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the stability of compressible boundary layers:
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Helmholtz decomposition of velocity perturbations is performed in conjunction with
linear stability analysis to examine the effects of flow-thermodynamics interactions on
the stability of high-speed boundary layers. A corresponding decomposition of the
pressure field is also proposed. The contributions of perturbation solenoidal kinetic,
dilatational kinetic and internal energy to the various instability modes are examined as
a function of Mach number (M). As expected, dilatational and pressure field effects play
an insignificant part in the first-mode behaviour at all Mach numbers. The second (Mack)
mode, however, is dominantly dilatational in nature, and perturbation internal energy is
significant compared to perturbation kinetic energy. The observed behaviour is explicated
by examining the key processes of production and pressure-dilatation. Production of
the second-mode dilatational kinetic energy is mostly due to the solenoidal-dilatational
covariance stress tensor interacting with the mean (background) velocity gradient. This
cross production component also inhibits the first mode. The dilatational pressure
facilitates energy transfer from the kinetic to the internal field in the near-wall region,
whereas the energy transfer away from the wall is mostly due to the solenoidal pressure
work. The dilatational characters of the fast and slow modes are also examined. The
fast mode is dominantly dilatational at both M = 4 and M = 6, while the nature of the
slow mode is dependent on M. Finally, Helmholtz decomposition of the perturbation
momentum vector is performed. Interestingly, both first and second modes are dominated
by solenoidal components of momentum.
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1. Introduction

One of the most important effects of compressibility on high-speed flows manifests
through flow–thermodynamics interactions. The wave nature of pressure at high Mach
numbers leads to the emergence of a dilatational component of the velocity field and
net pressure-work (pressure-dilatation covariance), both of which are absent at low
speeds. The pressure-work transfers energy between dilatational kinetic and internal
forms depending on the local state of flow expansion or contraction. The advent of
these two energy components profoundly affects stability, transition and turbulence
in the high-speed flows. The goal of this study is to advance the fundamental
understanding of perturbation evolution in high-speed boundary layers by investigating
flow–thermodynamics interactions at different Mach numbers.

The stability of compressible boundary layer flows (Lees & Lin 1946; Mack 1984; Reed,
Saric & Arnal 1996; Criminale, Jackson & Joslin 2018) has been studied extensively
using linear stability analysis. Lees & Lin (1946) established the necessary criteria for
inviscid stability of compressible boundary layer flows. They conclude that an extremum of
angular momentum (D(ρ̄DŪ) = 0) is necessary for inviscid instability. A more complete
understanding of compressible boundary layer stability was developed in the seminal
work of Mack (1984). The emergence of Tollmien–Schlichting (TS) waves at high Re
leads to instability in incompressible flows (Mack 1984; Schmid & Henningson 2001).
Compressibility has a stabilizing effect on the TS waves (also known as first mode) at
subsonic Mach numbers. In supersonic flows, oblique modes of the TS family are more
unstable than their streamwise counterparts. In related studies of homogeneous shear
flows, Kumar, Bertsch & Girimaji (2014) have shown that the effective Mach numbers of
streamwise modes are larger than those of oblique modes. Thus oblique modes experience
significantly lesser compressibility effects. At high Mach numbers, a new family of
instability modes coexists alongside the first mode. These additional modes are acoustic
in nature and exist whenever there is a region of relative supersonic flow in the boundary
layer (Mack 1984). For a flat-plate boundary layer with adiabatic walls, the first of these
additional modes, called the second mode, becomes the dominant instability above M = 4.
In general, wall cooling destabilizes the second mode while stabilizing the first mode
(Mack 1984, 1993; Masad, Nayfeh & Al-Maaitah 1992).

Gushchin & Fedorov (1990), Fedorov & Khokhlov (2001, 2002) and Fedorov & Tumin
(2011) analyse the eigenspectrum and the receptivity of high-speed boundary layers. Their
findings show that the second-mode instability occurs in a region where two modes of the
discrete spectrum are synchronized. These discrete modes were categorized as fast and
slow based on their asymptotic behaviour near the leading edge (Fedorov & Tumin 2011).
The coupling between the fast and slow modes in the synchronization region leads to the
branching of the discrete spectrum (Gushchin & Fedorov 1990). The branching pattern
of the discrete spectrum is dependent on the Mach number (Fedorov & Tumin 2011).
Consequently, depending on the flow parameters, the second mode can be associated with
the fast or slow mode. Although the eigenspectrum (Gushchin & Fedorov 1990; Fedorov
& Khokhlov 2001; Fedorov & Tumin 2011) and the growth/decay (Mack 1975, 1984) of
boundary layer instabilities have been investigated extensively in the past, compressibility
effects on the instability modes require further attention. In this paper, we seek to further
our understanding by examining the role of flow–thermodynamics interactions on the
observed modal behaviour.

To examine compressibility effects, Kovasznay (1953) proposes a decomposition of
the fluctuating field into vorticity, entropy and acoustic components. The Kovasznay
decomposition is dynamic in nature (Sagaut & Cambon 2008) and is valid only in the
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Compressible boundary layer stability

limit of small perturbations. The momentum potential theory (MPT) of Doak (1989)
decomposes the momentum field (ρu) into vortical, acoustic and thermal components.
Jenvey (1989) extended MPT to identify the acoustic components of the fluctuating
enthalpy and internal energy. The extended formulation is applied to study the net sound
power output and the associated coupling between the irrotational and solenoidal fields
at the boundary of stationary flows. Unnikrishnan & Gaitonde (2019) apply MPT to
examine the contribution of the three components to the hypersonic boundary layer
transition process. Their findings suggest that the vortical content of the momentum
vector is of a similar magnitude for both first and second modes. Moreover, and perhaps
more surprisingly, they find that vortical (momentum) fluctuations contain most of the
disturbance energy even in the second mode, which is traditionally understood as being
acoustic in nature (Mack 1984). Recent investigations of high-speed boundary layer
transition have revealed that the behaviour of aerodynamic heating depends on the
underlying instability mechanism (Franko & Lele 2013; Zhu et al. 2018). For first-mode
induced transition, generation of streamwise vortices leads to a strong overshoot of
heat transfer at the end of the transition region. On the other hand, in numerical and
experimental investigations (Franko & Lele 2013; Zhu et al. 2018) of second-mode induced
transition, a stronger peak of surface temperature (denoted as HS) appears in the region
of second-mode instability. Zhu et al. (2018) have shown that the aerodynamic heating
facilitated by pressure-dilatation leads to the HS peak. Clearly, the coupling generated
due to pressure-dilatation is fundamentally different for both first and second modes,
and further insight into the role and contribution of various components of compressible
velocity field will be of much value.

The Helmholtz decomposition of the flow field is better suited for examining dilatational
kinetic and internal energy effects arising from compressibility. This static decomposition
(Sagaut & Cambon 2008) can be applied to a broad set of vector fields and is not
restricted to small fluctuations, unlike the Kovasznay decomposition. More importantly,
the decomposition allows us to separate pure dilatational and vortical effects. The
dilatational effects are fundamental in understanding the dynamic coupling between the
flow and thermodynamic variables. Consequently, the Helmholtz decomposition has been
used extensively to study compressibility effects in isotropic turbulence (Sarkar et al. 1991;
Jagannathan & Donzis 2016), wall-bounded turbulence (Yu, Xu & Pirozzoli 2019) and
turbulent boundary layer flows (Xu et al. 2021).

Following previous works in compressible turbulence, we apply the Helmholtz
decomposition in the context of linear theory to examine the compressibility effects on
boundary layer instability modes. An analytical formulation to examine the eigenmodes
using Helmholtz decomposition is developed. We extend the decomposition of velocity
to partition the pressure fluctuations into solenoidal and dilatational contributions. The
compressibility effects at high Mach numbers on both first and second modes are analysed.
The solenoidal and dilatational energy levels of the instability modes are established.
Finally, the decomposition is applied to the key turbulence processes to explicate the
observed instability behaviour.

2. Linear analysis and Helmholtz decomposition

The governing equations for an ideal compressible fluid are

∂ρ†

∂t†
+ ∂

∂x†
j

(ρ†u†
j ) = 0, (2.1a)
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∂(ρ†u†
i )

∂t†
+
∂(ρ†u†

i u†
j )

∂x†
j

= −∂p†

∂x†
i

+
∂τ

†
ij

∂x†
j

, (2.1b)

∂

∂t†

(
p†

γ − 1

)
+ ∂

∂x†
j

(
p†u†

j

γ − 1

)
= ∂

∂x†
j

(
κ† ∂T†

∂x†
j

)
− p† ∂u†

k

∂x†
k

+ τ
†
ij
∂u†

i

∂x†
j

, (2.1c)

p† = ρ†RT†, (2.1d)

where the superscript † is used to denote the dimensional variables. The density of the
fluid is denoted by ρ†, velocity by u†

i , temperature by T†, and pressure by p†. Also, γ is
the specific heat ratio, κ† is the coefficient of thermal conductivity, and τ †

ij is the viscous
stress tensor given by

τ
†
ij = μ†

(
∂u†

i

∂x†
j

+
∂u†

j

∂x†
i

)
− 2

3
μ† ∂u†

k

∂x†
k

δij. (2.2)

The coefficient of viscosity μ† is dependent on the local temperature as dictated by the
Sutherland’s law (Sutherland 1893).

Restricting consideration to a boundary layer, the dimensional variables ρ†, u†
i and

T† are normalized by their respective freestream values ρ∞, U∞ and T∞. Pressure (p†)
is normalized by the freestream dynamic pressure ρ∞U2∞. The Blasius length scale
Lr =

√
μ∞x†/ρ∞U∞ is used to normalize the spatial coordinate x†

i . The fluid properties
μ† and κ† are also normalized by the freestream values κ∞ and μ∞, respectively. The
non-dimensional forms of the compressible Navier–Stokes equations are then obtained as

∂ρ

∂t
+ ∂

∂xj
(ρuj) = 0, (2.3a)

∂(ρui)

∂t
+ ∂(ρuiuj)

∂xj
= − ∂p

∂xi
+ 1

Re
∂τij

∂xj
, (2.3b)

∂p
∂t

+ ∂

∂xj

(
puj
) = 1

M2 Re Pr
∂

∂xj

(
κ
∂T
∂xj

)
− (γ − 1)p

∂uk

∂xk
+ γ − 1

Re
τij
∂ui

∂xj
, (2.3c)

p = 1
γM2 ρT. (2.3d)

The non-dimensional parameters in the governing equations (2.3) are

Re = ρ∞U∞Lr

μ∞
, M = U∞√

γRT∞
, Pr = μ∞Cp

κ∞
, (2.4a–c)

where CP = γR/(γ − 1) is the specific heat at constant pressure.
For linear stability analysis, the flow variables are decomposed into a basic state and

perturbations:

A = Ā + A′. (2.5)

Here, A represents the flow and thermodynamic variables (ui, ρ, p, T). The fluid
properties, viscosity (μ) and thermal conductivity (κ), are also decomposed into a base
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Compressible boundary layer stability

state and perturbations. The basic state for a flat-plate boundary layer flow is taken to
be two-dimensional and locally parallel. As a result, the base variables vary only along
the wall-normal direction y. The basic state is obtained by solving the two-dimensional
compressible laminar boundary layer equations with adiabatic walls using the Levy–Lees
similarity transformation (Rogers 1992). The perturbation equations in the linear limit are
(Malik 1990)

∂ρ′

∂t
+ Ūi

∂ρ′

∂xi
+ ∂ρ̄

∂xi
u′

i + ρ̄
∂u′

i
∂xi

= 0, (2.6a)

ρ̄
∂u′

i
∂t

+ ρ̄Ūk
∂u′

i
∂xk

+ ρ̄
∂Ūi

∂xk
u′

k = −∂p′

∂xi
+ 1

Re
∂τ ′

ik
∂xk

, (2.6b)

ρ̄
∂T ′

∂t
+ ρ̄Ūi

∂T ′

∂xi
+ ρ̄u′

i
∂T̄
∂xi

= (γ − 1)M2
[
∂p′

∂t
+ Ūi

∂p′

∂xi

]
− 1

Re Pr
∂q′

k
∂xk

+ (γ − 1)M2

Re

[
τ ′

ij
∂Ūi

∂xj
+ τ̄ij

∂u′
i

∂xj

]
, (2.6c)

p′ = 1
γM2

(
ρ̄T ′ + ρ′T̄

)
, (2.6d)

where τ ′
ik is the linearized viscous stress tensor, and q′

k is the perturbation thermal
conduction term. The components of the linearized viscous stress tensor τ ′

ik and thermal
conduction term q′

k are given by

τ ′
ik = μ̄

(
∂u′

i
∂xk

+ ∂u′
k

∂xi

)
+ μ′

(
∂Ūi

∂xk
+ ∂Ūk

∂xi

)
+ λ̄ ∂u′

k
∂xk

δik,

q′
k = −κ̄ ∂T ′

∂xk
− κ ′ dT̄

dxk
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.7)

We consider a normal mode for the perturbations A′ (Mack 1984) of the form

A′ = Â( y) exp(ι(αx + βz − ωt)), (2.8)

where α and β are the wavenumbers in the streamwise and spanwise directions, ω is
the temporal frequency, and Â is the perturbation amplitude varying in the wall-normal
direction. For temporal stability analysis, α and β are real and specified a priori, while
ω is the complex eigenvalue obtained from analysis. The sign of the imaginary part of
ω (ωi) determines the stability: perturbations grow if ωi > 0, and decay if ωi < 0. The
modal form of perturbations is substituted into the linearized perturbation equation (2.6)
to formulate the eigenvalue problem

ωΘ = A−1B(α, β,Re,M,Pr)Θ. (2.9)

Here, Θ = [û, v̂, ŵ, T̂, p̂] are the eigenmode shapes corresponding to the eigenvalue ω.
The elements of the fifth-order coefficient matrices A and B are listed in Sharma &
Girimaji (2022). No-slip and zero thermal perturbation boundary conditions are used for
velocity and temperature, while a Neumann boundary condition for pressure is obtained
by solving the wall-normal momentum equation (2.6b).
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2.1. Modal Helmholtz decomposition
The Helmholtz decomposition allows any three-dimensional vector field to be expressed
as a sum of solenoidal and dilatational components. Following the fundamental theorem
of vector calculus (Murray 1898), the perturbation velocity vector u′ is cast as

u′ = u′s + u′d, u′s = ∇ × Ψ , u′d = ∇φ. (2.10a–c)

Here, φ is the velocity potential, and Ψ is the vector potential. The solenoidal velocity u′s

is divergence-free, and the dilatational part u′d is irrotational by definition. The potentials
φ and Ψ are governed by the Poisson equations (Hirasaki & Hellums 1970)

∇2φ = ∇ · u′, ∇2Ψ = −∇ × u′. (2.11a,b)

It is worth noting that the vector potential Ψ is constrained to be solenoidal (Hirasaki &
Hellums 1970). The boundary conditions given by

∂φ

∂y

∣∣∣∣
0,ly

= 0, Ψx|0,ly = 0,
∂Ψy

∂y

∣∣∣∣
0,ly

= 0, Ψz|0,ly = 0 (2.12a–d)

must be satisfied at the wall and the freestream boundary for a unique vector potential
(Hirasaki & Hellums 1970). Here, Ψx, Ψy and Ψz are the streamwise, wall-normal and
spanwise components of the vector potential, respectively.

As mentioned in the Introduction, we use Helmholtz decomposition in conjunction
with linear stability analysis to gain further insight into the compressibility effects on
compressible boundary layer stability. The velocity field of each eigenmode is subjected
to Helmholtz decomposition. The potentials φ and Ψ are expressed in the normal mode
form as

φ = φ̂( y) exp(ι(αx + βz − ωt)), Ψi = Ψ̂i( y) exp(ι(αx + βz − ωt)), (2.13a,b)

where φ̂ and Ψ̂i are the eigenfunctions of the velocity and vector potentials, respectively.
Substituting the normal mode form of potentials (2.13a,b) in the Poisson equations
(2.11a,b), the governing equations for the potential eigenfunctions are obtained:

−α2φ̂ + d2φ̂

dy2 − β2φ̂ = ιαû + dv̂
dy

+ ιβŵ,

−α2Ψ̂x + d2Ψ̂x

dy2 − β2Ψ̂x = ιβv̂ − dŵ
dy
,

−α2Ψ̂y + d2Ψ̂y

dy2 − β2Ψ̂y = ιαŵ − ιβû,

−α2Ψ̂z + d2Ψ̂z

dy2 − β2Ψ̂z = dû
dy

− ιαv̂.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.14)

Here, û, v̂ and ŵ are the eigenmode shapes of the streamwise, wall-normal and spanwise
velocity components, respectively. The following boundary conditions must be satisfied
for uniqueness of the potentials:

dφ̂
dy

∣∣∣∣∣
0,ly

= 0, Ψ̂x

∣∣∣
0,ly

= 0,
dΨ̂y

dy

∣∣∣∣∣
0,ly

= 0, Ψ̂z

∣∣∣
0,ly

= 0. (2.15a–d)

A more detailed discussion on the boundary conditions is provided in Appendix A.
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Compressible boundary layer stability

The solenoidal and dilatational parts of the velocity field can also be expressed in the
modal form

u′s
i = ûs

i ( y) exp(ι(αx + βz − ωt)), u′d
i = ûd

i ( y) exp(ι(αx + βz − ωt)). (2.16a,b)

The eigenfunctions ûs
i and ûd

i are then obtained using

ûd = ιαφ̂, v̂d = dφ̂
dy
, ŵd = ιβφ̂,

ûs = dΨ̂z

dy
− ιβΨ̂y, v̂s = ιβΨ̂x − ιαΨ̂z, ŵs = ιαΨ̂y − dΨ̂x

dy
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.17)

The fluctuating velocity eigenfunctions can be recovered from ûs
i and ûd

i :

ûi = ûs
i + ûd

i . (2.18)

2.1.1. Momentum decomposition
In this work, we employ Helmholtz decomposition to partition the momentum
perturbations (m′

i) as well. The momentum perturbations in the linear limit can be
approximated as

m′
i = ρui − ρu = ρ̄u′

i + ρ′Ūi. (2.19)

The momentum perturbations are then split into solenoidal and dilatational parts:

m′
i = m′s

i + m′d
i , (2.20)

where m′s
i is the solenoidal component and m′d

i is the dilatational component of the
momentum field. The eigenfunctions of m′s

i and m′d
i can also be obtained by following

the procedure outlined in (2.14)–(2.17).

2.2. Pressure decomposition
The decomposition of pressure in general is not unique, and multiple formulations exist.
Erlebacher et al. (1990) define the solenoidal pressure as the field that satisfies the
incompressible Poisson equation with a source term corresponding to the solenoidal
velocity. Then the dilatational pressure is defined as the difference between the total
pressure and the solenoidal pressure. More recently, Yu, Xu & Pirozzoli (2020)
proposed a formal partition of pressure into the rapid, slow, viscous and mass flux
related terms. The rapid and slow terms can be further split into solenoidal and
dilatational parts using the Helmholtz decomposition of velocity. Building on the
momentum potential theory approach (Doak 1989), Unnikrishnan & Gaitonde (2020) also
propose a split of pressure fluctuations into their hydrodynamic, acoustic and entropic
components. In this subsection, a novel formulation to decompose the total pressure
fluctuations into solenoidal (p′s) and dilatational (p′d) pressure in the linear limit is
presented.
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The divergence of the linearized perturbation momentum equation (2.6b) yields the
following equation for pressure perturbations:

− ∂2p′

∂xi ∂xi
+ 1
ρ̄

∂ρ̄

∂xi

∂p′

∂xi
=
[
ρ̄
∂

∂t
+ ρ̄Ūk

∂

∂xk

]
∂u′

i
∂xi

+ 2ρ̄
∂Ūk

∂xi

∂u′
i

∂xk

− 1
Re

[
∂2τ ′

ik
∂xi ∂xk

− 1
ρ̄

∂ρ̄

∂xi

∂τ ′
ik

∂xk

]
. (2.21)

The Helmholtz decomposition of the velocity field u′
i = u′s

i + u′d
i is substituted in (2.21).

We assume that the evolution of p′s is determined completely by the solenoidal part of
velocity field. The governing equation for the solenoidal pressure is

− ∂2p′s

∂xi ∂xi
+ 1
ρ̄

∂ρ̄

∂xi

∂p′s

∂xi
= 2ρ̄

∂Ūk

∂xi

∂u′s
i

∂xk
− 1

Re

[
∂2τ ′s

ik
∂xi ∂xk

− 1
ρ̄

∂ρ̄

∂xi

∂τ ′s
ik

∂xk

]
. (2.22)

The components of the solenoidal viscous stress tensor τ ′s
ik are

τ ′s
ik = μ̄

(
∂u′s

i
∂xk

+ ∂u′s
k

∂xi

)
. (2.23)

The solenoidal pressure satisfies the following Neumann boundary condition at the wall
and the freestream boundary:

∂p′s

∂y

∣∣∣∣
(0,ly)

= 1
Re

∂τ ′s
2k

∂xk
. (2.24)

It must be noted that in the absence of gradient of mean density and temperature, p′s
is governed by the incompressible Poisson equation. Thus for a constant base density
and temperature profile, the current decomposition of pressure reduces to the formulation
presented in Erlebacher et al. (1990).

The dilatational pressure can then be computed by subtracting p′s from the total pressure
fluctuations p′:

p′d = p′ − p′s. (2.25)

The pressure decomposition proposed is also applied to each eigenmode. Thus, p′s and
p′d are expressed in the modal form

p′s = p̂s( y) exp(ι(αx + βz − ωt)), p′d = p̂d( y) exp(ι(αx + βz − ωt)). (2.26a,b)

The modal form of pressure perturbations is substituted in (2.22) to obtain the following
second-order ordinary differential equation (ODE) for p̂s:

d2p̂s

dy2 −
[

1
ρ̄

dρ̄
dy

]
dp̂s

dy
− (α2 + β2)p̂s = −Ŝ(ûs

i ; ρ̄, Ū, μ̄), (2.27)

where Ŝ(ûs
i ; ρ̄, Ū, μ̄) is the source term dependent on the solenoidal velocity

eigenfunction and the basic state

Ŝ = 2ιαρ̄
dŪ
dy
v̂s − 1

Re

[
2

d2μ̄

dy2 − 2
ρ̄

dρ̄
dy

dμ̄
dy

]
dv̂s

dy
− 1

Re

[
2

dμ̄
dy

− μ̄

ρ̄

dρ̄
dy

]
∇̂2v̂s. (2.28)

Here, ∇̂2v̂s = −(α2 + β2)v̂s + d2v̂s/dy2 denotes the Laplacian of v̂s. The solenoidal
component of pressure eigenmode is obtained by solving the ODE (2.22) alongside the
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boundary condition
dp̂s

dy
= 1

Re

[
μ̄ ∇̂2v̂s + dμ̄

dy
dv̂s

dy

]
. (2.29)

In high-speed flows, the velocity field develops a dilatational component allowing for
pressure to perform work on the velocity field. The kinetic energy can therefore be
diverted to internal energy via the pressure-dilatation mechanism (Sarkar 1992; Mittal
& Girimaji 2019). Thus, in dealing with compressible flows, it is important to consider
flow–thermodynamic interactions and account for both kinetic and internal energy. In the
linear limit, the perturbation kinetic energy contained in the velocity fluctuations and the
internal energy in pressure fluctuations (Mittal & Girimaji 2019) are defined as

k = 1
2
ρ̄u′

iu
′
i, e = p′p′

2γ P̄
. (2.30a,b)

The fluctuating kinetic energy can be partitioned into three components using the
Helmholtz decomposition of the velocity field:

k = 1
2 ρ̄u′s

i u′s
i︸ ︷︷ ︸

ks

+ 1
2 ρ̄u′d

i u′d
i︸ ︷︷ ︸

kd

+ ρ̄u′s
i u′d

i︸ ︷︷ ︸
ksd

, (2.31)

where ks, kd and ksd are the solenoidal, dilatational and covariance components of kinetic
energy, respectively. Here, ks and kd quantify the energy in the solenoidal and dilatational
velocity field, and are always positive; ksd represents the correlation between the solenoidal
and dilatational velocity field, and is not positive definite. Similarly, the internal energy in
pressure fluctuations can also be decomposed into solenoidal (es), dilatational (ed) and
covariance (esd) components:

e = p′sp′s

2γ P̄︸ ︷︷ ︸
es

+ p′dp′d

2γ P̄︸ ︷︷ ︸
ed

+ p′sp′d

γ P̄︸ ︷︷ ︸
esd

. (2.32)

2.3. Numerical methodology
The eigenmodes are computed by solving the global eigenvalue problem (2.9) on N =
199 collocation points using Chebyshev polynomials (Malik 1990). The Chebyshev
polynomials are defined on the following Gauss–Labato points (ξi) in the interval [−1, 1]:

ξi = cos
πi
N
, i = 0, 1, . . . ,N. (2.33)

The physical domain (y ∈ [0, ly]) is mapped to the computational domain using an
algebraic stretching function (Malik 1990)

y = a
1 + ξ

b − ξ
, where b = 1 + 2a

ly
and a = ylly

ly − 2yl
. (2.34)

Here, ly is the length of the physical domain, and the parameter yl is set equal to half of
the 99 % boundary layer thickness (y99) in all stability calculations.

For each eigenmode, the boundary value problem (2.14)–(2.15a–d) is solved to compute
the potential eigenfunctions φ̂ and Ψ̂i. The second-order ODE (2.14) is discretized using
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Figure 1. Mode shapes of (a) streamwise velocity (û) and (b) wall-normal velocity (v̂), at M = 6, Re = 4000,
α = 0.175 and β = 0. Black solid lines correspond to the mode shapes obtained from the standard eigenmode
formulation (2.9). Dashed red lines denote the sum total of the dilatational and solenoidal parts of the velocity.

Chebyshev polynomials in the wall-normal direction. The mode shapes for the solenoidal
and dilatational parts of velocity are then obtained from (2.17). Subsequently, the ODE
(2.27) is also solved using Chebyshev polynomials to compute p̂s. The mode shape of the
dilatational pressure p̂d is then obtained from the residual of p̂ and p̂s.

To verify the accuracy of the modal formulation of Helmholtz decomposition, the
velocity eigenfunctions obtained from (2.18) are compared against the standard velocity
eigenfunctions obtained from (2.9). The mode shapes for the streamwise and wall-normal
velocity at M = 6 and Re = 4000 obtained from the two approaches are shown in figure 1.
The mode shapes correspond to the most unstable eigenmode at α = 0.175 and β = 0. The
sum total of the solenoidal and dilatational velocity recovers the velocity mode shapes
obtained from the standard eigenmode analysis. The profiles of the velocity divergence
(∇ · u′) and vorticity magnitude (|Ω| = |∇ × u′|) are presented in figure 2. It is evident
from the figures that the solenoidal part of the velocity field is divergence-free as the
dilatational component contributes to all of the dilatation in the flow. Similarly, u′d is
irrotational, and vorticity is entirely contained in the solenoidal mode. It is worth noting
that the solenoidal field does not include acoustic waves and is entirely vortical in nature.
The dilatational field, on the other hand, is not restricted to acoustic phenomena and
incorporates both acoustic and entropy effects (Sagaut & Cambon 2008).

3. Solenoidal and dilatational field contributions to instability

In this section, we examine the contributions of solenoidal (vortical) and dilatational
(acoustic + entropy) velocity fields to the instability at different Mach numbers. The
stability analysis is performed for M ∈ [0.5, 8] at fixed Re = 4000 and Pr = 0.7. The
Reynolds number selected herein (Re = 4000) is greater than the minimum critical
Reynolds number at all M. Moreover, analysis of lower Reynolds number cases
indicates that the compressibility effects are not strongly influenced by Re. Therefore,
we present only results corresponding to Re = 4000 in this work. For a given Mach
number, the most unstable mode is computed by performing a parameter sweep in
the streamwise–spanwise (α, β) wavenumber space. The most unstable first mode is
obtained for M = {0.5, 1, 2, 3, 4, 6}, and the most unstable second mode is computed
for M = {4, 5, 6, 7, 8}. It is worth noting that the second mode is stable for M ≤ 3.
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Figure 2. Mode shapes of the (a) velocity divergence (∇ · u′) and (b) vorticity magnitude (|Ω| = |∇ × u|), at
M = 6, Re = 4000, α = 0.175 and β = 0. Red dashed lines correspond to the (a) divergence and (b) vorticity
of the solenoidal velocity u′s. Blue dash-dotted lines represent the (a) divergence and (b) vorticity of the
dilatational velocity u′d .

The solenoidal and dilatational energy levels of an eigenmode are quantified by
considering global averages as defined in Sharma & Girimaji (2022). The global-averaged
kinetic (kg) and internal energy (eg) are obtained by integrating the amplitude of velocity
and pressure perturbations in the wall-normal direction:

kg = 1
ly

∫ ly

0

ρ̄ûiû∗
i

2
dy, eg = 1

ly

∫ ly

0

p̂p̂∗

2γ P̄
dy, (3.1a,b)

where û∗
i denotes the complex conjugate of ûi. The global-averaged kinetic energy can be

split into the solenoidal kinetic energy (kg
s ), dilatational kinetic energy (kg

d) and covariance
(kg

sd) components. The averaged energy components are defined as

kg
s = 1

2ly

∫ ly

0
ρ̄ûs

i (û
s
i )

∗ dy,

kg
d = 1

2ly

∫ ly

0
ρ̄ûd

i (û
d
i )

∗ dy,

kg
sd = 1

2ly

∫ ly

0

(
ρ̄ûs

i (û
d
i )

∗ + ρ̄ûd
i (û

s
i )

∗
)

dy.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

3.1. Most unstable first and second modes
The solenoidal and dilatational contributions to the most unstable first and second modes
are considered now. The growth rates of the most unstable first and second modes at
different M are shown in figure 3. The first mode is the dominant instability for M < 4,
while the second mode dominates at higher M. The most unstable first mode is oblique
for M � 1, while the most unstable second mode is always streamwise. Figure 4 plots
the solenoidal, dilatational and covariance energy fractions at different M for both first
and second modes. The first mode is purely solenoidal as the dilatational and covariance
components have negligible energy. This is not surprising, as the first mode instability
is a TS wave, which is a vortical instability. The second mode, on the other hand, is
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Figure 3. Growth rates (ωi) of the most unstable first and second modes at different M.
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Figure 4. Solenoidal (kg
s ), dilatational (kg

d) and covariance (kg
sd) components of the average kinetic energy for

the most unstable (a) first mode and (b) second mode, at different M.

dominantly dilatational and has non-negligible solenoidal energy. The solenoidal energy
fraction increases with Mach number. The dilatational and solenoidal modes are negatively
correlated for the second mode. The covariance value is less than −5 % for M < 6, and
gradually increases in magnitude up to −15 % at M = 8. The dominantly dilatational
nature of the second mode indicates that flow–thermodynamic interactions are significant
for the second mode. For the first mode, however, flow–thermodynamic interactions are
not important as the dilatational velocity is negligible.

The solenoidal and dilatational parts of the velocity eigenfunctions for the most unstable
mode at M = 0.5 are shown in figure 5. The most unstable mode at M = 0.5 is a
streamwise first mode. The eigenfunctions are normalized by the magnitude of pressure
perturbation at the wall. The dilatational velocity is negligible in both the streamwise and
wall-normal directions as the first mode is a vortical instability. The streamwise solenoidal
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Figure 5. Mode shapes of the solenoidal and dilatational parts of (a) streamwise velocity (û) and
(b) wall-normal velocity (v̂), for the most unstable first mode at M = 0.5.
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Figure 6. Mode shapes of the solenoidal and dilatational parts of (a) streamwise velocity (û), (b) wall-normal
velocity (v̂) and (c) spanwise velocity velocity (ŵ), for the most unstable first mode at M = 3.0.

velocity has a strong peak near the critical layer (yc = 0.83), while the wall-normal
solenoidal velocity peaks near the boundary layer edge (y99 = 4.95). Figure 6 plots the
eigenfunctions of the dilatational and solenoidal parts of velocity for the most unstable
mode at M = 3. The most unstable mode at M = 3 is an oblique first mode. Much
like the first mode at M = 0.5, the dilatational contribution to the velocity field is
negligible. The solenoidal part of the velocity dominates and has a strong peak near the
critical layer (yc = 3.85) in the streamwise and spanwise directions. The solenoidal and
dilatational parts of the most unstable first mode at M = 6 are presented in figure 7. The
most unstable first mode at M = 6 is also oblique. Similar to the M = 0.5 and M = 3
cases, the velocity field is also dominantly solenoidal for the first mode at M = 6. The
solenoidal and dilatational contributions to velocity for the second mode at M = 6 are
shown in figure 8. Unlike the first mode, the dilatational part dominates for the second
mode. Both solenoidal and dilatational components of the streamwise velocity peak at
the wall but are of opposite sign. It must be noted that ûs and ûd do not satisfy the
no-slip condition independently. However, the sum of the components is zero at the wall.
Physically, it is not necessary for each component to satisfy the no-slip boundary condition
independently as long as the total field satisfies the no-slip condition (Jenvey 1989).
Moreover, enforcing the condition separately on each component can misrepresent the
coupling and phase relationship between the different components at the boundary. The
dilatational contribution to streamwise velocity decays gradually from its peak value at
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Figure 7. Modes shapes of the solenoidal and dilatational parts of (a) streamwise velocity (û),
(b) wall-normal velocity (v̂) and (c) spanwise velocity (ŵ), for the most unstable first mode at M = 6.0.
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Figure 8. Modes shapes of the solenoidal and dilatational parts of (a) streamwise velocity (û) and
(b) wall-normal velocity (v̂), for the most unstable second mode at M = 6.0.

the wall. On the other hand, |ûs| decreases sharply near the wall before increasing beyond
y = 3. The minimum of |ûs| corresponds to the location of peak streamwise velocity (û).
The solenoidal component of streamwise velocity has a local maximum near the sonic
line (ys = 7) and is comparable to ûd beyond the sonic line. The dilatational part of the
wall-normal velocity peaks near the sonic line and is the dominant component inside the
boundary layer. The solenoidal part of v̂ peaks near the boundary layer edge (y99 = 15.3)
and is comparable to v̂d outside the boundary layer. Overall, the dilatational effects and
hence flow–thermodynamic interactions are most prominent below the sonic line.

As mentioned earlier, the potential energy contained in pressure fluctuations plays an
important role in high-speed flows. The energy partition between the kinetic and internal
modes is quantified by the parameters fk and fd defined by

fk = eg

eg + kg , fd = eg

kg
d + eg

. (3.3a,b)

Equipartition between the dilatational kinetic and internal energy has been observed
previously in decaying compressible (Sarkar et al. 1991; Lee & Girimaji 2013) and
forced compressible (Jagannathan & Donzis 2016) turbulence at high Mt. These flows
are dominated by broad spectra and nonlinear interactions. Here, we will examine the
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Figure 9. Plots of (a) fk and (b) fd energy fractions for the most unstable first and second modes at different
Mach numbers.

energy partition in the linear limit. Figure 9 plots the fraction with respect to total kinetic
( fk) and dilatational kinetic ( fd) energy for the most unstable first and second modes at
different M. For the first mode, the internal energy content is negligible compared to the
total kinetic energy. However, the internal energy content is significantly larger than the
dilatational kinetic energy. In contrast to the first mode, the second mode has substantial
internal energy content (over 25 %). The dilatational kinetic energy of the second mode is
at least 70 % higher than eg at all M. Both the energy fractions decrease slightly with M
for the second mode.

Generally, the perturbation field draws energy from the mean flow by the
instability-enabled production mechanism. To gain further insight on the instability
mechanisms, the production of total kinetic energy (Pk) is decomposed into solenoidal
(Pss), dilatational (Pdd) and cross (Psd) components as follows:

Pk = −ρ̄u′
iu

′
j
∂Ūi

∂xj
= −ρ̄u′s

i u′s
j
∂Ūi

∂xj︸ ︷︷ ︸
Pss

− ρ̄u′d
i u′d

j
∂Ūi

∂xj︸ ︷︷ ︸
Pdd

− ρ̄(u′s
i u′d

j + u′d
i u′s

j )
∂Ūi

∂xj︸ ︷︷ ︸
Psd

. (3.4)

The global averages of the production components Pg
ss, Pg

dd and Pg
sd are shown in figure 10.

The solenoidal production is the dominant component of Pg
k for the first mode. The cross

production is negative for the first mode and increases in magnitude with M, whereas the
dilatational part is negligible. The magnitude increase of the cross production is partially
responsible for the reduced growth rate of the first mode at high Mach numbers. The
dilatational component of production contributes significantly to the total production of
the second mode. The cross production is positive and is the dominant contributor to total
production for the second mode. The positive nature of Pg

sd leads to much higher growth
rate of the second mode compared to the first mode. The profiles of Pss, Pdd and Psd at
M = 6 are shown for both first and second mode in figure 11. Most of the kinetic energy
production for the first mode occurs in a region around the critical layer (yc = 11.94).
The production components in the near-wall region are negligible for the first mode.
The solenoidal component of production peaks at the critical layer and drives the first
mode instability. The cross component of production is always negative and inhibits the
instability growth. On the other hand, for the second mode, Psd is positive in the majority
of the boundary layer and is the dominant production mechanism beyond the sonic line.
The cross production peaks near the generalized inflection point (yI = 13.11) for the
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Figure 10. Solenoidal (Pg
ss), dilatational (Pg

dd) and cross (Pg
sd) components of the averaged production for the

most unstable (a) first mode and (b) second mode, at different M.
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Figure 11. Profiles of the production components for the most unstable (a) first mode and (b) second mode, at
M = 6. The sonic and generalized inflection lines for the second mode are marked using dashed lines.

second mode. The dilatational component of production is significant only in the near-wall
region below the sonic line. To better assess the role of second mode production physics in
different regions of the boundary layer, the profiles of solenoidal and dilatational kinetic
energy are shown in figure 12(a). The second-mode acoustic impedance (Kinsler et al.
2000; Kuehl 2018) based on linear stability Z = p′/v′ is also presented in figure 12(b).
An acoustic impedance well is formed between the wall (infinite impedance) and the
secondary peak in impedance near the generalized inflection line. In a recent study, Kuehl
(2018) has demonstrated that acoustic energy in the second mode is trapped between
the increasing impedances on the sides of the well. Consistent with the thermoacoustic
interpretation of Kuehl (2018), we observe that dilatational kinetic energy dominates in
the well region. In the region below the sonic line, kinetic energy is primarily dilatational
and the ensuing wave motion is sustained by the dilatational production. Beyond the sonic
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Figure 12. (a) Solenoidal and dilatational kinetic energy profiles ks, kd for the second mode at M = 6. (b) The
acoustic impedance Z based on linear stability theory for the second mode at M = 6. The sonic and generalized
inflection lines are marked using dashed lines.
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Figure 13. Effect of obliqueness on the solenoidal, dilatational and covariance components of kinetic energy
for (a) first mode and (b) second mode, at M = 6.

line, as dilatational effects gradually weaken, the instability derives energy via the cross
production mechanism.

The effect of obliqueness (ψ = tan−1(β/α)) on the kinetic energy components kg
s , kg

d
and kg

sd is considered next. The energy components as a function of ψ for both first
and second modes at M = 6 are presented in figure 13. The solenoidal kinetic energy
is the dominant component for first mode at all ψ . The dilatational kinetic energy is
non-negligible for the streamwise first mode, and gradually decreases with increasing
obliqueness. The covariance component for the first mode is negative and also decreases
in magnitude as ψ increases. The dilatational energy content decreases and the solenoidal
contribution increases significantly for oblique second modes. Overall, the dilatational
kinetic energy decreases with increasing obliqueness for both first and second modes. This
finding is consistent with the behaviour of oblique perturbations reported in compressible
homogeneous shear flows (Kumar et al. 2014).
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Figure 14. Growth rates of the fast and slow modes at (a) M = 4 and (b) M = 6.

3.2. Fast and slow modes
We now examine the solenoidal and dilatational contributions to the fast and slow modes.
At the long-wave limit (α → 0), two discrete modes (fast and slow) are synchronized with
the fast/slow acoustic wave (ca± = 1 ± 1/M) speeds (Fedorov & Tumin 2011). The phase
speed of the fast mode decreases with increasing α, and it synchronizes with the slow
mode. The synchronization leads to the branching of the discrete spectrum and causes
the second mode instability (Fedorov & Tumin 2011). The fast and slow modes exhibit a
peak/trough in growth rates beyond the synchronization point. The growth rates of the
fast and slow modes at M = 4 and M = 6 are shown in figure 14. The slow mode is
unstable at low wavenumbers for both M values. The synchronization between the discrete
modes occurs at α ≈ 0.3 for M = 4, and α ≈ 0.15 for M = 6. The branching pattern of the
discrete spectrum is different at M = 4 and M = 6. The fast mode after synchronization
with the slow mode is the dominant instability at M = 4. On the other hand, the slow mode
becomes the dominant instability at M = 6 after synchronization. Therefore, the second
mode is the fast mode at M = 4, whereas the slow mode is associated with the second
mode at M = 6.

The kinetic energy components kg
s , kg

d and kg
sd for the fast and slow modes at M = 4

are shown in figure 15. The fast mode is dominantly dilatational at all wavenumbers.
Initially, the solenoidal energy content of the slow mode increases considerably with α
as it becomes unstable. As the slow mode stabilizes (0.1 < α < 0.3), its solenoidal energy
component decreases and the dilatational contribution increases. The solenoidal energy
content of the slow mode increases again rapidly once it synchronizes with the fast mode.
The slow mode is therefore dominantly solenoidal at high wavenumbers (α � 0.32) where
the second mode is unstable. For the slow mode at low α, the covariance component of
kinetic energy is positive and decreases gradually, becoming negative for α > 0.05. The
covariance energy component is always negative for the fast mode. The solenoidal and
dilatational parts of both fast and slow modes are uncorrelated beyond the synchronization
point. Figure 16 plots the kinetic energy components for the discrete modes at M = 6.
Similar to the M = 4 case, the fast mode is dominantly dilatational at all α for M = 6
as well. At low wavenumbers (α < 0.06), the solenoidal contribution to kinetic energy
increases with α for the slow mode as it becomes unstable. The solenoidal energy
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Figure 15. (a) Solenoidal (kg
s ), (b) dilatational (kg

d) and (c) covariance (kg
sd) components of kinetic energy for

the fast and slow modes at M = 4. Black and red lines with symbols correspond to the fast and slow modes,
respectively.
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Figure 16. (a) Solenoidal (kg
s ), (b) dilatational (kg

d) and (c) covariance (kg
sd) components of kinetic energy for

the fast and slow modes at M = 6. Black and red lines with symbols correspond to the fast and slow modes,
respectively.

content of the slow mode decreases for α ∈ (0.06, 0.15), and it becomes dilatationally
dominant at the synchronization point (α ≈ 0.15). Contrary to the M = 4 case, beyond the
synchronization point, the solenoidal contribution to the kinetic energy of the slow mode
decreases further at M = 6. Consequently, in the region of second-mode instability (α ∈
[0.15, 0.19]), the slow mode is also dominantly dilatational at M = 6. The dilatational and
solenoidal parts of both modes are uncorrelated beyond the synchronization point.

We now examine the mode shapes of the solenoidal and dilatational parts of the
velocity for the fast and slow modes at different α. The mode shapes at M = 6 and
α = 0.05 are presented in figure 17. For the fast mode, the solenoidal part of the
streamwise velocity peaks near the generalized inflection point (yI = 13.3), while the
dilatational contribution to streamwise velocity is high in the near-wall region. Generally,
the dilatational component of the fast mode is more prominent than the solenoidal part. On
the contrary, for the slow mode, the solenoidal part u′s is greater than the dilatational part
in the majority of the boundary layer. The dilatational contribution to streamwise velocity
is significant only in the near-wall region (y ≤ 5), and decays away from the wall. The
dilatational part of the wall-normal velocity is greater than v̂s throughout the boundary
layer for the fast mode. For the slow mode, the dilatational contribution to wall-normal
velocity dominates near the wall (y ≤ 5). The solenoidal contribution is stronger away
from the wall, and peaks near the boundary layer edge.
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|ûd| (Fast)
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Figure 17. Profiles of the solenoidal and dilatational parts of (a) streamwise velocity (û) and (b) wall-normal
velocity (v̂), for the fast and slow modes at M = 6, α = 0.05 and β = 0. Black lines denote the components of
the fast mode, and red lines correspond to the slow mode components. Solid lines and dash-dotted lines with
symbols represent the solenoidal and dilatational parts of velocity, respectively.
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Figure 18. Profiles of the solenoidal and dilatational parts of (a) streamwise velocity (û) and (b) wall-normal
velocity (v̂), for the fast and slow modes before the branch point at M = 6, α = 0.15 and β = 0. Black lines
denote the components of the fast mode, and red lines correspond to the slow mode components. Solid lines
and dash-dotted lines with symbols represent the solenoidal and dilatational parts of velocity, respectively.

Figure 18 plots the mode shapes just before the discrete spectrum branching at M = 6
and α = 0.15. It is evident from the figure that the profiles for both the fast and slow mode
are similar. The dilatational component of streamwise velocity is strongest near the wall
and dominates below the sonic line (ys = 7.64). The solenoidal contribution to streamwise
velocity exhibits a phase change at y = 3. The dilatational component of wall-normal
velocity peaks near the sonic line. The solenoidal part v̂s has a phase change near the
sonic line and increases beyond the sonic line peaking at the boundary layer edge.

The mode shapes beyond the synchronization point and near the peak/trough of growth
rates at M = 6 and α = 0.175 are shown in figure 19. The mode shapes of the slow
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|ûs| (Slow)

|ûd| (Slow)

|v̂s| (Fast)

|v̂d| (Fast)

|v̂s| (Slow)

|v̂d| (Slow)

y

(b)(a)

Figure 19. Profiles of the solenoidal and dilatational parts of (a) streamwise velocity (û) and (b) wall-normal
velocity (v̂) for the fast and slow modes near peak growth rate at M = 6, α = 0.175 and β = 0. Black lines
denote the components of the fast mode, and red lines correspond to the slow mode components. Solid lines
and dash-dotted lines with symbols represent the solenoidal and dilatational parts of velocity, respectively.
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Figure 20. Profiles of the solenoidal and dilatational parts of (a) streamwise velocity (û) and (b) wall-normal
velocity (v̂) for the fast and slow modes near peak growth rate at M = 4, α = 0.35 and β = 0. Black lines
denote the components of the fast mode, and red lines correspond to the slow mode components. Solid lines
and dash-dotted lines with symbols represent the solenoidal and dilatational parts of velocity, respectively.

mode at peak growth rate are similar to the slow mode profiles just before the branch
point. Both solenoidal and dilatational contributions to the fast mode also exhibit similar
profiles before and after the synchronization point besides the critical point (yc ≈ 13.5).
The solenoidal part of the fast mode after synchronization exhibits a local maximum near
the critical layer (yc = 13.5). Finally, the mode shapes for the solenoidal and dilatational
part of the fast and slow mode near peak growth rate at M = 4 are presented in figure 20.
The fast mode at M = 4 is unstable at high wavenumbers and, much like the M = 6 case,
is dilatationally dominant with strong dilatational motions in the near wall region. The
solenoidal part of the slow mode, however, exhibits a strong peak near the critical layer,
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Figure 21. Profiles of the solenoidal and dilatational parts of (a) streamwise (m′
x), (b) wall-normal (m′

y) and
(c) spanwise momentum perturbations (m′

z), for the most unstable first mode at M = 6.

leading to the dominantly solenoidal nature of the slow mode beyond the synchronization
point.

In summary, dilatational contributions to the fast mode dominate at all α for both M = 4
and M = 6. At low α, in the region of first-mode instability, the solenoidal contribution
to slow mode dominates for both M = 4 and M = 6. Beyond the synchronization point,
the slow mode exhibits contrasting characteristics at M = 4 and M = 6. The slow mode is
dominantly solenoidal at M = 4 and dilatational at M = 6.

3.3. Momentum decomposition
In this subsection, we examine the character of the perturbation momentum field (m′

i).
The profiles of the solenoidal and dilatational components of m′

i for the most unstable
first mode at M = 6 are shown in figure 21. The streamwise momentum perturbation
(m′

x) is much larger than the wall-normal and spanwise components. The streamwise
perturbation m′

x is dominantly solenoidal, and the dilatational contribution is negligible.
The solenoidal part m′s

x peaks near the critical layer (yc = 11.94). The solenoidal and
dilatational parts of the wall-normal and spanwise momentum perturbations are similar
in magnitude. Figure 22 plots the profiles of the solenoidal and dilatational components
of m′

i for the second mode at M = 6. We observe that even for the second mode, the
solenoidal contribution to m′

x is much larger than the dilatational part. The observation
is consistent with the findings of Unnikrishnan & Gaitonde (2019), wherein vortical
content of momentum perturbations is shown to dominate for both first and second modes.
Although the solenoidal contribution to m′

x dominates for both modes, the dilatational part
is more energetic for the second mode compared to the first mode. As in the case of the
first mode, the dilatational and solenoidal parts of wall-normal momentum perturbations
are equally energetic for the second mode.

Overall, both momentum density and velocity perturbations are dominantly solenoidal
for the first mode. However, the momentum perturbation characteristics of the second
mode are different from the velocity fluctuations. The velocity field is dominantly
dilatational for the second mode, whereas the solenoidal contribution to momentum is
larger.

4. Solenoidal and dilatational pressure

The solenoidal and dilatational pressure components (as defined in (2.22)–(2.25)) of the
most unstable modes are examined at different Mach numbers. Pressure amplitude profiles

962 A18-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

22
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.221


Compressible boundary layer stability

50(a) (b)

40

30

20

y

10

0 5 10 15 20 25 2 4 6 830 35 40

50

40

30

20

10

0

m′
x
s

m′
x
d

m′
y
s

m′
y
d
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momentum perturbations for the most unstable second mode at M = 6.
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Figure 23. Profiles of the solenoidal and dilatational components of pressure for the most unstable mode at
(a) M = 0.5, (b) M = 3.0, and (c) M = 6.0.

of the most unstable first mode at M = 0.5, 3 and the most unstable second mode at M = 6
are presented in figure 23. The profiles are normalized by the magnitude of pressure
fluctuations at the wall. The solenoidal pressure is the dominant pressure component at
low Mach number. The solenoidal contribution to the pressure field is highest near the
wall and gradually decreases away from the wall. The dilatational component of pressure
is negligible at M = 0.5. The solenoidal pressure dominates the dilatational component at
M = 3 as well. Thus the solenoidal pressure is dominant while the dilatational pressure is
negligible for the first mode. On the other hand, for the second mode at M = 6.0, the
dilatational pressure dominates its solenoidal counterpart. The dilatational pressure is
strongest at the wall and decreases until y = 8.5 (near the sonic line). The dilatational
pressure at y = 8.5 is 180◦ out of phase with the pressure at the wall. This is a key
feature of the pressure eigenfunction for the second mode (Mack 1984). The solenoidal
pressure is small compared to p̂d below the sonic line, and becomes comparable to the
dilatational component beyond y ≈ 7. Similar to the velocity field, dilatational pressure is
also prominent below the sonic line for the second mode.

The internal energy associated with pressure fluctuations can be decomposed into
solenoidal (es), dilatational (ed) and covariance (esd) contributions (see (2.32)). Figure 24
plots the average internal energy components eg

s , eg
d and eg

sd for the most unstable first
and second modes as functions of Mach number. The components are normalized by
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Figure 25. Profiles of the internal energy components es, ed and esd for the most unstable (a) first mode and
(b) second mode at M = 6.

the average total internal energy eg. The internal energy corresponding to the solenoidal
pressure is the dominant component for the first mode. Generally, the fraction of eg

s
increases with Mach number. The energy content corresponding to the dilatational
pressure is negligible for the first mode at all M. The covariance component eg

sd of the first
mode is positive at M ≤ 2, and becomes negative for M � 3. The dilatational component
of internal energy dominates for the second mode and does not vary much with M. The
covariance component of internal energy is negative at all M for the second mode, and
decreases in magnitude with M. The internal energy corresponding to p′s is negligible for
the second mode at M = 4, and increases to 10 % of total internal energy at M = 8.

The profiles of internal energy components es, ed and esd at M = 6 for both first and
second modes are presented in figure 25. For the first mode, the solenoidal component es is
greater than the other components throughout the boundary layer and peaks at the critical
layer (yc = 11.94). The covariance component of internal energy is always negative and
also peaks near the critical layer. The dilatational component is insignificant throughout
for the first mode. The dilatational contribution is the significant component of internal
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Figure 26. Profiles of solenoidal and dilatational contributions to pressure-dilatation for the most unstable
second mode at (a) M = 4 and (b) M = 6.

energy for the second mode and peaks at the wall. The covariance component esd of the
second mode is negative throughout the boundary layer. The solenoidal contribution es is
negligible below the sonic line for the second mode, and becomes comparable to ed and
esd beyond the sonic line.

In high-speed flows, pressure action triggers important flow–thermodynamic
interactions. In particular, the kinetic energy extracted from the mean flow by the
production mechanism can be diverted away from the velocity field to the thermodynamic
field via the pressure-dilatation mechanism. Recently, Sharma & Girimaji (2022)
investigated the kinetic–internal energy exchange brought about by pressure-dilatation for
both first and second modes. Their findings suggest that pressure-dilatation is negligible
compared to production for the first mode, whereas it plays an important role in
the second-mode dynamics. This is not surprising as the first-mode velocity field is
dominantly solenoidal. Consequently, the coupling between the flow and thermodynamic
variables is not important for first-mode dynamics. For the second mode, however
dilatational effects are significant, and pressure-dilatation plays an important role in the
second-mode dynamics.

We now analyse the role of solenoidal and dilatational pressure in the internal–kinetic
energy transfer. The solenoidal and dilatational components of pressure dilatation are
defined as

Πk = p′ ∂u′
i

∂xi
= p′s ∂u′

i
∂xi︸ ︷︷ ︸
Πs

+ p′d ∂u′
i

∂xi︸ ︷︷ ︸
Πd

. (4.1)

The two contributions to pressure-dilatation for the second mode at M = 4 and M = 6
are shown in figure 26. The most energy transfer from the kinetic to the internal mode
occurs near the wall (y < 1). At M = 4, in the near-wall region (0 < y < 0.3), the energy
transfer is due dominantly to the dilatational component. Away from the wall (y > 0.5), the
dilatational component transfers energy from the internal to the kinetic field. On the other
hand, the solenoidal contribution to pressure dilatation transfers energy from the kinetic
to the internal field. The magnitude ofΠs is greater than Πd away from the wall, resulting
in net energy transfer from the kinetic to the internal field. The pressure-dilatation profiles
at M = 6 are similar to those at M = 4 for the most part. In a thin region (y < 0.01)
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near the wall, energy is transferred from the kinetic to the internal field by the solenoidal
component. In the region 0.06 < y < 0.6, the most energy transfer is from the kinetic to
the internal field, but by the dilatational pressure as in the M = 4 case.

Generally, the dilatational component of pressure-dilatation transfers considerable
energy from the velocity to thermal fluctuations in the second mode. The energy transfer
is most prominent in the near-wall region and provides an energy source for near-wall
heating. Experiments of high-speed boundary layer transition over a long flared cone also
confirm that the dilatational heating due to the second mode leads to surface temperature
peaks in the region of second-mode instability (Zhu et al. 2018).

5. Summary and conclusions

The perturbation velocity field in a boundary layer is decomposed into solenoidal
and dilatational components using Helmholtz decomposition. Pressure fluctuations are
also partitioned into solenoidal and dilatational parts using the pressure equation.
The two components of the velocity and the pressure field are used to examine the
flow–thermodynamics interactions during instability development in high-speed boundary
layers. Linear stability analysis is performed to identify the most unstable first (TS wave)
and second (Mack mode) eigenmodes at different Mach numbers. The solenoidal kinetic,
dilatational kinetic and internal energies of the eigenmodes are examined at various Mach
numbers. The effect of perturbation obliqueness is also established.

5.1. First mode
The effect, or lack thereof, of the flow-thermodynamics interactions on the first mode can
be summarized as follows.

(i) As anticipated, the first mode is nearly exclusively solenoidal, and in general the
obliqueness angle of the most unstable perturbation increases with Mach number.
The velocity eigenfunctions of the first mode are almost entirely vortical.

(ii) The dilatational field is generally small and decreases with obliqueness angle of the
perturbation.

(iii) At high speeds, the small dilatational field has a marked effect on the instability
manifesting via the cross production – which arises from dilatational–solenoidal
velocity covariance interacting with the mean flow. The cross production is negative
and inhibits the first-mode growth.

(iv) The internal energy associated with the first mode is generally very small. The
solenoidal pressure makes the highest contribution toward this internal energy.

(v) The pressure-dilatation is generally very small compared to production.

5.2. Second mode
The second or Mack mode arises due to flow–thermodynamics interactions, and the details
are as follows.

(i) The second mode is dominantly dilatational, but the solenoidal part is not
insignificant. The dilatational effects are strongest in the near-wall region below the
sonic line. Beyond the sonic line, both solenoidal and dilatational contributions to
the velocity field are comparable for the second mode.

(ii) The most unstable second mode is always oriented in the streamwise direction. Once
again, the intensity of the dilatational field diminishes with obliqueness angle.
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(iii) The flow–thermodynamics effect manifests through the dilatational and cross
production term. Beyond the sonic line where solenoidal and dilatational effects
are comparable, the cross production is the dominant production mechanism of the
second mode. The acoustic waves trapped below the sonic line (Kuehl 2018) are
sustained by the dilatational production.

(iv) The internal energy of the second mode is substantial and can be as much as 40 %
of the kinetic energy. Thus a significant fraction of kinetic energy extracted from the
mean flow is diverted to the internal energy of perturbations. For the second mode,
the pressure near the wall up to the sonic line is dominantly dilatational. Beyond the
sonic line, the solenoidal and dilatational contributions are comparable.

(v) The dilatational contribution to pressure-dilatation is significant in the near-wall
region and transfers energy from kinetic to internal form. The transfer facilitated
by this mechanism provides an energy source for near-wall heating.

5.3. Fast and slow modes
The compressibility effects on the discrete modes (fast and slow) are dependent on M.
The fast mode is dilatationally dominant for both M = 4 and M = 6. In the region of
first-mode instability, the solenoidal contribution to the slow mode dominates. Beyond the
synchronization point, the slow mode has opposing characteristics at M = 4 and M = 6.
The slow mode is dominantly solenoidal at M = 4, whereas the dilatational contribution
dominates at M = 6.

The findings of this study highlight clearly the fundamental differences between the flow
physics of low-speed and high-speed instability, and the transition process. It is evident
that transition prediction tools must account for the differences.
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Appendix A. Boundary conditions for scalar and vector potentials

The boundary conditions for the potential eigenfunctions φ̂ and Ψ̂i in (2.15a–d) are
discussed in this appendix. These boundary conditions are based on Hirasaki & Hellums
(1970) and are detailed here for the sake of the reader’s convenience.

The sum of the solenoidal and dilatational velocity components should satisfy
the no-slip condition imposed on the total velocity field. Therefore, the potential
eigenfunctions must satisfy the following relations at the boundaries y ∈ {0, ly}:

ιαφ̂ + dΨ̂z

dy
− ιβΨ̂y = 0,

dφ̂
dy

+ ιβΨ̂x − ιαΨ̂z = 0,

ιβφ̂ + ιαΨ̂y − dΨ̂x

dy
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A1)
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Additionally, the Poisson equations (2.11a,b) for the vector potential Ψ require that the
vector field Ψ must be solenoidal:

ιαΨ̂x + dΨ̂y

dy
+ ιαΨ̂z = 0. (A2)

The boundary conditions detailed in (2.15a–d) ensure that the following criteria are met.

(i) The total velocity field satisfies the no-slip condition (A1).
(ii) Both the solenoidal and dilatational velocity components independently satisfy the

no-penetration condition. Physically, this ensures that the rotational/irrotational mass
flux across the boundaries is zero.

(iii) The vector potential Ψ is solenoidal at the boundaries (A2).

The current choice of boundary conditions may result in slip at the wall for the solenoidal
and dilatational components; however, the no-slip condition is satisfied in summation. It
is worth noting that although alternative boundary conditions are possible, we use the
boundary conditions established in previous works (Hirasaki & Hellums 1970).
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