RADIUS OF CONVEXITY OF PARTIAL SUMS
 OF A CERTAIN POWER SERIES

RAM SINGH

(Received 5 February 1969)

Communicated by E. Strzelecki

Let

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+\cdots \tag{1}
\end{equation*}
$$

be regular in the unit disc $E=\{z| | z \mid<1\}$. G. Szegö [5] and Y. Miki [3] proved that if $f(z)$, given by (1), is univalent (starlike with respect to the origin; convex; close-to-convex in E) then any one of the partial sums

$$
\begin{equation*}
s_{n}(z)=z+\sum_{k=2}^{n} a_{k} z^{k}, \quad n=2,3 \cdots \tag{2}
\end{equation*}
$$

is also univalent (starlike with respect to the origin; convex; close-to-convex) in $|z|<\frac{1}{4}$ and that the constant $\frac{1}{4}$ cannot be replaced by a larger one.

MacGregor in [2] considered the class R of functions of the form (1) that are regular in E and satisfy the condition that for z in $E, \operatorname{Re} f^{\prime}(z)>0$. It follows from the Noshiro-Warschawski theorem $[4 ; 6]$ that functions of the class R are univalent in E. MacGregor showed that each partial sum of the form (2) of functions of the class R is univalent in $|z|<\frac{1}{2}$ and that each function of the class R maps $|z|<(\sqrt{ } 2-1)$ onto a convex domain; and the numbers $\frac{1}{2}$ and $(\sqrt{2}-1)$ are the best possible ones. In the present short note we consider the radius of convexity of partial sums of functions belonging to the class R. We establish:

TheOrem. If $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \in R$, then any one of the partial sums

$$
s_{n}(z)=z+\sum_{k=2}^{n} a_{k} z^{k}, \quad n=2,3, \cdots,
$$

is convex in $|z|<\frac{1}{4}$. The number $\frac{1}{4}$ cannot be replaced by a greater one .
We shall make use of the following estimates in the proof of the theorem.
If $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \in R$, then

$$
\begin{equation*}
\left|a_{k}\right| \leqq \frac{2}{k}, \quad k=2,3, \cdots, \quad ;[2] \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \geqq \frac{1-r}{1+r}, \quad|z|=r, \quad 0 \leqq r<1 \quad ; \quad[2] \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leqq \frac{2 r}{1-r^{2}} \quad[1, \text { Lemma 3.1] } \tag{5}
\end{equation*}
$$

Proof. Let

$$
f(z)=s_{n}(z)+\sigma_{n}(z)
$$

where

$$
\sigma_{n}(z)=\sum_{k=n+1}^{\infty} a_{k} z^{k}
$$

Making use of estimate (3), we see that

$$
\begin{align*}
& \left|\sigma_{n}^{\prime}(z)\right| \leqq 2 \sum_{k=n+1}^{\infty} r^{k-1}=\frac{2 r^{n}}{1-r}, \tag{6}\\
& \left|z \sigma_{n}^{\prime \prime}(z)\right| \leqq 2 \sum_{k=n+1}^{\infty}(k-1) r^{k-1}=\frac{2 n r^{n}}{(1-r)}+\frac{2 r^{n+1}}{(1-r)^{2}} \tag{7}
\end{align*}
$$

Now we have

$$
\begin{aligned}
1+z \frac{s_{n}^{\prime \prime}(z)}{s_{n}^{\prime}(z)} & =1+\frac{z\left\{f^{\prime \prime}(z)-\sigma_{n}^{\prime \prime}(z)\right\}}{f^{\prime}(z)-\sigma_{n}^{\prime}(z)} \\
& =1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \sigma_{n}^{\prime}(z)-z \sigma_{n}^{\prime \prime}(z)\right\}}{f^{\prime}(z)-\sigma_{n}^{\prime}(z)}
\end{aligned}
$$

It is well-known that $s_{n}(z)$ will be convex if $\operatorname{Re}\left[1+\left\{z s_{n}^{\prime \prime}(z) / s_{n}^{\prime}(z)\right\}\right]>0$. Making use of estimates (4), (5), (6) and (7) we conclude that $\operatorname{Re}\left[1+\left\{z \mathscr{S}_{n}^{\prime \prime}(z) / \mathscr{S}_{n}^{\prime}(z)\right\}\right]>0$ provided

$$
1-\frac{2 r}{1-r^{2}}-\frac{\left[\left(\frac{2 r}{1-r^{2}}\right) \frac{2 r^{n}}{1-r}+2\left\{\frac{n r^{n}}{1-r}+\frac{r^{n+1}}{(1-r)^{2}}\right\}\right]}{\frac{1-r}{1+r}-\frac{2 r^{n}}{1-r}}>0
$$

or

$$
\begin{equation*}
\frac{1-2 r-r^{2}}{1-r^{2}}-\frac{\frac{2 r^{n}}{(1+r)(1-r)^{2}}\left\{3 r+r^{2}+n\left(1-r^{2}\right)\right\}}{\frac{1-r}{1+r}-\frac{2 r^{n}}{1-r}}>0 \tag{8}
\end{equation*}
$$

If we take $r=\frac{1}{4}$, then on the left-hand side of (8) we obtain

$$
\frac{7}{15}-\frac{\frac{2}{4^{n-1}} \frac{(13+15 n)}{45}}{\frac{3}{5}-\frac{2}{3 \times 4^{n-1}}}
$$

which is greater than zero for $n \geqq 3$. Therefore, we conclude that

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z s_{n}^{\prime \prime}(z)}{s_{n}^{\prime}(z)}\right\}>0 \quad(n \geqq 3) \tag{9}
\end{equation*}
$$

for $|z|=\frac{1}{4}$. From the maximum principle for harmonic functions it then follows that (9) holds for $|z| \leqq \frac{1}{4}$. Next we consider the case $n=2$. We have

$$
s_{2}(z)=z+a_{2} z^{2}
$$

and hence

$$
1+\frac{z s_{2}^{\prime \prime}(z)}{s_{2}^{\prime}(z)}=1+\frac{2 a_{2} z}{1+2 a_{2} z}
$$

Thus

$$
\begin{aligned}
\operatorname{Re}\left\{1+\frac{z s_{n}^{\prime \prime}(z)}{s_{2}^{\prime}(z)}\right\} & \geqq 1-\frac{2\left|a_{2}\right||z|}{1-2\left|a_{n}\right||z|} \\
& \geqq 1-\frac{2|z|}{1-2|z|}
\end{aligned}
$$

We therefore see that $\operatorname{Re}\left[1+\left\{z s_{2}^{\prime \prime}(z) / s_{2}^{\prime}(z)\right\}\right]>0$ provided $|z|<\frac{1}{4}$.
To show that the constant $\frac{1}{4}$ cannot be replaced by a larger one, we consider the function $f_{0}(z)$ defined as

$$
f_{0}(z)=2 \log (1+z)-z
$$

which belongs to R. If we denote by $s_{2,0}(z)$ the sum of the first 2 terms of the expansion of $f_{0}(z)$, we find that

$$
1+\frac{z s_{2,0}^{\prime \prime}(z)}{s_{2,0}^{\prime}(z)}=\frac{1-4 z}{1-2 z}
$$

which shows that $\operatorname{Re}\left[1+\left\{z s_{2,0}^{\prime \prime}(z) / s_{2,0}^{\prime}(z)\right\}\right]=0$ when $z=\frac{1}{4}$. This completes the proof of the theorem.

Acknowledgement. The author is grateful to Professor V. Kramaditva Singh for his help and guidance.

References

[1] R. J. Libera, 'Some radius of convexity problems', Duke Math. J., 31 (1964), 143-158.
[2] T. H. MacGregor, 'Functions whose derivative has a positive real part', Trans. Amer. Math. Soc. 104 (1962), 532-537.
[3] Y. Miki, 'A note on close-to-convex functions', J. Japan, Math. Soc. 8 (1965), 256-268.
[4] K. Noshiro, 'On the theory of schlicht functions', J. Fac. Sci. Hokkaido Univ. (1) 2 (19341935), 129-155.
[5] G. Szegö, 'Zur theorie der schlichten Abbildungen', Math. Ann. 100 (1928), 188 -211.
[6] S. Warschawski, 'On the higher derivatives at the boundary in conformal mappings', Trans. Amer. Math. Soc., 38 (1935), 310-340.

Department of Mathematics
Punjabi University
Patiala, India

