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Abstract. Finitely accessible categories naturally arise in the context of the
classical theory of purity. In this paper we generalise the notion of purity for a more
general class and introduce techniques to study such classes in terms of indecomposable
pure injectives related to a new notion of purity. We apply our results in the study of
the class of flat quasi-coherent sheaves on an arbitrary scheme.
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1. Introduction. In [5] Crawley-Boevey showed that finitely accessible additive
categories admit a nice theory of purity (although he used the terminology of locally
finitely presented additive for such categories). If A is a finitely accessible additive
category, it is not difficult to prove that A is equivalent to the full subcategory Flat(S)
of Mod-S of unitary flat right S-modules (i.e. modules such that M · S = M) over
a ring with enough idempotents (see [6, Theorem 1.1]). The pure-injective objects of
Flat(S) are precisely the flat cotorsion modules (where a right R-module C is flat
cotorsion if it is flat and does not have non-trivial extensions by any flat module,
that is Ext1

S(F, C) = 0 for all flat right R-module F). Therefore, the study of pure-
injective objects in finitely accessible additive categories is equivalent to the study of
flat cotorsion modules over rings with enough idempotents. The homological study of
these modules was first considered by Harrison in [17] for abelian groups, and later on
by Enochs in [8] for commutative Noetherian rings.

On the other hand, the class of flat cotorsion modules naturally arises when
studying the so-called kernel of flat cotorsion pair. Cotorsion pairs (F , C) were first
introduced by Salce [19] in 1979 in the category of abelian groups, but its definition
can be easily extended to a more general setup. Then if F is the class of flat right
S-modules and C the class of cotorsion right S-modules, it is easy to prove (see for
example [13, Lemma 7.1.4]) that the pair (F , C) is a cotorsion pair known as the
flat cotorsion pair and its kernel (the modules in the class F ∩ C) is the class of flat
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cotorsion modules. So in the language of cotorsion pairs, the study of pure-injective
objects in finitely accessible additive categories is equivalent to the study of the kernel
of the flat cotorsion pair over rings with enough idempotents.

This is a starting point of our paper. Our goal is to study ‘pure-injectives’ relative
to the kernel of an arbitrary cotorsion pair in the Grothendieck category (so not just
the flat cotorsion pair in Mod-S). Our approach has an advantage that can be applied
to more general classes F of the Grothendieck category A (these need not be finitely
accessible, or even λ-accessible, for λ a regular cardinal). We will require F to be a
Kaplansky class. This notion was introduced by Enochs and López Ramos in [14] and
has been shown to be very fruitful in proving the existence of covers (and envelopes)
with respect to class F in several algebraic categories, essentially by showing that F
is a Kaplansky class (cf. [3, 4, 9, 10, 15]). Our main concern is to apply our results in
categories of sheaves. Namely, apart from very particular schemes X like non-singular
irreducible curves over a field k, it is not known whether the class F of all flat quasi-
coherent sheaves on a general scheme X is a finitely accessible additive category or not,
so the general methods of purity theory cannot be applied to this setting. However, the
class F of all flat quasi-coherent sheaves on an arbitrary scheme is always a Kaplansky
class ([9, Theorem 4.1]), so the methods of this paper can be applied.

On the other hand, when F is a Kaplansky class, there is a canonical cotorsion
pair (F , C), so one can also define ‘pure-injectives’ in this setup, and then use them
to study structure of the class F , just like pure-injective R-modules are used to study
properties of Mod-R. For instance, Ziegler [22, Corollary 6.9] showed that there exist
enough pure-injective indecomposable objects in the category Mod-R in the sense
that every module is elementarily equivalent to a direct product of pure-injective
indecomposable modules. We will show in Theorem 4.1 that every object in the F can
be purely embedded (in a sense that we will specify) into a direct pseudo-product of
indecomposable objects in F ∩ C (the pure-injective objects of F).

Again, our main motivation for developing a general theory of pure-injective
objects relative to a Kaplansky class comes from the sheaf theory. In a recent paper
[18, Section 3], Murfet and Salarian have stirred up interest of flat cotorsion quasi-
coherent sheaves in their study of a generalised homotopy category of totally acyclic
complexes (over a semi-separated noetherian scheme). We hope that our results
on indecomposable flat cotorsion quasi-coherent sheaves in Section 4 can help in
understanding the structure of such complexes.

2. Background and notation. Throughout the paper A will be the Grothendieck
category endowed with a faithful functor U : A → Set, where Set denotes the category
of sets (following Section 5 in [1], A is called construct). For instance, if A = Qco(X),
the category of quasi-coherent sheaves on scheme X , U(F) = �v∈VF(v), where V is a
fixed open affine cover of X .

By abuse of notation we write x ∈ A instead of x ∈ U(A) for any object A in A.
Analogously |A| will denote the cardinality of U(A).

Now we will recall some basic notions on (pre)covers and (pre)envelopes that will
be needed in the sequel. If F is a class of objects of A, then an F-precover of an
object X of A is a morphism ϕ : F → X where F ∈ F and Hom(G, F) → Hom(G, X)
is surjective for all G ∈ F . If furthermore any f : F → F with ϕ ◦ f = ϕ is an
automorphism of F , then ϕ is said to be an F-cover of X (clearly an F-cover of X is
unique up to isomorphism if it exists). The dual notions are that of an F-pre-envelope
β : X → F and of an F-envelope.
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For a class F of objects of A, F⊥ will denote the class of objects C of A such that
Ext1(F, C) = 0 for all F ∈ F . Similarly, ⊥F will denote the class of objects D of A such
that Ext1(D, F) = 0 for all F ∈ F .

DEFINITION 2.1. (see [19] or [13, Chapter 7]). A pair of classes (F , C) of objects ofA
is said to be a cotorsion pair on A if F⊥ = C and ⊥C = F . A pair (F , C) is cogenerated
by S ⊆ F whenever S⊥ = C.

We note that if (F , C) is a cotorsion pair on A, then F contains all the projective
objects of A (there can be no other than the zero object) and F is closed under
extensions, arbitrary direct sums and retracts. There is a dual claim for C.

We also note that given an exact sequence

0 → C → F → X → 0,

with C ∈ C, F ∈ F where (F , C) is a cotorsion pair, we have the exact sequence

Hom(G, F) → Hom(G, X) → Ext1(G, C) = 0,

for any G ∈ F . Hence F → X is an F-precover.

DEFINITION 2.2. (see [21]). AnF-precover F → X is said to be a specialF-precover
if F → X is part of an exact sequence

0 → C → F → X → 0

with C ∈ F⊥. A special C-pre-envelope (for a class C) is defined by the existence of an
exact sequence

0 → X → C → F → 0

with F ∈ ⊥C.

DEFINITION 2.3. A cotorsion pair (F , C) on A is said to have enough projectives
(resp. enough injectives) if every object has a special F-precover (resp. a special C-
pre-envelope). A cotorsion pair having enough injectives and projectives is called a
complete cotorsion pair.

We recall the following:

PROPOSITION 2.1. (Wakamatsu’s lemma). If a class of objects F in A is closed under
extensions and if ϕ : F → X is an F-cover, then ker(ϕ) ∈ F⊥.

Proof. See ([21, Lemma 2.1.1]) for a proof in a category of modules. The proof is
easily modified to work in the Grothendieck category. �

There is a dual result.

PROPOSITION 2.2. If C is a class of objects closed under extensions and if α : X → C
is a C-envelope, then coker(α) ∈ ⊥C.

Proof. By duality. �
DEFINITION 2.4. A cotorsion pair (F , C) on A is said to be perfect if every object

X of A has an F-cover and a C-envelope.
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We note that if the class F contains a generator of A, any F-precover ϕ : F → X
is an epimorphism. Similarly, any C-pre-envelope α : X → C is a monomorphism
(because C contains all the injective objects of A). Therefore, by Proposition 2.1, any
perfect cotorsion pair (F , C) which contains a generator is complete.

Now we will define the notion of a Kaplansky class. As we shall see in the next
section, there is a quite strong relation between Kaplansky classes and the existence of
F-covers and F⊥-envelopes.

DEFINITION 2.5. A class F of objects of A is said to be a Kaplansky class (see [14])
of A if for each cardinal κ there is a cardinal λ such that if S ⊂ F for some F ∈ F
where |S| ≤ κ then there is an F ′ ⊂ F with S ⊂ F ′ where |F ′| ≤ λ and where F ′ and
F/F ′ are both in F .

EXAMPLE 2.1.
(1) If A = Mod-R, the class of all projective R-modules is Kaplansky (by the

Kaplansky Theorem). This is standard and a motivating example for the
definition.

(2) If A = Mod-R, then F = the class of all flat right R-modules is Kaplansky
(apply [4, Lemma 1] toF). More generally, ifF is closed under pure submodules
and pure quotients, then F is a Kaplansky class (see, for instance, [21, Lemma
2.5.2]).

(3) If A = OX -Mod the category of sheaves of OX -modules, the class F of flat
OX -modules is a Kaplansky class (apply [15, Proposition 2.4] to F).

(4) If A = Qco(X) the category of quasi-coherent sheaves on an arbitrary scheme
X , the classF of flat quasi-coherent sheaves is Kaplansky (apply [9, Proposition
3.3] to F).

(5) If F is a deconstructible class (see [20] for definitions) in the Grothendieck
category A, then F is a Kaplansky class (see [20, Corollary 2.7]).

(6) If A = Qco(X) the category of quasi-coherent sheaves on an arbitrary
scheme X , the class of (infinite-dimensional) vector bundles and the so-called
(restricted) Drinfeld vector bundles are examples of Kaplansky classes (see [16,
Corollaries 3.12 and 3.13]).

(7) If A is the Gorenstein category (see [10] for definitions) and W = the class
of objects W of A such that injdimW ≤ n, then W is a Kaplansky class ([10,
Corollary 2.13]).

(8) Let A be the Grothendieck category and C(A) the category of unbounded
chain complexes in A. Then, if F is a Kaplansky class closed under taking
direct limits, the following classes in C(A) are also Kaplansky classes (see [20,
Theorem 4.2, Corollary 2.7]):
(a) C(F) = {(Yn) ∈ C(A) : Yn ∈ F , ∀n ∈ �}.
(b) F̃ = {Y ∈ C(A) : Y is exact and ker(Yn → Yn−1) ∈ F , ∀n ∈ �}.
(c) If F contains a generator of A, the class dg-F of all chain complexes

Y ∈ C(F) such that every chain complex morphism Y → C with C ∈ F̃⊥
is nullhomotopic (where F̃⊥ is as in the previous item but with the class F⊥

instead of F).

3. Kaplansky classes and perfect cotorsion pairs. In the next theorem we will
prove that, under certain conditions, Kaplansky classes provide us examples of covers
and envelopes with respect to them.
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THEOREM 3.1. Let F be a Kaplansky class of objects of A, which is closed under
direct sums, extensions and well ordered direct limits. Then the pair (F ,F⊥) has enough
injectives. If furthermore the generator ofA is inF , the pair (F ,F⊥) is a perfect cotorsion
pair.

Proof. Let F ∈ F and x ∈ F . SinceF is Kaplansky, there is a cardinal λ and F0 ⊆ F
with x ∈ F0, where |F0| ≤ λ and where F0, F/F0 ∈ F . Now, let us consider x ∈ F \ F0.
Then, as before, there exists F1/F0 ⊆ F/F0 with x ∈ F1 \ F0, such that F1/F0, F/F0 ∈ F
and |F1/F0| ≤ λ. For the first limit ordinal ω, we set Fω = ∪α<ωFα ∈ F , then, since F
is closed under well-ordered direct limits, we infer that F/Fω ∈ F , so we may continue
the induction. Then, since any Grothendieck category is locally small, the process will
eventually stop for some ordinal μ. Therefore, we have expressed F = ∪α≤μFα such
that F0, Fα+1/Fα ∈ F and |F0|, |Fα+1/Fα| ≤ λ for any successor ordinal α < μ. Now if
we let S ⊆ F be a set of representatives of G ∈ F with |G| ≤ λ, we follow from Eklof’s
lemma (see [7, Theorem 1.2]1) that S⊥ = F⊥, hence the pair (F ,F⊥) is cogenerated by
the set S. Then Theorem 2.5 in [11] tells us that the pair (F ,F⊥) has enough injectives.

Finally, let us see the last part of the statement. By Theorem 2.6 in [11] every object
M in A has an F-cover and an F⊥-envelope. Now let Y ∈⊥F⊥, and F → Y → 0 be
an F-cover of Y . By Proposition 2.1, the sequence 0 → ker(F → Y ) → F → Y → 0
splits, so Y is a retraction of F and therefore Y ∈ F . Hence, the pair (F ,F⊥) is a
perfect cotorsion pair. �

4. Purity relative to a cotorsion pair. Let A = Mod-R. Then it is known that the
right R-module F is flat if and only if each short exact sequence 0 → M → N → F → 0
in Mod-R is pure. Flat modules are known to be the left part of the so-called flat
cotorsion pair (F , C) (see [13, Lemma 7.1.4]). This justifies the following definition.

DEFINITION 4.1. A short exact sequence 0 → X → Y → Z → 0 in A is called
pure relative to the cotorsion pair (F , C) (or F-pure, for short) if Z ∈ F . In particular,
X ⊆ Y is an F-pure subobject whenever 0 → X ↪→ Y → X/Y → 0 is F-pure.

So we get the notion of a pure-injective object M ∈ F relative to the cotorsion pair
(F , C) whenever each exact sequence 0 → M → Y → Z → 0, which is pure relative
to (F , C), splits. Then it is immediate to observe that pure-injectives in F relative
to the cotorsion pair do coincide with objects in the class F ∩ C. This class is often
known as the kernel of the cotorsion pair. Of course, when F is the class of flat right
R-modules, then the pure-injectives in F relative to the flat cotorsion pair are the usual
pure-injectives in Flat(R), that is the class of flat cotorsion right R-modules.

4.1. Pseudo-products on abelian categories.

DEFINITION 4.2. Let A be an abelian category and {Ai}i∈I be a family of objects
of A. A pseudo-product of the family {Ai : i ∈ I} is an object A ∈ A and a family
of morphisms {qi : A → Ai}i∈I that verifies the following: If B is an object of A and
{fi : B → Ai}i∈I is a family of morphisms, then there exists a morphism ϕ : B → A such
that qi ◦ ϕ = fi, ∀i ∈ I .

1The arguments in [7, Theorem 1.2] are for modules, but easily carried over for the Grothendieck category.
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4.2. Main theorem. For the next lemma we will assume that F is a Kaplansky
class that satisfies all conditions of Theorem 3.1 (so the pair (F ,F⊥) is a perfect
cotorsion pair).

LEMMA 4.1. Given a cardinal κ there is a cardinal γ such that if |M| ≤ κ then
|C(M)| ≤ γ (where C(M) is the F⊥-envelope of M).

Proof. Firstly we note that it suffices to prove that the statement is true for some
F⊥-pre-envelope M → C of M becauseF⊥-envelopes are retracts ofF⊥-pre-envelopes
(see [21, Proposition 1.2.1]). By the proof of Theorem 2.5 in [12], for any ordinal β there
exists a continuous chain (Mα)α≤β of objects, where M0 = M, such that Mα+1/Mα ∈ F
for every ordinal α + 1 < β and Mγ = ∪α<γ Mα whenever γ is a limit ordinal. So we
can find a family (κα)α≤β of cardinal numbers such that κ0 = κ and |M| = |M0| ≤ κ

and |Mα| ≤ κα for each α ≤ β. Now we choose the ordinal μ attained to κ, as in [12,
Proposition 2.3]. Then again, by the argument given in the proof of Theorem 2.5 in
[12], C = ∪α≤μMα ∈ F⊥, |C| ≤ κμ and 0 → M → C is an F⊥–pre-envelope (in fact,
a special F-pre-envelope). �

LEMMA 4.2. Let F be a Kaplansky class closed under direct sums, extensions and
well ordered direct limits. There exists an infinite cardinal δ such that |C| ≤ δ, for all
indecomposable C ∈ F ∩ F⊥.

Proof. We will show that there exists a cardinal λ such that, up to isomorphism,
every indecomposable C ∈ F ∩ F⊥ is the cotorsion envelope of an object S ∈ F with
|S| ≤ λ. Therefore, the result will follow in view of Lemma 4.1. Let C ∈ F ∩ F⊥ be
indecomposable and 0 �= x ∈ C. Since F is a Kaplansky class, there is a cardinal λ and
there is F ∈ F such that x ∈ F ⊆ C, |F | ≤ λ and C/F ∈ F . So F → C is an F⊥-pre-
envelope of C. Now let C(F) be the F⊥-envelope of F . It follows that C(F) is a retract
of C, and since C is indecomposable, C = C(F). �

THEOREM 4.1. Let F be a Kaplansky class in A which is closed under direct sums,
extensions and well-ordered direct limits, and such that F contains a generator of A. Then
every F ∈ F is an F-pure sub-object of a pseudo-product of a family of indecomposable
objects in F ∩ F⊥. Such pseudo-product can be chosen to be a special F⊥-pre-envelope
of F.

Proof. Let F ∈ F and let 0 �= x ∈ F . Let us consider

� = {F ′ ⊆ F : F ′, F/F ′ ∈ F and x /∈ F ′}.

It is clear that � �= ∅ (because the zero object is in F). Now let {Fα}α∈� be a non-empty
totally ordered subset of �. We have to show that {Fα}α∈� has an upper bound F ′′

in �. Let us define F ′′ = ∪α∈�Fα ⊆ F . Since F is closed under well-ordered direct
limits, it follows that both F ′′ and F/F ′′ = lim→ α∈�F/Fα are in F . Finally, since for each

α ∈ � x /∈ Fα, we infer that F ′′ ∈ �. Therefore, by Zorn’s lemma, there is a maximal
element F0 ∈ F of �. Then F/F0 �= 0 (because x /∈ F0) and it is indecomposable. For
if F/F0 = A ⊕ B then w.l.o.g. we may assume that the composition map

F
π
� A ⊕ B

ρ
� A
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(where π and ρ are canonical epimorphisms) is such that ker(ρ ◦ π ) ⊇ F0, A =
F/ker(ρ ◦ π ) ∈ F , ker(ρ ◦ π ) ∈ F (because F is closed under extensions) and x /∈
ker(ρ ◦ π ), which is a contradiction with the maximality of F0.

Now let us consider the canonical projection π0 : F → F/F0, so π0(x) �= 0 and let
u0 : F/F0 → C(F/F0) be the F⊥-envelope of F/F0. Then C(F/F0) ∈ F ∩ F⊥ (but it
does not have to be indecomposable in general). Let us repeat the procedure with
the element u0π0(x) and with F1 = C(F/F0), so we get F ′

1 ⊆ F1 such that F1/F ′
1

is indecomposable and take F2 = C(F1/F ′
1) and follow with this procedure. But

by Lemma 4.1 this process must stop, so for each 0 �= x ∈ F there will exist an
indecomposable Ux ∈ F ∩ F⊥ and a map πx : F → Ux such that πx(x) �= 0. Now
let us consider the induced monomorphism π = (πx)x∈F : F → ∏

x∈F Ux that maps
y �→ (πx(y))x∈F . Let us take a short exact sequence

0 → F
π−→

∏
x∈F

Ux → coker(π ) → 0,

and consider the following commutative diagram

0 0

� �

C C

� �

0 � F � Z �F(coker(π )) � 0

� �

0 � F π �
∏

x∈F Ux �coker(π ) � 0

� �

0 0

where F(coker(π )) is the F-cover of coker(π ). Then Z ∈ F and Z → ∏
x∈F Ux → 0

is an F-precover (since C ∈ F⊥), which is the desired pseudo-product of the family
{Ux : x ∈ F}. �

DEFINITION 4.3. Let {Ui : i ∈ I} be a family of indecomposable objects in F ∩ F⊥.
We shall denote by

∏q
i∈I Ui a pseudo-product of the family {Ui : i ∈ I}.
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COROLLARY 4.1. Let F be a Kaplansky class closed under direct sums, extensions
and well-ordered direct limits. Let us consider the class

� = {indecomposable objects in F ∩ F⊥}.

Then
(1) � is a non-empty set.
(2) Given F ∈ F , there exists a family of indecomposables {Ui : i ∈ I} ⊆ � such that

F is F-pure in
∏q

i∈I Ui.

5. Applications in categories of sheaves. In the present section we focus on the
category Qco(X) of quasi-coherent sheaves on scheme X . We will see that in this case
we can get a refinement of Theorem 4.1. In order to show this, we need to recall
some known facts concerning this category. An object M ∈ A (A is any category) is
called κ-presentable for some regular cardinal κ if HomA(M,−) preserves κ-directed
colimits. Then A is said to be locally κ-presentable (cf. [2, Definition 1.17]) provided
that it is co-complete, and has a set of κ-presentable objects such that every object
is a κ-directed colimit of them. The category A is locally presentable if it is locally
κ-presentable for some regular cardinal κ.

THEOREM 5.1. For any scheme X, Qco(X) is locally presentable.

Proof. See Corollary 3.5 in [9]. �
A quasi-coherent sheaf F is flat if F ⊗R − is exact, where R denotes the structure

sheaf of X . If X = Spec(A) for some commutative ring A, then a short exact sequence

0 → M̃ → Ñ → L̃ → 0

in Qco(X) is pure whenever the corresponding short exact sequence of A-modules,
0 → M → N → L → 0 is pure. Then a short exact sequence 0 → T → D → P →
0 in Qco(X) is pure if the corresponding short exact sequence 0 → T |U → D|U →
P|U → 0 is pure in Qco(U) for each affine inclusion U ↪→ X . Then T ⊆ D is a pure
quasi-coherent subsheaf whenever 0 → T → D → D/T → 0 is pure in Qco(X). Let
us consider the class F of all flat quasi-coherent sheaves on Qco(X). By Example 2.1(4)
we know that it is a Kaplansky class. We point that in this case F⊥ is known as a class
of cotorsion quasi-coherent sheaves.

THEOREM 5.2. Let X be any scheme, then each quasi-coherent sheaf in Qco(X) has
a flat cover and a cotorsion envelope.

Proof. See Corollary 4.2 in [9]. �
COROLLARY 5.1. Each flat F ∈ Qco(X) is a pure quasi-coherent sub-sheaf of a

flat cover of a product of indecomposable flat cotorsion quasi-coherent sheaves (so in
particular F is a pure quasi-coherent sub-sheaf of a pseudo-product of sheaves in F).

Proof. Let S = {Si : i ∈ I} be a set of λ-presentable generators of Qco(X)
(assuming that Qco(X) is locally λ-presentable, with λ being an infinite regular
cardinal). Let F ∈ F and fix Si ∈ S. Given 0 �= a ∈ F ⊗R Si by the same arguments of
the proof of Theorem 4.1, there exists a flat cotorsion quasi-coherent sheaf Ua,Si and
a map πa,Si : F ⊗R Si → Ua,Si ⊗R Si such that πa,Si (a) �= 0. Then following the same
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steps as that in the proof of Theorem 4.1, we get a monomorphism

π : F ⊗R Si −→
∏

a ∈ F ⊗R Si
Si ∈ S

Ua,Si ⊗R Si.

Now let R be the structure sheaf of scheme X . Then R = lim→ α<λSα. Now using the fact

that F ⊗R R ∼= F , the tensor product commutes with direct limits and lim→ is exact, we

follow that the induced map

π ′ : F −→
∏

a ∈ F ⊗R Si
Si ∈ S

Ua,Si .

is a monomorphism, which is pure.
Now take the commutative square

0 � F
f � Z � T � 0

0 � F

����������
�

∏
a ∈ F ⊗R Si

Si ∈ S

Ua,Si

�
� D

�
� 0

where Z is a flat cover of
∏

Ua,Si and f : F → Z is a morphism given by the
definition of flat cover. Then, since π ′ is pure, it is immediate that f is also pure. �

REMARK 5.1.
(1) In Corollary 5.1 we do not require any condition on the scheme. Namely, we

do not assume that F contains a generator of Qco(X).
(2) If X is a non-singular irreducible curve or surface over a field, the class F is

known to be a locally finitely accessible category. In this case the family of
classical vector bundles completely determines the class F , in the sense that
every flat sheaf on X is a directed colimit of these. For more general schemes it
seems unlikely we can find such a family forF , so Corollary 5.1 at least provides
some light in understanding the structure of flat sheaves for the general case, in
terms of indecomposable flat cotorsion sheaves. There is a full classification of
flat cotorsion quasi-coherent sheaves in case X = P1(k) in [11].
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