ , ũrũz, ũθ ũz and the sub-grid scale stress terms (ũiuj − ũi ũj).
Following previous studies on shallow-water LES (Nadaoka & Yagi 1998; Hinterberger

et al. 2007), the Favre-filtered velocity components are interpreted as being grid resolved,
and are considered identical to the velocity components without filtering in the laminar
regime. The scaling parameters in (3.1) and the local Reynolds number in (3.9) are defined
based on the grid-resolved values. Assuming identical vertical velocity profiles for ũr
and ũθ , the depth integration of (3.12) using the pressure equation (3.13) and boundary
conditions leads to a set of first-order long-wave boundary layer equations. The governing
equations are expressed in Cartesian tensor notation to maintain consistency with existing
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LES formulations. Additionally, describing small-scale turbulence near the disk surface
is challenging within the framework of cylindrical coordinates. The depth-integrated
governing equations are

∂h
∂t

+ ∂

∂xi
(h ¯̃ui) = 0, (3.14a)

∂(h ¯̃ui)

∂t
+ kt

∂

∂xj
(h ¯̃ui ¯̃uj) = −∂h ¯̃p

∂xi
− εκ̃W

∂h
∂xi

− ∂

∂xj
(hGij)

− 1
2

Cf ¯̃ui

( ¯̃u2
i + ¯̃u2

j

)1/2 + Bi, (3.14b)

¯̃p = −εκ̃W + 1
2
εFr−1h, (3.14c)

where (i, j = x, y) and Bi indicates filtered and depth-integrated body forces (centrifugal
force and Coriolis force terms). The depth-integrated pressure ¯̃p in (3.14c) is obtained from
(3.6), with unfiltered values replaced by filtered ones.

The constant kt in the advection term of (3.14b) is related to the assumption of a
specific profile for the grid-resolved velocity in the vertical direction, which corresponds
to (3.8a–c) and (3.11a) for the laminar regime. Here kt is equivalent to the constants kA,
kB and kC; i.e. kt ¯̃ui ¯̃uj = ũiũj. The fourth term on the right-hand side of (3.14b) represents
bottom friction, which corresponds to the friction closure terms in (3.8d,e) and (3.11b)
for the laminar regime. The determination of the closure models for kt and Cf relies on
the selection of the resolved velocity profile in the vertical direction, which is depicted in
§ 3.3.2. Additionally, Gij on the right-hand side, defined as Gij = ũiuj − ũiũj, represents the
sub-grid scale stress arising from the filtering operator. This closure term for the sub-grid
scale is modelled as a random force field using the stochastic backscatter model. The
procedure for deriving the random force term is described in § 3.3.3.

3.3.2. Closure model for resolved velocity
The closure terms kt and Cf in (3.14) are formulated based on assumptions regarding the
resolved (filtered) velocity profile. The friction coefficient Cf is inversely proportional to
ReL in the laminar regime (ReL ≤ Re∗); Cf = 5/ReL. For the turbulent regime (ReL >

Re∗), the friction coefficient is also regarded as a function of ReL, exhibiting continuity
with the laminar model at ReL = Re∗, as suggested by Mendez et al. (2021). Specifically,
we adopt an empirical relation of the form Cf ≈ aReb

L, where b ≈ −1/4 has been
documented in studies of turbulent lubrication films (Elrod & Ng 1967; Hirs 1973). To
ensure continuity at the transition point Re∗, the following expressions are proposed for
the friction coefficients of the laminar and turbulent regimes:

Cf =
{

5/ReL, ReL ≤ Re∗,
5/(Re1/4

L Re3/4
∗ ), ReL > Re∗.

(3.15)

The trend of Cf in the vicinity of the transition regime is depicted in figure 6(a).
To determine the closure terms for advection, it is crucial to establish a self-similar

velocity profile, as outlined in § 3.2. To address transition from laminar to turbulent flow,
the combination of the polynomial profile and the power-law profile, which represent
the laminar and turbulent regimes, respectively, can be considered (Mendez et al. 2021).
As the local Reynolds number increases, the turbulent component becomes more
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Figure 6. (a) Trends of friction coefficient Cf with respect to local Reynolds number ReL (Re∗ = 100).
(b) Vertical velocity profiles for different local Reynolds numbers (nT = 21). The subscript i(= x, y) indicates
each horizontal direction.

dominant. The following mathematical expressions give the velocity profiles for the
turbulent regime:

ũx(x, y, z, t) = aL ¯̃ux(x, y, t)

[(
z
h

)
− 1

2

(
z
h

)3

+ 1
8

(
z
h

)4
]

+ aT ¯̃ux(x, y, t)

[(
z
h

− 1
)nT

+ 1

]
, (3.16a)

ũy(x, y, z, t) = aL ¯̃uy(x, y, t)

[(
z
h

)
− 1

2

(
z
h

)3

+ 1
8

(
z
h

)4
]

+ aT ¯̃uy(x, y, t)

[(
z
h

− 1
)nT

+ 1

]
. (3.16b)

Here aL and aT are the superposition constants determined by the local flow rate per unit
width and the friction coefficient. The polynomial component is identical to (3.10), so the
profile is continuous at ReL = Re∗ or, equivalently, aL = 5/2, aT = 0.

The velocity profile suggested in (3.16) should satisfy the following two conditions.
First, the integration of the horizontal velocity from the bottom to the free surface
((1/h)

∫ h
0 ũi dz) should yield the depth-averaged velocity ¯̃ui; second, the bottom slope

∂ ũi/∂z|z=0 should match the friction coefficient Cf given in (3.15). These constraints lead
to the following expressions for the constants aL and aT :

aL =
5
(

nT + 1 − 1
2

ReLCf

)
2nT − 3

, (3.17a)

aT =
(nT + 1)

(
1
2

ReLCf − 5
)

nT(2nT − 3)
. (3.17b)

As the local Reynolds number ReL continues to increase beyond Re∗, the profile gradually
approaches the power-law profile. The velocity should increase monotonically along the z
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direction, and the maximum velocity should be attained at z = h. These conditions impose
a physical constraint that determines the valid ranges of aT and aL, thereby bounding the
admissible limit of ReL based on (3.15) and (3.17). Moreover, choosing a larger value for
nT tends to increase the maximum admissible value of ReL. Thus, nT = 21 is adopted
because the range of ReL spans O(103) in the present work. More details on the choice of
nT and the valid range of ReL have been described by Mendez et al. (2021). The resulting
velocity profile applied in this work is presented in figure 6(b). From kt ¯̃ui ¯̃uj = ũiũj, the
advection constant kt in (3.14b) is expressed as

kt = 62
315

a2
L + 9107

22880
aLaT + 441

473
a2

T . (3.18)

3.3.3. Sub-depth scale turbulence model
In the field of shallow-water turbulence, the eddy scale of turbulent structures is typically
divided into two ranges: three-dimensional structures of sub-depth scale and horizontal
structures of large scale (Nadaoka & Yagi 1998). One intriguing aspect of the coexistence
of two-range length scales is the phenomenon of an inverse energy cascade in the spectral
domain, also known as backscatter. This involves the transfer of energy from small
three-dimensional eddies to large two-dimensional eddies. This backscattering process
triggers the development of small-scale instabilities into large-scale horizontal motions
(Hinterberger et al. 2007). Given the feature of long waves in film flows, it is reasonable
to expect these two-range eddies to play a dominant role in the film flows. The backscatter
effect is modelled as a random force field, i.e. stochastic backscatter model, as suggested
by Hinterberger et al. (2007). Therefore, this study incorporates a random force vector
term into the closure process for the sub-depth scale stress Gij in (3.14b), which accounts
for the influence of the inverse cascade.

In the context of DA LES models used in shallow-water turbulence, backscatter
modelling is typically conducted for the total stress term (Nadaoka & Yagi 1998;
Hinterberger et al. 2007), rather than Gij. The total stress Tij = ũiuj − ¯̃ui ¯̃uj represents the
unresolved stress resulting from depth-averaging (ũiũj − ¯̃ui ¯̃uj) added to Gij = ũiuj − ũiũj;
note that Gij arises solely from the filtering operator. In many turbulent shallow-water
models, where the time-averaged velocity is approximately constant along the vertical
direction, except near solid surfaces, the effect of the depth-averaging operator (ũiũj −
¯̃ui ¯̃uj) is often neglected. However, in the present study we consider its influence through
the advection closure constant (kt − 1) ¯̃ui ¯̃uj(= ũiũj − ¯̃ui ¯̃uj), as the effect of the velocity
profile is deemed significant in rotating films. Therefore, the term Gij = Tij − (ũiũj − ¯̃ui ¯̃uj)
arises in (3.14b) instead of Tij.

First, we describe the decomposition of the total stress Tij. The Favre filter is assumed

to be separable to enable ¯̃
φ ≈ ˜̄φ. Then, the approximation

Tij(= Gij + ũiũj − ¯̃ui ¯̃uj) = ũiuj − ¯̃ui ¯̃uj ≈ ũiuj − ˜̄ui ˜̄uj (i, j = x, y) (3.19)

holds, which is exact on the bottom of the disk and the free surface. Equation (3.19) is then
decomposed into

(ũiuj − ˜̄ui ūj) + (˜̄ui ūj − ˜̄ui ˜̄uj) = D̃ij(u) + (˜̄ui ūj − ˜̄ui ˜̄uj), (3.20)

where the second term (˜̄ui ūj − ˜̄ui ˜̄uj) corresponds to the sub-grid scale stress induced
by filtering depth-averaged velocity components, which is typically modelled using eddy
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viscosity in studies on conventional two-dimensional turbulence (Nadaoka & Yagi 1998;
Hinterberger et al. 2007). The effect of three-dimensional sub-grid scale turbulence is
included in the first term D̃ij(u), where Dij(u) is defined as

Dij(u) = 1
h

∫ h

0
(ui − ūi)(uj − ūj) dz. (3.21)

To further decompose the sub-grid scale stress D̃ij(u) in (3.20), we consider splitting
the instantaneous velocity u into the time-averaged component 〈u〉 and the fluctuating
component u′, where the notation 〈·〉 represents the time-averaging operator. Then, from
(3.21), the decomposition is

〈Dij(u)〉 = Dij(〈u〉) + 〈u′
iu

′
j〉 − 〈u′

i u′
j〉 = Dij(〈u〉) + 〈Dij(u′)〉. (3.22)

Here, 〈u′
iu

′
j〉 represents the depth-averaged Reynolds stresses of all turbulent structures, and

〈u′
i u′

j〉 is the amount of stress caused by the horizontal flow structures of all scales. Thus,
the difference between them, namely 〈Dij(u′)〉, indicates the Reynolds stresses induced by
three-dimensional fluctuations only. Given that Favre filtering separates the flow structures
into fluctuations and large-scale resolved structures, we find the decomposition presented
in (3.22) to be approximately valid for D̃ij(u):

D̃ij(u) ≈ Dij(ũ) + D̃ij(u′). (3.23)

The first term Dij(ũ) on the right-hand side of (3.23) is equivalent to the stress induced by
depth-averaging (ũiũj − ¯̃ui ¯̃uj) on the left-hand side of (3.19). Thus, from (3.20) and (3.23),
Gij can be approximated as

Gij ≈ D̃ij(u′) + (˜̄ui ūj − ˜̄ui ˜̄uj)

≈ D̃ij(u′) − νt2
¯̃Sij. (3.24)

The first term on the right-hand side of (3.24), D̃ij(u′), represents the sub-grid scale
stress generated by three-dimensional turbulent structures near the disk surface (see
figure 5b). The loss of information during depth-averaging and Favre filtering means
that we must construct D̃ij(u′). In this study a stochastic backscatter model is applied to
incorporate a random two-dimensional force vector field Fi,bsm, which is based on DA LES
for shallow-water turbulence (Hinterberger et al. 2007). The second term, (˜̄ui ūj − ˜̄ui ˜̄uj),
represents the unresolved stress typically used in LES, where the velocity components are
replaced with the depth-averaged velocity and modelled using eddy viscosity, i.e. −νt2

¯̃Sij;
the strain rate Sij is 1

2 (∂ui/∂xj + ∂uj/∂xi). The eddy viscosity is commonly represented
as νt = Chũτ , where uτ denotes the friction velocity and C is an empirical constant.
The multiplication of the eddy viscosity and the strain rate, νt

¯̃Sij, is of O(ε2) when
differentiated with respect to the horizontal length scale, as discussed earlier for the
long-wave formulation. Thus, the sub-grid scale stress term in (3.14) can be simplified
to a random backscatter as follows:

∂

∂xj
(Gij) = −Fi,bsm (i, j = x, y). (3.25)

The backscatter forcing term is linked to local turbulence production, which
characterizes the dynamics of internal turbulent structures, and it is challenging to
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describe the backscattering of three-dimensional turbulence in terms of the long-wave
scaling approach. Therefore, modelling the backscatter term requires expressions using
dimensional parameters. We consider the dimensional F̂i,bsm = l̂Ω̂2Fi,bsm, where l̂
represents the horizontal length scale (l̂ = (9Q̂2/4π2ν̂Ω̂)1/4). The random force vector
defined over the two-dimensional Cartesian coordinate system is

F̂ bsm = [∇̂ × (F̂rmsZez)]Δ̂, (3.26)

where the scalar value F̂rms represents the root mean square of the backscatter force. To
generate the backscatter forcing term, we introduce a filtered random scalar field Z with
zero mean and a normal distribution. A random force vector on the two-dimensional
domain is constructed by the operator ∇̂ = (∂/∂ x̂, ∂/∂ ŷ). To ensure a divergence-free
random vector field, the curl operator is applied to a vertically defined scalar field F̂rmsZez.
The solenoidal field introduced in (3.26), which pertains to the two-dimensional domain,
is equivalent to the random vector potential field method used in three-dimensional
backscatter models (Leith 1990; Schumann 1995). The reference grid length scale Δ̂ in
(3.26) is obtained by averaging the grid sizes of the entire domain.

The scaling factor F̂rms in (3.26) is derived from the two-dimensional production of
turbulent kinetic energy, P̂2D: P̂2D ∼ F̂2

rms·�t̂, where �t̂ is the applied time step (Alvelius
1999). Here P̂2D scales as

P̂2D ∼ P̂3D

Reτ

= | ¯̂̃u|2ν̂Cf
1/2

ĥ2
, (3.27)

where P̂3D represents the three-dimensional turbulence production induced from bottom
friction, and Reτ = ûτ ĥ/ν̂ is the Reynolds number defined in terms of the friction velocity

ûτ =| ¯̂̃u|(Cf /2)1/2. Hence, F̂rms is updated every time step as

F̂rms = cB

(
P̂2D

�t̂

)1/2

= cB
| ¯̂̃u|C1/4

f

ĥ

(
ν̂

�t̂

)1/2

, (3.28)

where the empirical backscatter constant cB = 2.0 is determined by comparing numerical
results with experimental results obtained from sensor measurements. The effects of cB on
the wave dynamics and local thickness of the liquid film are reported in § 5.2, along with
a justification for the choice of cB = 2.0.

4. Numerical methods

This section presents numerical methods to solve the IBL equations established in § 3.
The implementation of the two-regime governing equations in a two-dimensional domain,
as well as the modelling of the fluctuations induced by the vertically impinging jet, is
explained. The length and time scales of fluctuations induced by the jet impingement and
the backscatter force F̂i,bsm are not in accordance with the IBL formulations based on
the long-wave approximation. Therefore, we use dimensional variables to integrate the
governing equations and the impinging-jet model into a single numerical framework. The
numerical set-up is carefully designed to capture wave propagation and regime transition
accurately, ensuring that the obtained film thickness and depth-averaged velocity fields
produce reliable quantitative analyses.
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4.1. Solver for IBL equations
Equations (3.7) and (3.14) for the laminar and turbulent regimes, respectively, are
combined into a single set of equations. The combined equations are mathematically
expressed in Cartesian tensor notation as follows:

∂ ĥ
∂ t̂

+ ∂

∂ x̂i
(ĥ ¯̂ui) = 0, (4.1a)

∂(ĥ ¯̂ui)

∂ t̂
+ K∂(ĥ ¯̂ui ¯̂uj)

∂ x̂j
= − 1

ρ̂

∂(ĥ ¯̂p)

∂ x̂i
− σ̂ κ̂

ρ̂

∂ ĥ
∂ x̂i

+ LĥF̂i,bsm

− 1
2

Cf ¯̂ui

( ¯̂u2
i + ¯̂u2

j

)1/2 + Bi, (4.1b)

¯̂p = −σ̂ κ̂ + ρ̂ĝĥ
2

(i, j = x, y). (4.1c)

In (4.1) the depth-averaged velocity ¯̂ui and film thickness ĥ are considered as resolved

(filtered) values in the turbulent regime ( ¯̂ui → ¯̂̃ui, ĥ → ĥ), whereas they are equivalent to
the original (unfiltered) values in the laminar regime. The backscatter force term F̂i,bsm
solely represents the sub-grid scale stress.

The closure models discussed in §§ 3.2 and 3.3 are combined into the constants K, L
and Cf . The values of these constants are determined based on the local Reynolds number
ReL in each cell at each time step:

L = 0,K = kl, Cf = 5/ReL, ReL ≤ Re∗,
L = 1,K = kt, Cf = 5/(Re1/4

L Re3/4
∗ ), ReL > Re∗.

}
(4.2)

By substituting the constants for the laminar regime (ReL ≤ Re∗) into (4.1), we obtain the
Kapitza–Shkadov equations featuring the quartic velocity profiles, as suggested in § 3.2.
When the constants for ReL > Re∗ are used, the governing equations are transformed into
the shallow-water DA LES equations discussed in § 3.3.

4.2. Computational domain and discretization
To solve (4.1), the implicit and sequential finite area solver proposed by Rauter &
Tuković (2018) is employed. This finite area solver is known for accurately capturing the
depth-averaged velocity and film thickness of two-dimensional flows. The fluid domain
has a two-dimensional disk shape with a radius of r̂ = 0.15 m, which is the same as in the
experiments. The domain is discretized using structured grids, referred to as the butterfly
geometry (figure 7a). The length scale of the grids, denoted as Δ̂, is determined based
on the local maximum of the time-averaged film thickness, ĥhump (figure 9). Following
grid convergence tests, the grid length is set as Δ̂ ≈ 0.55ĥhump. The grid convergence
tests were performed by comparing the standard deviation of the time series of film
thickness at a single point r̂ = 43 mm, which was extracted from each simulation case
without inlet fluctuations over the period t̂ = 0.05−0.25 s. The convergence with various
grid resolutions is presented in figure 7(b).

In the finite area method, the discretization of each term in (4.1) is accomplished by
integrating them over a control area. This integration process allows us to express each
term with regard to the values at the cell centres, values on the cell edges and vectors
normal to the edges, using the second-order midpoint rule and Gauss’ theorem. As for the
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r̂/2 r̂ = r̂0

(a) (b)
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Δ̂/ĥhump

Figure 7. (a) Grid layout of a two-dimensional fluid domain. Grey cells in the lower inset indicate the region
subjected to the jet impingement model. (b) Result of grid convergence test: standard deviation of film
thickness from t̂ = 0.05−0.25 s versus normalized grid size Δ̂/ĥhump. Simulations were conducted without
inlet fluctuations for Ω̂ = 52.4 rad s−1 and Q̂ = 12.5 mL s−1.

spatial interpolation to represent values on the edges of each cell, a local blend between
linear and upwind interpolations is performed. For scalar fields, a normalized variable
diagram scheme called Gamma interpolation is used. The interpolation constant relevant
to stability and diffusivity is chosen to be β = 1/5. The interpolation of vector fields
is performed in the local edge-based coordinate system (Tuković & Jasak 2012). The
interpolation factor is likewise calculated using the Gamma scheme.

Equation (4.1) is solved in a time-marching manner. Discretization of the temporal
derivative at the nth time step is conducted with the implicit second-order scheme
according to (

∂φ

∂t

)n

≈ 3φn − 4φn−1 + φn−2

2�t
, (4.3)

where the superscripts n − 1 and n − 2 denote the values of the previous two time steps,
and the superscript n indicates the implicit value of the present time step. Time step control
is implemented based on the Courant–Friedrichs–Lewy (CFL) number C = ce�t/Δe,
where ce = max(me · ūe) represents the maximum depth-averaged velocity along the
edges of the cell and Δe corresponds to the square root of the cell area. The subscript
e denotes edge values and me is the unit normal vector outward from the edge. The time
step is adjusted to ensure that the maximum CFL number satisfies the criterion C < 0.4.

The set of coupled nonlinear differential equations is solved numerically using a
sequential approach. Following the methodology of Rauter & Tuković (2018), the
depth-averaged pressure ¯̂p is first updated with the film thickness of the previous time step
using (4.1c). The momentum conservation equation (4.1b) is then solved with the updated
pressure and the old values of the film thickness to obtain ¯̂ui. Finally, the continuity
equation (4.1a) is solved for ĥ. This iterative algorithm is repeated for a given time step
until the initial residual of the depth-averaged velocity reaches 10−6. The initial conditions
are ĥ = 20 μm and ¯̂u = 0 for every cell in the simulation domain. A von Neumann
boundary condition is employed at the outlet boundary, which corresponds to the disk
edge. The normal gradient of each variable φ is zero at the boundary, i.e. ∇φ(x) = 0 for
all x belonging to the boundary of the domain.
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4.3. Analytical modelling of inflow: impingement of fluctuating jet
The complex nature of the film flow formed by a vertically impinging jet makes it
challenging to treat the impinging jet as a fixed inlet boundary. This is particularly true
in the region where the boundary layer merges with the free surface (r̂ < r̂0 in figure 1a)
and in the presence of concentric waves near the impinging jet. These waves originate
from disturbances in the impinging jet prior to impingement, as discussed in § 2. To
account for the effects of the impinging jet in the simulations, the local film thickness
and depth-averaged velocity obtained from an analytical model are assigned to every cell
in r̂ < r̂0 (grey region in figure 7a) at every time step.

The impingement of a circular liquid jet on a rotating disk has been extensively studied in
the context of hydraulic jumps (Wang & Khayat 2018; Wang et al. 2020; Ipatova, Smirnov
& Mogilevskiy 2021) and heat transfer applications (Rice, Faghri & Cetegen 2005;
Lienhard 2006). In most of these studies, a low-flow-rate condition is assumed, considering
a steady and axisymmetric jet. However, the present study focuses on modelling the
film flow resulting from the impingement of a high-flow-rate jet, whereby large surface
fluctuations are induced by shear instability. To capture the effects of temporal fluctuations
of the impinging jet on the formation of concentric waves, the existing theory for the
steady impinging jet is modified by introducing temporal fluctuations. The influence of
the fluctuations on the time-averaged flow properties is considered to be minimal, as
demonstrated in the work of Bhagat & Wilson (2016).

The first step in modelling the liquid film thickness produced by jet impingement is to
introduce an analytical model under steady flow assumptions. For axisymmetric and steady
flow conditions, the film thickness and the size of the boundary merging zone (r < r0)
were formulated by Wang & Khayat (2018) as

ĥ(r̂ < r̂0) = d̂
8

[
d̂
r̂

+
(

210πr̂ν̂

13Q̂

)1/2
]

, (4.4a)

r̂0 = d̂
2

(
156Q̂

875πν̂d̂

)1/3

. (4.4b)

Although the analytic solutions in (4.4) were derived under the assumption of Ω̂ = 0,
they remain valid when the ratio of disk angular velocity to nozzle flow rate is small.
The difference of the formula (4.4a) from the numerical solution in non-zero Ω̂ condition
presented by Wang & Khayat (2018) is less than 5 % at r̂ = r̂0 for Q̂ = 16.7 mL s−1 and
Ω̂ = 52.4 rad s−1.

Previous studies on shear-induced fluctuations on the surface of circular liquid jets have
shown that axisymmetric modes dominate over asymmetric modes when the wavenumber
of the fluctuations is small (k̂d̂ < 2) (Yang 1992; Shi et al. 1999). This dominance of
axisymmetric modes is also evident in our visualizations of the film flow formed in the
jet impingement zone (figure 4). Thus, the azimuthal fluctuations on the impinging jet
are neglected here. Additionally, the boundary layer near the disk surface is known to
maintain a cubic velocity profile, as in laminar jet impingement, even in the presence
of a turbulent and fluctuating free-stream flow (Lienhard et al. 1992). Accordingly, we
introduce a temporal axisymmetric fluctuation G(t̂) multiplied by the nozzle diameter d̂ to
the steady theoretical solutions (4.4) to model the axial fluctuations of the circular liquid
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jet in the impingement process. The flow conditions for the region r̂ < r̂0 are then given by

ĥ(r̂ < r̂0) = G(t̂)d̂
8

[
G(t̂)d̂

r̂
+
(

210πr̂ν̂

13Q̂

)1/2
]

, (4.5a)

r̂0 = G(t̂)d̂
2

(
156Q̂

875πν̂G(t̂)d̂

)1/3

, (4.5b)

¯̂u = Q̂

2πr̂ĥ
er − 14

17
r̂Ω̂eθ . (4.5c)

The temporal fluctuations G(t̂) = 1 + A
∑100

n=0 cos(nω̂t̂ + Zn) follow a widely applied
method of adding noise to the film flow inlet (Chang, Demekhin & Saprikin 2002). In
this expression, ω̂ represents the frequency unit, typically chosen to be 1/50 of the neutral
frequency of the main instability. The term Zn denotes a random phase difference that
is uniformly distributed in the range [0, 2π]. The constant A represents the magnitude of
the random fluctuations. Equation (4.5) provides quasi-steady solutions of film flow for an
impinging jet with an oscillating diameter.

The specific values of the forcing frequency ω̂ and the fluctuation magnitude A are
chosen based on the fluctuations in film thickness obtained through sensor experiments;
see § 2.2. For ω̂, the power spectra of the time series in the experimental data do not exhibit
a specific peak corresponding to the main instability. Therefore, ω̂ is set to 60 s−1, which
allows the wavenumber range to cover most of the large-amplitude spectra observed in
the experimental results. The value of A significantly affects the downstream behaviour
of the liquid film thickness. In this study, A = 5.0 × 10−3 is selected to ensure a match
between the standard deviations of the time series obtained from numerical simulations
and experimental measurements. Both sets of data are measured at r̂ = 43 mm for a time
span of t̂ = 0.05−0.25 s. Finally, the expression of velocity in (4.5c) for r̂ < r̂0 is derived
following the approach of Kim & Kim (2009). This expression represents an asymptotic
solution of the laminar IBL equation in the region r̂ � 1 for given values of ĥ, Q̂ and Ω̂ .

5. Results and discussion

5.1. Distribution of surface waves
The film flow computed by our IBL model is shown in figure 8 for disk angular
velocity Ω̂ = 52.36 rad s−1 and nozzle flow rate Q̂ = 12.5 mL s−1. The waves in the
numerical results are represented by the contours of dimensionless film thickness h
(figure 8b), and they are qualitatively compared with those of the visualization image
(figure 8a); see supplementary movie available at https://doi.org/10.1017/jfm.2024.274.
One of the most pronounced features is the generation of concentric waves upstream
and their transition into three-dimensional solitary waves. During the initial stage of this
transition, three-dimensional wave structures of various scales emerge simultaneously.
These structures later converge into a group of large-scale Λ solitons as they propagate
outwards. As the three-dimensional waves propagate towards the edge of the disk, their
peak amplitude decreases and they become horizontally elongated. Another intriguing
feature is the generation of small-scale Λ solitons amidst the elongated three-dimensional
waves near the edge of the disk. These observations from the numerical simulations align
well with the visualization results in figure 8(a), demonstrating the successful capture of
wave behaviours by the present IBL model.
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Figure 8. (a) Visualization of free-surface waves and (b–d) numerical results at a specific instant: (b) contours
of dimensionless film thickness h, (c) distribution of film thickness h along a straight line from disk centre
(r = 0−4.0) and (d) depth-averaged horizontal velocities. In panel (d) the red and blue lines denote the radial
ūr and tangential ūθ components, respectively, and the black dashed line is the magnitude of horizontal velocity,
|ū|. All data were acquired with Ω̂ = 52.4 rad s−1 and Q̂ = 12.5 mL s−1. See supplementary movie for panels
(a,b).

The regional mode transition of surface waves results in variations in the local height
of the waves (figure 8c). In the concentric-wave regime (r < 1.0), the amplitude of the
fluctuations in surface elevation is smaller than that in the downstream three-dimensional
waves. Additionally, the phases of the instantaneous depth-averaged velocities and film
thickness fluctuation are not strongly coupled (figure 8d), indicating that the flow in
the concentric-wave regime is primarily influenced by random motions induced by the
backscattering of sub-depth scale turbulence. As the three-dimensional waves develop in
r = 1.5−3.0, the height of the wave crest increases, and the fluctuation phases observed
in the velocity components and film thickness coincide in this region because the flow is
no longer dominated by backscattering as the local flow rate enters the laminar condition.
Finally, a reduction in the peak height is evident in the downstream region (r = 3.0−4.0),
as shown in figure 8(c). The trends observed under different flow conditions (Ω̂ and Q̂)
generally match those presented in figure 8.

To further validate our numerical simulations in a quantitative manner, the film thickness
is compared with previous experimental results and the data acquired from our confocal
chromatic sensor. As the confocal chromatic sensor used in this study can only measure
the vertical displacement of the liquid–gas interface, it provides a time series of the
free-surface elevation at a measurement point. Hence, the validation strategy consists of
two parts. First, the time-averaged film thickness is compared with data from previous
investigations. Second, the characteristics of the instantaneous film thickness fluctuations
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Figure 9. Time-averaged film thickness 〈h〉 for (a) several disk angular velocities Ω̂ and (b) nozzle flow rates
Q̂. Dimensional film thickness and radial position are presented in panels (c,d), which correspond to panels
(a,b), respectively.

are used to evaluate the reliability of the numerical simulations in capturing the dynamics
of surface waves.

For the time-averaged film thickness 〈h〉, the instantaneous thickness is averaged over
a time span of t = 15.7−23.5 at a given point and plotted along a radial line from the
disk centre, r = 0−4.0. In previous IBL models on axisymmetric waves (Sisoev et al.
2003; Kim & Kim 2009), the radial distribution of 〈h〉 was assumed to have a universal
dimensionless profile, regardless of the disk angular velocity Ω̂ and nozzle flow rate Q̂.
However, our numerical results show that the profiles no longer fully collapse onto a
single line due to the inclusion of the impinging-jet model, which does not adhere to
the long-wave approximation (figure 9a,b). The film thickness 〈h〉 in the upstream region
r < 1.0 exhibits variations as Ω̂ and Q̂ increase. The local maximum of 〈h〉, known as the
hump thickness hhump, tends to increase with increasing Ω̂ , and its location approaches
r = 0. The variations in 〈h〉 with respect to Q̂ are relatively minor. The hump thickness
displays negligible changes with increasing Q̂, while the film thickness between r = 0
and hhump decreases. In contrast to the upstream tendencies, the film thickness profiles
collapse onto a single line in the downstream region (r > 1.0), indicating a reduction in
the influence of jet impingement downstream (in the time-averaged sense).

To clarify the effects of Q̂ and Ω̂ on the hump formation, the variations in the
dimensional location and thickness of the humps are examined (figure 9c,d). The
dimensional location r̂hump of the hump increases as Ω̂ decreases and Q̂ increases.
Simultaneously, the dimensional thickness ĥhump of the hump tends to increase as Ω̂
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Figure 10. Time-averaged film thickness 〈h〉 along radial coordinate: (a) upstream region and (b) downstream
region. The red line is our numerical result. The black dashed line is the theoretical model for film flow
formed by the impinging circular liquid jet (Bhagat & Wilson 2016), and the black dotted line is the theoretical
model for laminar film flow (Kim & Kim 2009). The symbols denote experimental data from previous studies
(Miyasaka 1974b; Muzhilko, Rifert & Barabesh 1983; Leneweit et al. 1999; Wang et al. 2020). Our numerical
results were obtained with Ω̂ = 52.4 rad s−1 and Q̂ = 12.5 mL s−1.

reduces, which is similar to the result of Wang et al. (2020). Interestingly, with increasing
Q̂, ĥhump becomes greater slightly. This result is contrary to the correlation proposed by
Wang et al. (2020) who used the jet diameter d̂ as the only length scale. Our findings
suggest that the long-wave parameters (l̂ and δ̂) also influence ĥhump, particularly when the
jet diameter is small.

In the vicinity of the jet impingement point (r = 0−0.3), 〈h〉 from our numerical
simulation is consistent with the experimental data obtained from set-ups with impinging
jets, although 〈h〉 is sensitive to the inflow configuration (i.e. Q̂, Ĥ and d̂). Furthermore, the
present numerical results are in excellent agreement with the theoretical model proposed
by Bhagat & Wilson (2016) for film flows generated by a circular high-flow-rate liquid
jet impinging on a stationary wall (dashed line in figure 10a) in the region r = 0−1.0.
As the influence of the impinging jet diminishes downstream (r > 1.0), the IBL results
are in better agreement with the previous experimental data (figure 10a); the data are
also compared in a narrower y-axis range in figure 10(b). Notably, the present numerical
results match better with the experimental data obtained under large-flow-rate conditions.
The present simulation produces lower values than the solutions given by the laminar IBL
model (Kim & Kim 2009). This discrepancy arises from the assumption of a power-law
velocity profile in the turbulent regime, leading to greater bottom friction.

The wave characteristics are now assessed by analysing the temporal fluctuations in the
film thickness. The time series of film thickness obtained from the numerical simulations
is compared with that of the sensor experiments in figure 11(a,b). As the sensor was
fixed above the rotating disk, the location of the sampling point from which the film
thickness is extracted in the numerical domain is rotated in the direction opposite to the
direction of the disk rotation; note that the reference frame in our numerical simulations
rotates together with the disk. In the sensor experiments, the vertical displacement of
the free surface was measured at two positions (r̂ = 43 and 109 mm) instead of film
thickness itself. The temporal average was then subtracted from the time-series data so
that the experimental values fluctuate around zero. For both upstream (r̂ = 43 mm) and
downstream (r̂ = 109 mm) positions, the numerical results are in good agreement with
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Figure 11. (a,b) Time series of film thickness h, (c,d) histograms of the local maxima hmax of film thickness
from numerical simulations and (e, f ) hmax histograms from experimental measurements. Panels (a,c,e) are for
the upstream point (r̂ = 43 mm) and panels (b,d, f ) are for the downstream point (r̂ = 109 mm).

the experimental data in terms of both the local maxima hmax of the instantaneous film
thickness and the waveform.

Regarding the histograms of hmax extracted from the time series (figure 11c–f ), both
the numerical and experimental results exhibit several common features. In the upstream
position (figure 11c,e), the histogram shows a single Weibull distribution for both the
numerical and experimental data. In the downstream position (figure 11d, f ), hmax displays
a prominent peak in the small-thickness range and a more uniform distribution in the
large-thickness range. However, there are also discrepancies between the two sets of data.
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These deviations are partly attributable to the limited number of numerical data and the
effect of baseline filtering on the experimental data (see § 2.2). The histogram of the
experimental data includes a larger number of hmax data, as real-time sensor experiments
allow for significantly longer data acquisition (t̂ = 0.2−5.0 s), whereas data acquisition
from the numerical simulations is limited to t̂ = 0.2−0.7 s by the computational cost.
To reduce the discrepancy between the numerical and experimental results, first it is
necessary to incorporate more rigorous backscatter models. The use of high-fidelity direct
numerical simulations makes it possible to formulate the energy balance that encompasses
the backscattering effect in wavy film flows. Thus, more accurate backscatter models
similar to those in shallow waters (van Prooijen & Ujittewaal 2009; Klöwer et al. 2018) can
be established. In addition, a more sophisticated experimental set-up capable of directly
acquiring real-time film thickness data, instead of measuring the displacement of the
liquid–gas interface, should be implemented.

In summary, the numerical model proposed in this study produces reliable results
at large nozzle flow rates (and high global Reynolds numbers ReG). Despite some
discrepancies from the experimental data, the overall shape and scale of the surface waves
is well aligned with those of the experimental data. Furthermore, the analysis of the
time-averaged film thickness provides new insights into the influence of the fluctuating
impinging jet and turbulent flow structures under large flow rates.

5.2. Effects of upstream backscatter
The generation and propagation of three-dimensional waves identified in the numerical
simulations exhibit unique characteristics in terms of the wave initiation process. In
gravity-driven film flows, three-dimensional waves are generated as two-dimensional
waves enter a high-velocity regime dominated by transverse instability (Chang et al. 2002).
In contrast, the generation of three-dimensional waves in the film flow spreading over
a rotating disk is primarily triggered by extensive fluctuations in the concentric-wave
regime under a large local flow rate near the impinging zone. These fluctuations result
from sub-depth scale turbulence. As a result, the patterns of three-dimensional waves in
the onset region exhibit distinct features from those reported for falling films.

The response of surface waves to the backscatter phenomenon is of particular interest
because the backscatter model has not previously been included in film flow studies. The
backscatter model described in (3.28) includes an empirical constant cB that represents
the rate of energy transfer from internal sub-depth scale turbulence to fluctuations
of horizontally resolved scale. Although a specific value of cB is suitable for each
shallow-water system, we conduct a model test by comparing the results obtained with
different values of cB, which allows us to investigate the impact of backscattering on the
characteristics of three-dimensional waves.

First, the numerical results with backscatter constants of cB = 2.0 and cB = 0 (i.e. no
backscatter) are compared. For the case of cB = 0 (figure 12a), three-dimensional waves
are not clearly present in a substantial portion of the region where the wave regime
originally transitions from concentric waves (1.5 < r < 2.0). Furthermore, as Λ-soliton
waves travel downstream, they do not break up or coalesce with each other until reaching
the far downstream region (r > 3.0). In the presence of backscatter effects (cB = 2.0,
figure 12b), concentric waves are azimuthally disturbed much earlier, entering the onset
region of three-dimensional waves near r = 1.5. This demonstrates that, under a large flow
rate, the backscattering of sub-depth scale turbulence in the upstream concentric-wave
regime with a high local Reynolds number is responsible for the fluctuations in horizontal
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Figure 12. Contours of film thickness h for (a) backscatter constant cB = 0 and (b) cB = 2.0. (c) Distribution
of h with respect to radial coordinate r for the two cases in panels (a,b).

flow structures, which in turn induce the generation of unique three-dimensional surface
waves downstream.

Compared with cB = 2.0, the amplitude of the three-dimensional waves for cB = 0
decays slowly in the downstream region (r = 3.0−4.0), and the streamwise spacing
between two large-scale solitary waves becomes narrower (figure 12c). This result is
correlated with the observation that, without backscatter effects, the interaction of waves,
including their coalescence, barely occurs in the region r = 1.5−3.0. For cB = 0, there
is less likelihood of a loss of wave energy via interaction, leading to the large amplitude
and narrow spacing of the waves downstream. The influence of backscatter on horizontal
flow structures in long-wave systems has been examined in prior studies on turbulent
shallow-water flows. For instance, Hinterberger et al. (2007) showed that vortical coherent
structures induced by horizontal shear do not appear without a backscatter model in a
mixing layer of two adjacent streams of shallow water with different velocities. Taking
Λ solitons to be coherent structures in the context of weak and dissipative turbulence
(Kalliadasis et al. 2012), our study provides another example of the generation of
horizontal coherent structures induced by backscattering.

According to figure 13(a), as the extent of bottom-induced turbulent backscattering
increases (i.e. cB increases), the transition from concentric waves to three-dimensional
waves occurs closer to the disk centre. Moreover, the horizontal size of the
three-dimensional waves in their onset region (1.5 < r < 2.0) becomes smaller, while the
downstream waves become larger after undergoing multiple coalescence processes. In the
onset region of the three-dimensional waves, the local Reynolds number ReL exceeds the
threshold established for gravity-driven films (known to lie in the range ReG,c = 40−70),
where a two-dimensional solitary wave becomes unstable to transverse perturbations
(Demekhin et al. 2007). Consequently, the dynamics of the waves downstream of this
region are highly sensitive to the azimuthal perturbations of the concentric waves entering
the transition zone (1.5 < r < 2.0). The backscatter of small-scale turbulent structures
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Figure 13. Effects of backscatter constants cB on wave dynamics: (a) contours of film thickness h; time series
of h at (b) upstream (r = 1.25) and (c) downstream (r = 3.18) locations.

near the disk surface is responsible for such azimuthal perturbations, leading to the early
generation of three-dimensional waves; a quantitative analysis of the backscatter impact
on wave perturbations is beyond the scope of the present work.

In the time-series data of film thickness numerically obtained at upstream (r = 1.25) and
downstream (r = 3.18) locations (figures 13b and 13c, respectively), the sampling point is
fixed on the bottom of the disk surface, which is equivalent to the measurement point
rotating with the disk in the experimental domain (unlike the time-series data presented
in figure 11). The selection of a fixed sampling point on the disk surface offers better
insights into the physical characteristics of turbulent film flows (Sivashinsky & Michelson
1980). At the upstream location, a greater backscatter constant cB results in an increase in
the amplitude of thickness fluctuations (figure 13b). This finding, coupled with the larger
horizontal fluctuations depicted in figure 13(a), implies that turbulent kinetic energy from
sub-depth scale turbulence is transformed into wave energy in the concentric-wave regime.
By contrast, in the downstream region, there is no significant difference in the height of the
wave peaks as cB increases (figure 13c). However, the peak values become more regular
with greater values of cB. In the case of cB = 0.5, the amplitudes of the peaks exhibit a
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Figure 14. Lorenz return map obtained from numerical simulations for cB = 1.0, 2.0 and 4.0:
Ω̂ = 31.4 rad s−1, Q̂ = 16.7 mL s−1.

high level of randomness, while for cB = 4.0, the wave pattern is closer to that of periodic
pulsations.

The high level of spatiotemporal chaos in the film thickness downstream prevents
traditional frequency-domain analyses from providing meaningful information. The
time-series data in figure 13(c) are similar to those obtained by solving the generalized
Kuramoto–Sivashinsky equation with the dispersion constant in the range 0.2–0.4, where
no distinguishable peaks are present in the power spectral density. In such cases, the
Lorenz return map is a more informative tool (Gotoda, Pradas & Kalliadasis 2015). In the
present work, the Lorenz return map is constructed by plotting pairs of successive local
maxima (hm,k, hm,k+1) in the time series of film thickness at r = 3.18 in figure 13(c). The
points plotted in figure 14 form four distinct groups. There are two distinct groups with
small and large film thickness on the line hm,k = hm,k+1. The other two groups consist
of pairs of small and large successive peaks and their counterparts. In chaos theory, a
signal is regarded as more predictable in the long term when the points are concentrated
in these four groups, indicating that a signal is closer to periodic pulsations with stochastic
behaviour than a chaotic one. Therefore, figure 14(a–c), obtained from the numerical
results over a time span of t̂ = 0.2−0.7 s, suggests that the three-dimensional waves in the
downstream region exhibit greater long-term predictability when the backscatter constant
cB is larger.

As mentioned in § 3.3.3, cB = 2.0 was chosen for our turbulent film flow because
wave patterns for cB = 2.0 are closest to those of the experimental visualization. The
transition from concentric to three-dimensional waves, which occurs near r = 1.5−2.0 in
the experiment (figure 8a), matches with the numerical result obtained using cB = 2.0.
Moreover, the wavelength of azimuthal perturbation in the concentric waves and the
horizontal amplitude of the three-dimensional surface waves in this region exhibit good
agreement between the experiment and the simulation with cB = 2.0.

The value of cB = 2.0 adopted in this study is significantly smaller than the values used
in studies on shallow-water turbulence where cB is often greater than 50 (Hinterberger
et al. 2007; van Prooijen & Ujittewaal 2009). This lower backscatter constant can be
attributed to the presence of the free surface, which absorbs turbulent energy during wave
propagation. For our disk with a much smaller scale, surface tension plays a crucial role
in extracting energy from internal turbulence when making an additional free-surface
area (forming surface waves). A deforming liquid–gas interface is known to reduce the
intensity of turbulent structures with eddy size comparable to the wavelength of the
deforming interface (Chiodi, McCaslin & Desjardins 2019). Because the free surface
absorbs a significant portion of turbulent energy through surface deformation, the amount
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Figure 15. Spatiotemporal evolution of surface waves along a straight line from disk centre to disk edge
(r = 0−5.2).

of fluctuation in the horizontal flow structures induced by the turbulent backscattering
is smaller than in the shallow-water systems where surface tension is negligible, which
contributes to the smaller value of cB.

5.3. Interaction of three-dimensional waves
The interactions among three-dimensional surface waves after the transition from
concentric waves are now examined in detail. The propagation of surface waves is first
analysed using the spatiotemporal evolution of film thickness h along a straight line from
disk centre to disk edge over a time span of t − t0 = 0−4.0; t0 = 10.5 is a time at which the
flow is fully developed. In figure 15 the phase velocity of the waves is represented by the
slope of the bright ridges, corresponding to the crests of each wave. In the concentric-wave
regime (r < 1.0), the phase velocity of the waves appears relatively uniform. However, in
the onset region of the three-dimensional waves (r = 1.5−2.0), a wide range of phase
velocities and wave amplitudes are observed. This non-uniform distribution differs from
the onset of the three-dimensional regime in falling films, where the dominant wavelength
of transverse disturbances in the two-dimensional waves determines the scale of relatively
uniform Λ solitons (Kalliadasis et al. 2012).

Solitary waves in film flows tend to travel faster when they have a larger scale
(Malamataris, Vlachogiannis & Bontozoglou 2002). As a result, two waves with distinct
differences in scale can merge to form a single large wave. The three-dimensional waves
in the onset region, which initially possess a wide range of scales, undergo frequent
coalescence with each other as they travel downstream. This process is illustrated in
figure 16(a–c), where a smaller-scale soliton ‘A’ merges with the larger wave ‘B’. After
multiple coalescence events in the region r = 1.5−2.0, the scales and phase velocities
of the waves converge in the region r = 2.0−3.5 (figure 15). Despite the deceleration
and shallowing of the base film flow, the phase velocity and peak amplitude of waves in
this downstream region remain significantly greater than in the upstream region. Farther
downstream (r > 3.5), the amplitudes of the three-dimensional waves decrease while their
phase velocities remain in a similar range (figure 15). The wave interactions in this region
are unique in that the large waves no longer directly interact with each other, unlike for
r < 3.5. Instead, small-scale Λ solitons are constantly separated from the preceding large
waves and coalesce into the following ones (figure 16d–f ); wave front ‘B’ separates from
‘A’ and subsequently merges with ‘C’.
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Figure 16. Sequential snapshots to illustrate interactions between three-dimensional waves: (a–c) close-up of
the region r ≈ 1.0−2.0 and (d–f ) close-up of the region r ≈ 4.0−5.0 at identical instants. The time step for
the three panels in the upper and lower rows is �t = 0.42.

Because the local Reynolds number strongly influences the generation and interaction
mechanisms of three-dimensional waves, correlating the amplitude of the waves with
the long-wave parameter δ̂ = (ν̂/Ω̂)1/2, which represents the characteristic scale for film
thickness in (3.1), is not preferable. To characterize the variations in wave amplitude, a
parameter other than δ̂ should be considered. In the study on three-dimensional waves in
falling films (Demekhin et al. 2007), the amplitude and phase velocity of a single Λ soliton
were found to be governed by a dimensionless parameter called the generalized Reynolds
number Rg = Re11/9

G /(37/95γ 1/3), where γ = σ̂/(ρ̂ν̂4/3ĝ1/3) is the Kapitza number for
gravity-driven films. This parameter includes the flow rate of the liquid film on which
the Λ soliton lies as well as the body force acting on it. The concept of the generalized
Reynolds number is introduced to combine the Kapitza number γ , which represents the
ratio of surface tension force to inertial force, with the Reynolds number ReG, which
characterizes the flow rate per unit width, in a single parameter. As Λ solitons are regarded
as the fundamental coherent structures of three-dimensional waves in film flows, we
propose a generalized Reynolds number for rotating films to characterize the amplitude
of three-dimensional waves.

By fixing the point of observation on each three-dimensional wave following
the approach of Demekhin et al. (2010), the difference between rotating films and
gravity-driven films is reduced to the influence of the body force, where gravitational
acceleration ĝ in the original definition of the generalized Reynolds number Rg is replaced
by centrifugal acceleration r̂Ω̂2. Regarding the Reynolds number, ReG in the definition
of Rg is replaced by the time-averaged local Reynolds number 〈ReL〉. The adoption
of the local Reynolds number is justified, as the point of observation is fixed on a
specific three-dimensional wave travelling in a particular region on the rotating film. The
generalized Reynolds number for rotating films is then formulated as follows:

Rg = 〈ReL〉11/9

37/95γ 1/3 , where γ = σ̂

ρ̂ν̂4/3(r̂Ω̂2)1/3
. (5.1)

The Kapitza number γ dependent on r̂ is specifically defined to represent the local wave
amplitude under the influence of a spatially non-uniform body force, and it differs from
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Figure 17. Standard deviation σh of the time series for film thickness at r̂ = 109 mm with respect to the
generalized Reynolds number Rg. Insets A and B are the film thickness contours for Ω̂ = 31.4 rad s−1,
Q̂ = 12.5 mL s−1 and Ω̂ = 78.6 rad s−1, Q̂ = 16.7 mL s−1, respectively. The dashed line is an exponential
fitting line obtained from the points of 〈ReL〉 ≤ 100.

that used by Sisoev et al. (2003) for rotating films, which was based on liquid properties
(ρ̂, ν̂ and σ̂ ) and Ω̂ .

In the time series of film thickness, the amplitude of three-dimensional waves can be
represented by the standard deviation σh. The values of σh are obtained from sensor
measurements at the downstream position (r̂ = 109 mm) for various input conditions,
Ω̂ = 31.4−314.2 rad s−1 and Q̂ = 1.3−2.1 m3 s−1 (figure 17). The data of σh between
the numerical simulations and experimental measurements are not entirely consistent,
particularly for large Ω̂ . Thus, the experimental data are used to obtain σh whereas
the values used to calculate the generalized Reynolds number Rg in (5.1) are from the
numerical simulations. The standard deviation σh monotonically decreases in the low-Rg
regime, where the data are fitted to σh = 0.35R−3.5

g . This result seems to contradict the
trend of Λ solitons in falling films (Demekhin et al. 2007), where the volume of the
soliton increases with Rg and saturates as the flow becomes convectively stable. However,
the range of Rg considered in this study is more than 10 times that of the previous
work (Rg = 0−0.2) because the centrifugal acceleration r̂Ω̂2 in the definition of γ (5.1)
greatly exceeds the gravitational acceleration ĝ used for falling films. Importantly, the
magnitude of the waves, σh, stops decreasing as the local flow enters the turbulent regime,
〈ReL〉 > 100 (figure 17). This suggests that the horizontal fluctuation induced by the
backscattering of three-dimensional turbulence inside the film flow limits the reduction
in σh as Rg increases.

6. Concluding remarks

We have developed a numerical model for simulating the formation and evolution of
three-dimensional surface waves in a liquid film spreading over a rotating disk. Our IBL
model improves existing IBL models for rotating films to include the turbulent regime
by incorporating a power-law velocity profile and the backscatter effect. The Reynolds
number based on the local flow rate is introduced as a criterion for determining whether
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the turbulent or laminar formulation should be employed locally at a given instant. The
modified IBL equations successfully capture the transition from upstream concentric
waves to downstream three-dimensional waves and the behaviours of three-dimensional
waves under high flow rates, as confirmed by experimental measurements. The inclusion
of the backscatter model in the turbulent regime leads to a greater disturbance of
the concentric waves and the earlier onset of three-dimensional waves. A greater
backscatter constant produces more predictable and periodic patterns for the crests of the
three-dimensional waves. The amplitude of these waves tends to decrease monotonically
with increasing generalized Reynolds number based on centrifugal acceleration and the
local Reynolds number. In terms of separation and coalescence, the unique interaction
process among the waves is also observed downstream.

This study has elaborated the complicated behaviours of three-dimensional surface
waves, emphasizing the role of backscatter. The proposed IBL model has broad
applicability to other film flows with large flow rates, such as rotating films with hydraulic
jumps as well as gravity- and shear-driven films on different non-rotating solid geometries.
Future work should focus on enhancing the accuracy of the IBL model by exploring
alternative backscatter models and higher-order numerical schemes. It is also important
to extend this IBL model to investigate the effects of these surface waves on key features
relevant to industrial applications, including particle transport, heat and mass transfer,
and contact line dynamics. Furthermore, a quantitative analysis of the backscatter process
inside the film flow, using high-fidelity three-dimensional simulations, would be valuable.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2024.274.
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Appendix A. Distribution of wave regimes

Various patterns of surface waves are observed downstream when nozzle flow rate Q̂
and disk angular velocity Ω̂ change. The distribution of wave regimes is illustrated
in figure 18, which is obtained from our visualization experiments across ranges of
Q̂ and Ω̂ beyond those specified in table 1. The criterion for the boundary between
axisymmetric (and spiral) waves to three-dimensional waves is first discussed. Previous
experimental studies have revealed that the boundary between axisymmetric waves and
three-dimensional waves is primarily governed by the nozzle flow rate Q̂, while the effect
of the disk angular velocity Ω̂ is relatively minor (Boiarkina, Pedron & Patterson 2011;
Wang et al. 2023). Our results presented in figure 18 are in accordance with the previous
studies, with the threshold value of Q̂ in the present work being approximately 5 mL s−1.
Below this threshold, surface waves exhibit several regimes across the range of Ω̂ . At
lower Ω̂ , concentric waves near the impinging zone dissipate, giving way to smooth films
downstream. Under conditions of high Ω̂ , axisymmetric waves downstream are perturbed
in the tangential direction, leading to their breakup into wavelets. These observations are
consistent with those reported by Boiarkina et al. (2011).
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Figure 18. Distribution of surface wave patterns in terms of nozzle flow rate Q̂ and disk angular velocity Ω̂ .

When the nozzle flow rate exceeds 5 mL s−1, the patterns of surface waves exhibit two
distinct features. First, Λ solitons are observed downstream of concentric waves under
relatively high Ω̂ . On the other hand, concentric gravity waves emerge downstream for
low Ω̂ . The presence of the gravity waves indicates the occurrence of hydraulic jumps
(Askarizadeh et al. 2019), although delineating the precise location of the hydraulic jump
is challenging, particularly in cases where large concentric waves are prevalent (Kate,
Das & Chakraborty 2007). The occurrence of hydraulic jumps is thus inferred based on
whether gravity waves predominate in figure 18. The transitional regime, characterized
by the coexistence of gravity and capillary waves, is also included in the figure, which
provides the approximate boundary for the hydraulic jump. The theoretical investigation by
Ipatova et al. (2021) suggests that hydraulic jumps cease to exist when the dimensionless
angular velocity (ω = Ω̂2Q̂/(2πν̂ĝ)) surpasses a certain threshold value ω∗, which is
determined by the choice of inlet boundary conditions. The regime in figure 18 where
gravity waves emerge corresponds to this condition (Ω̂2Q̂ < const.). Consequently, the
IBL modelling in this regime should consider hydraulic jumps, which is beyond the scope
of this study.

Appendix B. Quartic velocity profile in laminar regime

In both radial r and tangential θ directions, the same velocity profile is utilized, as
explained in § 3.2. The focus of this appendix is to determine which profile is appropriate.
For the steady film flow rotating with a large Ekman number, the following assumption,
derived from a set of reduced governing equations, holds (Shkadov 1973):

1
ūθ

∂2uθ

∂η2 ∼ ur

ūr
. (B1)

For the selection of the radial velocity profile, the basic (Nusselt) semi-parabola ur =
ūr(η − 1

2η2) has been applied widely to the studies of film flows. However, any polynomial
profile that satisfies the boundary conditions (3.3a) and (3.5a,b) can be theoretically
employed as a velocity profile. Therefore, any velocity expansion u = ∑

j aj fj(η) with
basis function fj(η) = ηj+1 − (( j + 1)/( j + 2))ηj+2 is applicable to IBL modelling. The
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Figure 19. Vertical velocity profiles of (a) radial velocity ur/ūr and (b) tangential velocity uθ /ūθ . The red
line represents the theoretical velocity profile suggested by Watson (1964).

crucial aspect in establishing IBL equations is to determine a set of coefficients aj that
best conforms to the governing equations (Ruyer-Quil & Manneville 2000). It is evident
that the quartic profiles (3.10) take the form of the expansion ur(or uθ ) = ∑

jaj fj(η).
Another profile of this expansion is the cubic profile ur(or uθ ) = 4

5 ūr(or ūθ )(3η − η3),
which was employed in the recent works modelling the film flow generated by an
impinging liquid jet (Wang & Khayat 2018, 2020).

Three polynomial profiles (parabolic, cubic and quartic) are compared to find which
one is closest to a theoretical velocity profile of the film flow spreading over a stationary
substrate. Watson (1964) derived a theoretical solution of the vertical velocity profile for
the steady liquid film formed by an impinging liquid jet. By excluding pressure gradient
and transient terms from thin film equations, the following analytical expression for radial
velocity ur = us f (η) is obtained:

f (η) =
√

3 + 1 − 2
√

3
1 + cn[31/41.402(1 − η)]

. (B2)

Here cn is the Jacobian elliptic function and us is the radial velocity at the free surface
(z = h). The theoretical solution for tangential velocity uθ is obtained by integrating (B2)
twice, as suggested in (B1). The comparison of the polynomial velocity profiles with the
theoretical solution of Watson (1964) has been recently conducted by Wang & Khayat
(2020) and Ipatova et al. (2021).

According to figure 19, both the quartic profile employed in the present work and the
cubic profile match better with the theoretical solution than the parabolic profile in r and
θ directions. The cubic profile exhibits better agreement in radial velocity ur, while the
quartic profile is better in tangential velocity uθ . Additionally, the relative errors of closure
constants (3.11) are below 5 % for both the quartic and cubic profiles. The present work
opts for the quartic profile because this profile has been more widely used for modelling
surface waves in rotating film flows than the cubic velocity profile (Sisoev et al. 2003;
Matar et al. 2004; Kim & Kim 2009; Prieling & Steiner 2013; Ipatova et al. 2021). The
effects of different velocity profiles on the results of three-dimensional waves in the IBL
framework need to be analysed comprehensively in future studies.
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