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NONLINEAR PERIODIC PARABOLIC PROBLEMS WITH
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In this paper we consider a nonlinear periodic parabolic boundary value problem with a discontinuous
nonmonotone nonlinearity. Using a lifting result for operators of type (S+), a general surjectivity theorem for
operators of monotone type and an auxiliary problem defined by truncation and penalization we prove the
existence of a solution in the order interval formed by an upper and lower solution. Moreover we show that
the set of all such solutions is compact in L'{T, W0''(i)).

1991 Mathematics subject classification: 35K.55.

1. Introduction

Let T = [0, b] and Z c RN a bounded domain with a C1-boundary F. In this paper
we study the following nonlinear periodic parabolic boundary value problem:

j f - EL, Dkak(t. *. *. Dx) =/(x, Dx) on T x Z j

[ x(0, z) = x(b, z) a.e. on Z, x |T x r = 0 j

Here Dk = £, k e {1,2, ...N), D = ( D t t , = grad and / : R x /?"->• R is a locally
bounded, measurable but not necessarily continuous function. In the absence of
continuity hypotheses on f(x, y) we know that even the corresponding initial boundary
value problem need not have a solution. In this case it is a good idea to consider
instead a multivalued version of (1) for which an adequate existence theory can be
established. Roughly speaking the appropriate multivalued variant of the original
problem can be obtained by filling in the gaps at the discontinuity points of/(.,.). This
approach was first considered by Filippov [8] in the context of systems of ordinary
differential equations. Later Rauch [13] considered semilinear elliptic problems and his
work was extended further by Stuart [14] (who established the existence of maximal
and minimal solutions within the interval determined by a lower and an upper solution)
and by Chang [3] (whose approach is based on the critical point theory for nondifferen-
tial functional). Since then most of the works deal with the stationary (elliptic)
problem, while the study of the corresponding dynamic (parabolic) problem is lagging
behind. Only recently some special classes of semilinear problems were considered by
Carl and Heikkila [2], Feireisl [6] and Feireisl and Norbury [7]. In this paper we go
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beyond these works and consider a fully nonlinear problem with the discontinuous
term depending also on the gradient Dx(.,.) of x.

The multivalued version of (1) that we will be studying is defined in the following
way. We set f(x, y) = lim ( x ,y^^ /Cx ' , / ) and /(x, y) = ^m{x,y)^(xy)f(x', y) and then
define the multivalued (set-valued function) (x, y) -> F(x, y) = [/(x, y),f{x, y)]. Then we
consider the following multivalued variant of problem (1)

f f - £f=i Dkak(t, z, x, Dx) e F(x, Dx) on T x Z J

I x(0, z) = x(b, z) a.e. on Z, x \Txr= 0 j

It is problem (2) that we will study. Our approach is based on some properties of operators
of monotone type and on the method of upper and lower solutions. Our existence theorem
extends the result of Deuel and Hess [4] who assume that the upper and lower solutions
belong in L°°(T x Z), /(x, y) is continuous and the growth condition on /(.,.) is more
restrictive than ours. In addition the approach of Deuel and Hess [4] is different from ours
and is based on an auxiliary variational inequality which the authors solve (see [4, p.
95]). Instead here we rely on a general surjectivity result for a class of nonlinear
pseudomonotone operators. In order to be able to use that theorem we also prove a result
for operators of type (S+) which is actually of independent interest (see Proposition 3.6).

2. Preliminaries

In this section we introduce some auxiliary material that we will need in the sequel
and also fix our hypotheses concerning the data of problem (1).

Let 2 < p < oo and let Wlp(Z) be the usual Sobolev space and Wlp(Z)* its dual.
The spaces Wlp(Z) c L\Z) C W"(Z)* form an evolution triple with all the
embeddings being continuous, dense and compact (see Zeidler [16, Section 23.4
p. 416]). Also by WQ'P(Z) we denote the subspace of Wlp(Z) whose elements have zero
trace. As usual the dual of Wo"(Z) is denoted by W'1q(Z) where i + i = 1. Then is
Wo\Z) c L2(Z) c W~tq(Z) also an evolution triple with all the embeddings being
again continuous, dense and compact. We introduce the following function spaces:

Wpq(T) = { / 6 L"(T, Wlp(Z)): %• G L\T, W"(Z)')}
at

anH W CT\ J f e- Jf(T Wl'p(7W • — a Jq(T W~*-q(y\\\
at

In these definitions the derivatives % are defined in the sense of vector-valued
distributions. Both spaces equipped with the obvious norm ||/||M = ||/||p + | | | ||,
become separable, reflexive Banach spaces. Moreover both W^(T) and WM(T) embed
continuously in C(7\ L2(Z)) and compactly in LP(T x Z) (see Lions [11, Theorem 5.1]
or Zeidler [16, Proposition 23.23 p. 422 and p. 450]).
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Now let us introduce our hypotheses on the functions ak(t, z,x,y), k e {1, 2 , . . . N],
involved in the definition of the partial differential operator in problem (1).

H(a): ak : T x Z x R x RN ^- R, k e {1,2,... N], are functions such that:

(i) (t, z) -*• ak(t, z, x, y) is measurable;

(ii) (x, y) -*• ak(t, z, x, y) is continuous;

(»i) T!Li(ak(t, z, x, y) - ak(t, z, x, y'))(yk - y'k) > 0 for almost all (t, z)eTxZ, all
x G R and all y, y eRN,y^ y'\

(iv) ELi ak(t, z, x, y)yk > c,||y||' - 0,(t, z) a.e. on T x Z with 0, e L\T X Z), C, > 0;
and

(v) | ak(t, z, x, y) \< f}2(t, z) + c2(| x I'"1 +||j'||''"1) a.e. on T x Z with /S2 e L"(T x Z),
c2 > 0 (here as before 2 < p < oo and - + -= 1).

Because of hypothesis H(a) we can define the semilinear Dirichlet form
a : L"(T, Wl\Z)) x If(T, Wlp(Z)) -> R by

N

, z, x, Dx)Dky(t, z)dzdt
Jo Jz TTf

In what follows by ((.,.)) we will denote the duality brackets for the pairs
(LP(T, WXp(Z)), L"(T, W'"(Z)*)) and (L"(T, Wo

lp(Z)), L"(T, W^iZ))). Recall that if X
is a reflexive Banach space (or more generally if X* has the Radon-Nikodym property)
and l < p < o o , then LP(T,X)* = L\T,X*) with J + J = l (see Diestel and Uhl [5,
Theorem 1]).

Definition 2.1. A function q> e W^iT) is said to be an upper solution of problem
(2) if

dm \ \ /"* f-
-£, u ))+ a(q>, u)> f(w(t, z), Dq>(t, z))u(t, z)dzdt

for all u e L"(T, W0
Up(Z))n L"(T x Z)+, <p(0, z) > <p(b, z) a.e. on Z and <p \Txr> 0.

Similarly a function \p e Wpq(T) is said to be a lower solution of problem (2) if the
above inequalities are reversed and/ is replaced by / .

We make the following hypothesis concerning the existence of lower and upper
solutions of problem (1):

Ho: there exist an upper solution <p € Wpq(T) and a lower solution i// e W^T) such
that \l/(t, z) < <p(t, z) a.e. on TxZ.
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Our hypothesis on the discontinuous term/(.,.) is the following:

H(f): / : R x RN -*• R is a measurable function such that for almost all
(t, z) e T x Z and all v e W(£, z), <P(t, z)], \f(v, y) |< /S(t, z) + c\\y\\p-1 a.e. on T x Z with
/?3 e L*(r x Z) and c3 > 0.

Now we introduce the notion of a (weak) solution for problem (2).

Definition 2.2. A function x e Wpq{T) is said to be a solution of (2), if there exists
a function # e L"(T x Z) such that g(t, z) e F(x(t, z), Dx(t, z)) a.e. on T x Z and

> u)=f0 L
9it'z)u{t> z)dzdt

for all u e 1/(7, Wo"(Z)), x(0, z) = x(b, z) a.e. on Z and x \Txr= 0.

We will establish the existence of solutions for problem (2) by solving an auxiliary
periodic boundary value problem which is defined through truncation and
penalization.

3. Auxiliary results

First we introduce the truncation operator. So given x e U{T, WXp(Z)) we define
its truncation x(x)(.,.) as follows:

T(x)(t, Z) =

cp(t, z) if cp(t, z) < x(t, z)

x{t, z) if \j/{t, z) < x(t, z) < q>{t, z)

il/(t, z) if x(t, z) < i//(t, z).

Proposition 3.1. x : L"(T, Wl"(Z)) -»- U(T, Wlp(Z)) is continuous.

Proof. From Lemma 7.6, p. 145 of Gilbarg and Trudinger [9] we know that given
x e L\T, Wlp(Z)), for almost all t e Tx(x)(t,.) e Wip(Z) and also

( D(p(t, z) if cp(t, z) < x(t, z)
Dx(t, z) if ^(t, z) < x(t, z) < (p(t, z)
Di/,(t,z) if x(t, z) < «/r(t, z).

Hence, T(X)(., .) e LF(T, Whp(Z)). Now let xn -> x in L^T, W'"(Z)) as n ->• oo. Then
by passing to a subsequence if necessary we may assume that xn(t, z) -+ x(t, z) and
Dxn(t, z) -»• Dx(t, z) a.e. on T x Z as n -»• oo for every fc e {1, 2 , . . . N}. In addition by
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virtue of Theorem 2.8.1, p. 74 of [10] we can find functions 0,0* e L"(T x Z),
fc e {1,2,... JV} such that | xn(t, z) |< 0(t, z) and | Dtxn(t, z) |< 0t(t, z) a.e. on TxZ.
Observe that | r(xn)(t, z) |< max{0(t,z), \<p{t,z)\, |^(t, z)|} a.e. on TxZ and
| Dt<xJ(t, z) |< max{0t(t, z), \Dk<p{t,z)\, \ Dk*l/(t, z) |} a.e. on T x Z for all
k e {1, 2, . . .N} and all n > 1. Thus the dominated convergence theorem implies that
xn -*• x in / / ( T x Z) and DxB ->• Dx in L'(7* x Z, RN) as n -»• oo. Therefore we can
conclude that x(xn) -»• T(X) in If(T, Wlp(Z)) as n -*• oo, which proves the continuity of
the truncation map T(.). •

Next we introduce the penalty function u: TxZxR-*R defined by

{x-ip{t,z)Tl if <p(t, z ) < x
0 if iKt, z) < x < (p(t, z)u(t, z, x) =

This definition and a routine calculation give us the following properties of the
penalty function u(t, z, x).

Proposition 3.2. u: TxZxR-+R is a Caratheodory function (i.e. measurable in
(£, z) and continuous in x), \ u(t, z, x) |< 04(t, z) + c4 | x |p~' a.e. on TxZ with
/?4 e Lq(T x Z), c4 > 0, and fi fz u(t, z, x{t, z))x(t, z)dzdt > c^xW^^^ - c6||x||^(Vxz) for
some cs, c6 > 0 and for all x e LP(T x Z).

Next let X = W^"{Z). By virtue of hypothesis H(a) we can define the operator
A : T x X - • X' by

(A(t, x), y) = J2l flt(t-z' x< Dx)Dky{z)dz

for all y e X. Here by (.,.) we denote the duality brackets for the pair (W<j*(Z),
W"'''(Z)). In the next proposition we establish a useful property of x -*• A(t, x). First a
definition (see for example Zeidler [16, p. 583]).

Definition 3.1. If Y is a reflexive Banach space and _A_: Y ->• Y* an operator, we
say that A(.) is of type (S+) if xn -+ x in Y as n -*• oo and lim (A(xn) — A{x), xn — x) < 0
imply that xn —*• x in Y as n -*• oo (as before by (.,.) we denote the duality brackets
for the pair (Y, Y*)).

Remark 3.1. A uniformly monotone operator is of type (S+) (see Zeidler [16,
P. 584]).

Proposition 3.3. If hypothesis H(a) holds and A : T x X -*• X* is defined as above,
then t -*• A(t, x) is measurable and x -*• A(t, x) is demicontinuous and of type (S+).
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Proof. By Fubini's theorem for every y e X t -*• {A(t, x), y) is measurable. So
t -*• A(t, x) is weakly measurable and since X* = W~lq(Z) is separable, from the
Pettis measurability theorem (see Diestel and Uhl [5, Theorem 2, p. 42]) we
conclude that t -*• A{t, x) is measurable. Next let xn -*• x in X = Wo'p(Z) as n -»• oo.
Then by passing to a subsequence if necessary we may assume that xn(z) -*• x(z) and
DxB(z) ->• Dx(z) a.e. on Z as n -*• oo. By virtue of hypothesis H(a)(ii)
a k { t , z , xn(z), Dxn(z)) -*• ak(t, z , x ( z ) , Dx(z)) a . e . o n Z a s n -»• o o f o r a l l k e { l , 2 , . . . N ]
and so by the dominated convergence theorem (see hypothesis H(a)(v)) we infer that
for all y e X = W0'"(Z)

(Ait, xn), y)=J2f «*('• z< *<&> Dxn(z))Dky(z)dz

f f ' z' *W' Dx(z))Dky(z)dz = (Ait, x), y)

Since y e Y was arbitrary, we conclude that A(t, xn) -*• A(t, x) in X" as n -*• oo and this
proves the demicontinuity of A(t,.).

Finally we will show that A(t,.) is of type (S+). To this end let xn 4- x in X as n -*• oo
and assume that lim {A(t, xn) - A(t, x), xn - x) < 0. By virtue of hypothesis H(a)(iii)
(/4(t, xn) - 4(r, x), xn - x> > 0 for all n> 1. So (/l(t, xn) - X(t, x), xB - x) -> 0 as n -> oo.
From [10, Theorem 2.8.1], we know that by passing to a subsequence if necessary, we may
assume that

, z, x., Dxn) - ak(t, z, x, Dx))Dk(xn - x)(z) <

for all z G Z\Nt,X(Ni) = 0, with /i, e -L'(Z) and A(.) being the Lebesgue measure on
Z. Using hypotheses H(a)(iv) and (v) we see that for every z e Z\N{ and n > 1

, xn, DxJ - «4(t, z, x, £>x))Dt(xB - x)(z)
k=l

«:=!

|D - 2fi,(t, z)

Dtx(z) | (fi2(t, z) +c2(| xn(z) I""1 + | Dkxn{z) r 1 ) )

Dtxn(z) | 0?2(t, z) + c2(| x(z) r 1 + | Dtx(z) I"-1)). (3)

Since by hypothesis xn ->• x in X and .Y = Wo'p(Z) embeds compactly in LP(Z), we
deduce that xn -> x in LP(Z) as n -> oo. Then by passing to a subsequence if necessary,
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we may assume that xn(z) -*• x(z) for all z € Z\N2, A(N2) = 0 and | xn(z) |< fc2(z) for
all z € Z\N2 with fcj e L'(Z). Using this fact in (3) we infer that for all z € Z\N,
N = JV, U N2) A(N) = 0, the sequence {IIDxn(z)!!},,>, is bounded. So for fixed z € Z\N we
can find a subsequence {xm(z)}m>, of {xB(z)}n2, such that xm(z) - * x(z) and
Dkxm(z) -> yt(z) as m -*• oo. Hence passing to the limit as m -*• oo we obtain for all
zeZ\N

N

, z, x, y) - ak(t, z, x, Dx))(yk - Dkx)(z) = 0

and so yk{z) — Dkx(z) for all fc e {1,2, ...N] (see hypothesis H(a)(iii)). Since the limits
yk{z) are uniquely determined, we deduce that Dxn(z) -> Dx(z) for all z e Z\N as
n ->• oo. Moreover from (3) it follows that

\\Dxn(z)\\p < hx(z) + c, ||Dx(z)||/> + 20,(t, z)

Dkx(z) | (&(£, z) + c2(| xn(z) I""1 + | Dkxn(z)
«:=!

I Dkxn(z) I 082(t, z) + c2(| x(z) I""1 + | Dkx{z) |p- ')) (4)
l c = l

for all z e Z\JV. Note that for C c Z measurable

J W z ) I (hit, z) + c2(| xn(z) I""1 + | Dkxn(z) |'

UI&C •) + c2(| xn(.) r
1 + I D4x.(.)

+ c2||x.(.)li; + c2||D»xJi; 1 for some c4 > 0

Also
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£, z) + c2(| x(z) r '

*=i

, z) + c,(| x(z) r ' + I Dtx(z) rl))dz (6)

for some c6 > 0. From (4), (5) and (6) we deduce a t once that (II£>*„(.)inn>, is
uniformly integrable. Hence from the generalized dominated convergence theorem (see
for example Ash [1, Theorem 7.5.2]), we infer that Dxn —> Dx in L'(Z, RN) as n -> oo.
Therefore xn -* x in X = Wo'(Z) as n -*• oo and so 4(t,.) is of type (S+). •

Our proof of the main existence theorem (see Section 4) will use an auxiliary periodic
problem and a general surjectivity result for the sum of two operators of monotone
type. Although the result is known (see for example Lions [11, Theorem 1.2] or B-A.
Ton [IS, Corollary 1]), nevertheless for the convenience of the reader we recall it here.
We start with a definition:

Definition 3.2. Suppose that Y is a reflexive Banach space, L : D(L) c Y -*• Y* is a
linear densely defined maximal monotone operator and V :Y' -*• 2r\{0] a multivalued
operator with weakly compact and convex values. We will say that V{.) is pseudomono-
tone with respect to D(L) if for {yB}n>! c D(L) with yn A- y in Y and L(yn) A- L(y) in
Y* as n —*• oo and for y* e V(yn), n > 1, satisfying y* A y* in Y* as n —*• oo and
lim(y*, y) < (y't y), we can deduce that y* e V(y) and (y*, yn) —> (y*, y) as n -> oo.

In a similar way we can define the notion of an operator of type (S+) with respect
to D(L):

Definition 3.3. Let Y and L : D(L) c Y -*• Y* be as in the previous definition. An
operator V : Y -»• Y* is said to be of type (S+) with respect to D(L)_if for {yn}B>, c D(L)
with yn A y in 7 and L(yn) A L(y) in y* as n -»• oo for which lim(F(yn), yn — y) < 0,
we obtain yn -*• y in Y as n -*• oo.

The surjectivity result that will give us a solution for the auxiliary problem is the
following:

Proposition 3.4. If Y is a reflexive Banach space, L : D(L) c Y -*• Y* is a linear
densely defined maximal monotone operator and V : Y -*• 2Y' \{0) is a multivalued map
with weakly compact and convex values, which is bounded (i.e. maps bounded sets to
bounded sets), pseudomonotone with respect to D(L), sequentially closed in Y x Y^ (here
Y£ denotes the Banach space Y* furnished with the weak topology) and coercive (i.e.
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inf {^p : y* € V(y)} -+ oo as \\y\\ - • ooj, then R(L+V)=T (i.e. the operator
[L + V){.) is surjective).

Now we recall from the general theory of maximal monotone operators (see for
example Zeidler [16, Theorem 32.1]) that L : D(L) c Y -+ Y* is a linear densely defined
maximal monotone operator iff L(.) is closed and monotone and L*(.) is also
monotone.

Using this fact we can easily establish the next proposition concerning the operator
L(.) of our problem.

Proposition 3.5. / / L : D(L) c L"(T, Wo
ip(Z)) - • L\T, W~X\Z)) is defined by

L(x) = x (as before the time derivative is defined in the sense of vector valued distributions)
with x e D(L) = {ye L"(T, WO'P(Z)): y e L*(7\ F ' ' ' (Z) ) , y(0) = y(b)} c Wpq(T), then
L(.) is a densely defined, linear and maximal monotone operator.

Proof. Observe that L(.) is linear, monotone and densely defined. The density of
the domain D(L) of L(.) in L"(T, Wjp(Z)) follows from the fact that the functions
y € C°°(T, Wo"(Z)) such that y(0) = y{b) are dense in L\T, P%'"(Z)). This last
statement is proved easily by means of homogenizing operators (see for example
Zeidler [16] or Zhikov, Kozlov and Oleinik [17]). Also V : D(V) c L"(T, Wo

l\Z)) -+
L\T, W-l"(Z)) is defined by V{y) = -y for all y e D{L') = D(L). Hence V is
monotone too and so we conclude that L is maximal monotone. •

Now let A : L"(T, X) -*• L\T, X*) be the Nemitsky (superposition) operator
corresponding to A(t, x); i.e. ^4(x)(.) = A{., x(.)). From Proposition 3.3 we know that for
every y e X the function (t, v) -*• (A(t, v), y) is measurable in t, continuous in v (i.e. a
Caratheodory function) hence it is jointly measurable. So if x e Lf(T, X) then
t -*• (A(t, x(0), y) is measurable on T. Because y € X was arbitrary we infer that
t -> A(t, x(t)) is weakly measurable from T into X* = W~lq(Z) and since the latter is
separable reflexive, as before from the Pettis measurability theorem, we conclude that
t -*• A(t, x(t)) is measurable. Then hypothesis H(a)(v) tells us that A{., x(.)) =

In the next proposition we show that the property that A(t,.) is of type (S+) (see
Proposition 3.3.) can be lifted to A{.) in the sense that A(.) is of type (S+) with respect
to D(L).

Proposition 3.6. If hypothesis H(a) holds and A : L"(T, X) ->• L\T, X*) is defined as
above, then A{.) is of type (S+) with respect to D(L).

Proof. Let {xn}n>, c D(L) and assume that xB A- x in Wn{T) as n ->• oo (i.e. xn A- x
in LP(T, X) and xn 4- x in L\T, T) as n -+ oo) and that fim((i(xB), xn - x)) < 0 (recall
that by ((.,.)) we denote the duality brackets for the pair (L"(T, X), L\T, X*))). Put
£,,(0 = (A(t, xn(t)), xn(0-x(t)). Since Wpq(T) embeds continuously in C(7\L2(Z)), we
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deduce that xB 4 x in C(T, L2(Z)) as n -> cx> and so for every t e T xn(t) 4- x(t) in L\Z)
as n -*• oo. On the other hand let N Q T be the exceptional Lebesgue-null set outside of
which we have {A(t, x), x) > c,||x||* — /?,(t) for some c, > 0 and /?, e L'(7) and
ll^(t, x)||jf. < /?2(t) + c2||x||5"' for some f}2 e L\T) and c2 > 0 (see hypotheses H(a)(iv) and
(v)). Then for t e T\N we can write

Ut) > <pB(0 = £. IMli - AW - &(0 + ^IMir'NWOIl* (7)

If C = { t e T : limWO < 0} (which is measurable) and n(C) > 0 (ji(.) being the
Lebesgue measure on T), then from (7) above we deduce that for t e C n ( T \ N )
{xn(0}*>i is bounded in X = WJllP(Z). Since X is reflexive and xn(0 4- x(t) in L2(Z) as
n -> oo, we infer that xn{t) 4- x(t) in AT as n -»• c». Fix t e C D (T\AT) and choose a
suitable subsequence so that !im£,(t) = lim £^(t). Then by virtue of the fact that A(t,.)
is of type (S+) (see Proposition 3.3) we obtain that x^t) -*• x(t) in X as k -> oo and so
fni(0 = (-4(f. xnt(0)» *FH(0 — x(0) -*• 0 as k -»• co, which contradicts the definition of
C. Therefore Unî n(0 ^ 0 a.e. on T. Then from Fatou's lemma it follows that

0 < f\ML(t)dt < Hm f Ut)dt
Jo Jo

< BE f Ui)dt = hm(U(xJ, xB - x)) < 0
Jo

hence fi {Jftdt ^ 0 as n ̂  oo. Note that J £,(t) |= ^(t) + £ (0 = {„(*) + 2{;(t). Since
0 < lim^n(0 a.e. on T, we deduce that ln (t) -+ 0 a.e. on T as n -> oo. Recall that
<Pn(0 < £B(0 a.e. on T (see (7)) with {<pn{-))n>x uniformly integrable. Then
0 < C(0 5 <Pn (0 ae . on T and of course {<p̂ (.)}n>! is uniformly integrable too. So we
can apply the extended dominated convergence theorem (see Ash [1, Theorem 7.5.2])
and obtain that f£ &(t)dt - • 0 as n ->• oo. So finally we can write that
/% I £«(0 I dt -> 0 as n -»• co and so by passing to a subsequence if necessary we may
also assume that £n(t) -*• 0 a.e. on T as n -> oo. Then because y4(t,.) is of type (S+) (see
Proposition 3.3) we obtain that xn(t) -»• x(0 in X a.e. on T as « ->• oo. Also

0) A(0 + 2""1 ||x(0lli a.e. on T

from which it follows that {||xn(.) — x(.)||p?}B>, is uniformly integrable. Therefore a new
application of the extended dominated convergence theorem gives us that
||xB — x\\L,iTX) -*• 0 as n -> oo so we conclude that A is of type (S+) with respect to D(L). •
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4. An existence theorem

In this section using the auxiliary tools of Section 3 we will prove the existence of
a solution x € WM(T) for problem (2) such that ^(t, z) < x(t, z) < <p(t, z) a.e. on
TxZ.

Theorem 4.1. If hypotheses H(a), Ho and H(f) hold, then problem (2) has a solution
x e WM(T) such that \fi(t, z) < x(t, z) < <p(t, z) a.e. on T x Z. Moreover the set of all such
solutions of (2) is compact in L"(T, Wo

ip(Z)).

Proof. Let T : LP(T, Wip(Z)) - • L\T, W1J>(Z)) be the truncation at {q>, ij/} map and
u:TxZxR-*R the corresponding penalty function. We consider the following
auxiliary periodic boundary value problem

I - T.L Dkak(t, z, x(x), DX) 4- Xu{t, z, x(t, z))

e F(z(x)(t, z), Dx{x)(t, z)) on T x Z

x(0, z) = x(b, z) a.e. on Z, x | r x r = 0

(8)

where k > 0 will be fixed in the process of the proof. Let A : L"(T, Wo
ip(Z)) - •

L\T, F M ( Z ) ) be defined from (8) as in Section 3. Also define U: L"(T x ^ - >
L*(T x Z) by t/(x)(t, z) = u(t, z, x(t, z)) (the Nemitsky operator for the map u(t, z, x))
and G : LF(T, Wo

ip(Z)) -* 2L^TxZ> by G(x) = {g e L"(T x Z) : g(t,z) e F(z(x)(t,z),
Dx(x)(t, z)) a.e. on T x Z}. Set V(x) = A{x) + W(x) - G(x).

Claim 1: V : L"(7\ Wo^Z)) ^- 2t'(TH'"1'<z))\{0} is pseudomonotone with respect to
D(L)-It is clear that V(.) has weakly compact and convex values. Next let xn -\ x in

Wpq(T) as n -»• oo, »„ e P(xn), n > 1, with t)n -4- t> in L'(T, W"'"(Z)) and assume that
lim((i;n>xB-x))<0. By definition vn = A(xn) + W(xn) - gn with gneG(xJ, n > 1.
Because of hypothesis H(f) | gn{t, z) |< /S3(t, z) + C3||DT(X,,)(*, Z)!!""1 a.e. on T x Z, which
implies that {gn(., .)}„>! is bounded in Lq(T x Z) and so by passing to a subsequence if
necessary, we may assume that gn A- g in L^T x Z) as n -» oo. Also from Proposition
3.2 and Krasnoselskii's theorem (see for example Zeidler [16, Proposition 26.7]) we
know that U : L"(T x Z) -+ L"(T x Z) is continuous. Because Wpq(T) embeds
compactly in LP(T x Z), we see that xn -*• x in L"(T x Z) as n -*• oo and so
[/(xj -> U(x) in L«(T x Z) as n -+ oo. Hence ((t/(xn), x. - x)) = (U(xm), xn - x)pq - • 0
as « -»• oo. Here by (., .)M we denote the duality brackets for the pair (LP(T x Z),
Lq(T x Z)). Also ((^n, xn — x)) = (gn, xn — x)pq -*• 0 as n -*• oo. Therefore we deduce that
iim((/4(xn), xn - x)) < 0. But from Proposition 3.6 we know that A(.) is of type (S+) with
respect to D(L). Therefore xn ->• x in L"(T, Wo

lp(Z)) as n -+ oo and so r(xn) ̂ - x(x) in
Lf(T, WoP(Z)) as n ->• oo. Also by passing to a subsequence if necessary we can say
that Dx(xn)(t,.) - • £>T(x)(t,.) in LP(Z) a.e. on T as n ->• oo. Note that for almost all
(t,z)€TxZ |DT(xB)(t,z)|<max{|D(p(t,z)|, \Dx}i(t,z)\, \Dxn{t,z)\), so by the
extended dominated convergence theorem we have that Df(xn) -*• Dz(x) in L"(T x Z) as
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n -*• oo. Therefore at least for a subsequence we can say that x(xn)(t, z) -*• x(x)(t, z)
a.e. on I x Z and Dx(xn)(t, z) —• Dt(x)(t, z) a.e. on T x Z as n -»• oo. So invoking
Theorem 3.1 of Papageorgiou [12] we obtain

g(t, z) € conv\mi{gn(t, z)} c convUmF(x(xn)(t, z), Dt(xn)(t, z))

c F(r(x)(f, z), Dx(x)(t, z)) a.e. on T x Z.

The last inclusion is a consequence of the fact that GrF = {(x, y, v) e R x Rs x R :
v e F(x, y)) is closed, which in turn follows from the fact that (x, y) -*• fix, y) is lower
semicontinuous and (x, y) -*• fix, y) is upper semicontinuous (see Chang [3]). Thus
g e G(x) which means that v e V(x) and so we have proved that V{.) is pseudo-
monotone with respect to D(L).

Claim 2: G : L"(T, Wo
lp(Z)) -+ 2I/I<rxZ)\{0} is bounded (i.e. maps bounded sets to

bounded sets).
This is an immediate consequence of the growth condition on /(x, y) (see hypothesis

Claim 3: GrG = {(x,g) e L"(T, W0'"(Z)) x L\T x Z) : g e G(x)} is sequentially
closed in L\T, Wj"(Z)) x L"(T x Z)w.

Let (xn,gn) e GrG and assume that (xnIgn) -* (x,g) in L\T, Wo
lp(Z)) x L"(T x Z)w

as n -*• <x). As in claim 1 at least for a subsequence we can write that r(xn) -> T(X) in
LP(T x Z) and Dt(xn) -»• I>T(X) in L"(J x Z, RN) as n -»- oo. Hence as above via
Theorem 3.1 of Papageorgiou [12] we obtain that g(t, z) e F«x)(t, z), Dx(x)(t, z)) a.e.
on T x Z and so g e G(x), i.e. GrG is sequentially closed in L"(T, Wj"(Z)) x L"(T x Z)w.

From claim 2 and 3 above, we deduce at once that V(.) is bounded and has a
sequentially closed graph in L"(T, Wo

hp(Z)) x L\T, W-'"(Z))W.
Claim 4: V(.) is coercive
From hypothesis H(a)(iv) it follows that

f f ak(t, z, T(;e), Dx)Dkxit, z)dzdt

> c, V / /" | Dkx(t, z) |" dzdt - HA ||, > c, llxllt^x, - lift II, (9)

for some c, > 0 (recall that ||/>x||p is an equivalent norm on X = W6li;>(Z)). Also for
every g e G(x)

((-ff. x)) > -||»|IM(TXZ)II*HI.»(TX«)- (10)

Using Young's inequality with e > 0 we obtain

£* 1

\ \ \ \ \ W \ ) < - H0llL«(r«z) + ~ IMlUr*z) 0 0
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Moreover from hypothesis H(f) and Minkowski's inequality it follows that

\\9\\L<ITXZJ < H03lll.«(rxZ)+C3lMl£(7\JO.

hence,

llffllLp-xz) < Z'-'llftllLp-xZ) + 2'"Ic,||x||^riX). (12)

Finally from Proposition 3.2 we know that

((!/(*), x)) = (l/(x), x),, > c5||x|rLP(T^ - cgllxll^lrxz) (13)

for some c5, c6 > 0. Combining (9) to (13) above we obtain for all g e G(x)

+ W(x)-g,x))

> iy\\x\\'L,iTJl) - H/1,11, - ^ 2 « - 1 | l f t f ^ " ^

- -J- Hx||i,(Tx2) + Xc5\\x\\[nTxZ) - /Icjlxll^rxz)- (14)
e"p

First choose £ > 0 such that c, > -2'"'c3. Then having chosen e > 0 this way pick
A > 0 large enough so that Xc5 > ^ . With these choices of X, e, from (14) we conclude
that V(.) is coercive.

Now rewrite problem (8) as the following equivalent abstract operator inclusion

0eL(x) + V(x) (15)

By virtue of claims 1 to 4 and Proposition 3.4 (L + V)(.) is surjective which implies that
problem (15) has a solution x e D(L). Therefore there exists x e Wpq(T) which solves
the auxiliary periodic problem (8).

Claim 5: Every solution x € WM(T) of (8) satisfies \j/(t, z) < x(t, z) < q>(t, z) a.e. on
TxZ.

Since by hypothesis is i// e Wpq(T) a lower solution of (1) it follows that

. w)) + (tfOW. w)) < «JW, w)) for all w e W^(r) n L'(T x Z)+ J
)a.c. o n Z , ^ | r x r < 0 j

where /(^)(t, z) = f_(^(t, z), Dip(t, z)). Also because x e WW(T) is a solution of (8)

((x, w)) + ((i(x), w)) + A((C/(x), w)) = ((9) w)) (17)

for some 3 € G(x) and all w 6 L"(T, Wo
lp(Z)). Subtracting (16) from (17) and using
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w = (ij/ — x)+ as a test function we get

((x -&,&- x)+)) + «i(x) - Aty), & - x)+))
+ / ty - x)+)). (18)

From the integration by parts formula for functions in Wpq(T) (see Zeidler [16,
Proposition 23.23]) we obtain

( (x - ^, (tfr - * ) + ) ) = - x HW ~ *)+(b)\\2
LHz) + - \\(if/ - x)+(0)\\o<z) < 0- (19)

V

Also from hypothesis H(a)(iii) we see that

((.4(x) - A(ij/), (\j/ - x)+)) < 0. (20)

In addition since g e G(x), we deduce that

((g — /WO. (i/' — x)+)) > 0. (21)

Using (19) to (21) in (18) we obtain

hence t^(t, z) < x(t, z) a.e. on T x Z. In a similar way we can show that x(t, z) < q>(t, z)
a.e. on T x Z. So t(x)(t, z) = x(t, z) and u(t, z, x(t, z)) = 0. Therefore x e Wpq{T) is a
solution of (2).

Now we will show that the set of all such solutions of (2) is compact in
L"{T, Wo\T)). To this end let {x,},,>, c Wn{T) be a sequence of solutions of (2) such
that iKt, z) < xn(t, z) < q>(t, z) a.e. o n T x Z . So {xn}B>, is bounded in Wpq(T). Hence we
may assume that xn -4- x in W ,̂(T) as n -*• oo. Since W ,̂(T) embeds compactly in
L"(r x Z) and continuously in C(T, L2(Z)), we see that xn ->• x in L"(r x Z ) a s » ^ o o
and x(0, z) = x(b, z) a.e. on Z. Also by definition xn(t) + A(t, xB(t)) = gn(t) a.e. on T
with <7n(r, z) e F(xB(t, z), Dxn(t, z)). Because of hypothesis H(f) we may assume that
gn A- g in L\T x Z) as n ->• oo. So ((&,, xn - x)) = (gn, xn - x)M -»• 0 as n -+ oo. Also
from the integration by parts formula for functions in W^T) (see Zeidler [16,
Proposition 23.23]) we know that

((x. - x, xB - x)) = I ||x.(6) - x(b)fLHz) -1 ||xB(0) - x(0)\\lHz) = 0.

thus ((xB, xB - x)) = ((x, xn - x)) -»• 0 as n - • oo.
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Therefore we deduce that Iim((i4(xn), xn — x)) = 0 and since by Proposition 3.6 A is of
type (S+) with respect to D(L), we infer that xn -»• x in L\T, Wo'\T)) as n -» oo.
Finally as above we can check that g{t, z) e F(x(t, z), Dx(t, z)) a.e. on T x Z. Thus in
the limit as n -*• oo we obtain x(t) + /l(t, x(t)) = g(t) a.e. on T, x(0) = x(b) and
gr(t, z) e F(x(t, z), Z)x(t, z)) a.e. o n T x Z , i.e. x e WK{T) is a solution of (2) and so we
have proved the compactness in L"{T, WQ'"(T)) of the solution set in the order interval
[*, 9l •
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