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We deal with analytic three-dimensional symmetric systems whose origin is a
Hopf-zero singularity. Once it is not completely analytically integrable, we provide
criteria on the existence of at least one functionally independent analytic first
integral. In the generic case, we characterize the analytic partially integrable systems
by using orbitally equivalent normal forms. We also solve the problem through the
existence of a class of formal inverse Jacobi multiplier of the system.
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1. Introduction

We are concerned with analysing the existence of analytic first integrals at the
origin of the Z2 ⊗ Z2-symmetric analytic systems, i.e. invariant to (x, y, z) ↔
(−x, −y, −z) and whose origin is a Hopf-zero singularity,

ẋ = −y +
∑
i,j,k

aijkxiyjzk,

ẏ = x +
∑
i,j,k

bijkxiyjzk, (1.1)

ż =
∑
i,j,k

cijkxiyjzk,

with i, j, k � 0, i + j + k � 3 and i + j + k odd. Under the conditions of Z2 ⊗
Z2-symmetry, performing a change of variables (x, y, z) = (x + p3(x, y, z), y +
q3(x, y, z), z + r3(x, y, z)) with p3, q3, r3 homogeneous cubic polynomials, we
obtain an orbital normal form up to order 3 of the system (1.1)

ẋ = −y + x(a1(x2 + y2) + a2z
2) + odd h.o.t.,

ẏ = x + y(a1(x2 + y2) + a2z
2) + odd h.o.t., (1.2)

ż = z(b1(x2 + y2) + b2z
2) + odd h.o.t.,

© The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Society
of Edinburgh. This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
re-use, distribution, and reproduction in any medium, provided the original work is properly
cited.

833https://doi.org/10.1017/prm.2022.19 Published online by Cambridge University Press

https://orcid.org/0000-0001-5872-7112
https://orcid.org/0000-0002-7069-287X
https://orcid.org/0000-0003-2485-832X
mailto:algaba@uhu.es
mailto:cristoba@uhu.es
mailto:colume@uhu.es
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/prm.2022.19&domain=pdf
https://doi.org/10.1017/prm.2022.19


834 A. Algaba, C. Garćıa and M. Reyes

with

a1 =
1
8
(3b030 + a120 + b210 + 3a300), a2 =

1
2
(b012 + a102),

b1 =
1
2
(c021 + c201), b2 = c003,

(1.3)

see [1, 12, 13, 15, 17, 23]. This normal form is the simplest orbital normal form
up to order 3 of the system (1.1). Therefore, if (a1, a2, b1, b2) is non-zero, system
(1.1) is not orbitally equivalent to (−y, x, 0)T , i.e. it is not linearizable.

Recall that a first integral at the origin of a system ẋ = F(x), is a scalar function
I that is constant on a neighbourhood U along of any solution of the system and
I(0) = 0. If I is a C1 function, using the chain rule, it means that F (I) := ∇I · F = 0
on U , where F denotes the differential operator associated to the system. We say
that system (1.1) is completely analytically integrable if it admits two functionally
independent local analytic first integrals. Garćıa [14] has proved that a Hopf-zero
singularity is completely analytically integrable if, and only if, it is orbitally equiv-
alent to its linear part (−y, x, 0)T . He also proved that both integrability problem
and centre problem (that consists of determining whether there is a neighbour-
hood of the singularity foliated by period orbits, including a curve of equilibria) are
equivalent for system (1.1). So, as a direct consequence of [14], system (1.1) with
(a1, a2, b1, b2) non-zero does not have two functionally independent analytic first
integral since it is not linearizable. In other words, the Z2 ⊗ Z2-symmetric Hopf-
zero singularity we are considering is not completely integrable and our analysis
will be focused on detecting the existence of one functionally independent analytic
first integral for such a singularity.

This is a difficult problem and there are few known satisfactory methods to solve
it. In the present paper, we use the orbital normal form obtained in [1] to establish
necessary conditions for the existence of analytic first integrals and formal inverse
Jacobi multipliers.

The first result provides an orbital normal form for the systems (1.1) having one,
and only one, functionally independent analytic first integral.

Theorem 1.1. Consider the analytic system (1.1) with a2
1 + b2

1 �= 0 and a2
2 + b2

2 �= 0
where (a1, a2, b1, b2) is given in (1.3). System (1.1) has one, and only one, func-
tionally independent analytic first integral if, and only if, it is orbitally equivalent
to the system

ẋ = −y + x(a1(x2 + y2) + a2z
2) − yΨ(x2 + y2, z2),

ẏ = x + y(a1(x2 + y2) + a2z
2) + xΨ(x2 + y2, z2), (1.4)

ż = z(b1(x2 + y2) + b2z
2),

where Ψ is a formal function with Ψ(0, 0) = 0 and (a1, a2, b1, b2) satisfying one of
the following two conditions:

(a) a1 = a2 = 0 (or b1 = b2 = 0). Moreover, in this case, an analytic first integral
is of the form x2 + y2 + · · · (or z2 + · · · ).
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(b) there exists a rational m such that p := b2(b1 − a1)m, q := a1(a2 − b2)m and
s := (a1b2 − a2b1)m are natural numbers and gcd(p, q, s) = 1. Moreover, in
this case, an analytic first integral is of the form (x2 + y2)pz2q((b1 − a1)(x2 +
y2) + (b2 − a2)z2)s + · · · .

Theorem 1.1 is proved in § 3.

Remark 1.2. The assumptions a2
1 + b2

1 �= 0 and a2
2 + b2

2 �= 0 in theorem 1.1 are
necessary. System

ẋ = −y + x(−2z2 + (x2 + y2)2),

ẏ = x + y(−2z2 + (x2 + y2)2), (1.5)

ż = z(z2 − 3(x2 + y2)2),

satisfies a1 = b1 = 0 and a2 = −2, b2 = 1. On the one hand, (x2 + y2)z2(z2 − (x2 +
y2)2) is a polynomial first integral of (1.5). As (a1, a2, b1, b2) is non-zero, it has one
and only one functionally independent analytic first integral. On the other hand,
system (1.5) in cylindrical coordinates is

ṙ = −2rz2 + r5, ż = z3 − 3r4z, θ̇ = 1.

By [1], system (1.5) is an orbital normal form and it is unique, therefore the terms
r5∂r and −3r4z∂z can not be removed. So, it is not orbitally equivalent to system
(1.4).

We conclude that if (a1, a2, b1, b2) is non-zero but a1 = b1 = 0 or a2 = b2 = 0,
there are systems (1.1) not orbitally equivalent to systems (1.4) with one analytic
first integral. Thus, in this case, the analytic partial integrability problem is an
open problem.

An inverse Jacobi multiplier for a system ẋ = F(x), x ∈ R
n, is a smooth function

J which satisfies F (J) = div(F)J in a neighbourhood of the origin. When J does
not vanish in an open set, then the above equality becomes div(F

J ) = 0. For planar
systems, the inverse Jacobi multipliers are usually referred as inverse integrating
factors, see [7].

The inverse Jacobi multiplier is a useful tool in the study of vector fields. So, for
example, the existence of a class of inverse Jacobi multipliers (or inverse integrating
factors) has been used for the study of the Hopf bifurcation and centre problem,
see [9–11, 16, 24], and for the integrability problem in general, see [2, 8, 21].

Here, we solve the analytic partial-integrability problem for systems (1.1) through
the existence of an inverse Jacobi multiplier.

Theorem 1.3. Consider the analytic system (1.1) with a2
1 + b2

1 �= 0 and a2
2 + b2

2 �= 0
where (a1, a2, b1, b2) is given in (1.3). System (1.1) has one, and only one, func-
tionally independent analytic first integral if, and only if, it has a formal inverse
Jacobi multiplier of the form

J = (x2 + y2)z
(
(b1 − a1)(x2 + y2) + (b2 − a2)z2

)
+ · · ·

with (a1, a2, b1, b2) satisfying one of the following two conditions:
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(a) a1 = a2 = 0 (or b1 = b2 = 0),

(b) b2(b1 − a1), a1(a2 − b2) and a1b2 − a2b1 are rational numbers different from
zero with the same sign.

This theorem is proved in § 3.
We note that the degree of the lowest-degree term of the analytic first integral

is two or 2(p + q + s) while the degree of the lowest-degree of the inverse Jacobi
multiplier is five.

2. Computation of necessary conditions of analytic partial integrability
of system (1.2)

In this section, we give a result that provides an efficient method for obtaining nec-
essary conditions of existence of one analytic first integral of system (1.2) (orbital
normal forms up to order 3 of systems whose origin is a symmetric Hopf-zero sin-
gularity). Here, we denote by Pj the vector space of the homogeneous polynomials
of degree j with three variables. First, we present the following result.

Proposition 2.1. The following statements are satisfied:

(i) Consider system (1.2) with a1 = a2 = 0 and b1b2 �= 0. Then, there exists a
scalar function I = x2 + y2 +

∑
k�2 I2k, with I2k ∈ P2k unique module (x2 +

y2)k, for all k, that verifies

F (I) =
∑
k�2

(
ηk(x2 + y2)k + νkz2k

)
. (2.1)

(ii) Consider system (1.2) with b1 = b2 = 0 and a1a2 �= 0. Then, there exists a
scalar function I = z2 +

∑
k�2 I2k with I2k ∈ P2k unique module z2k for all

k, that verifies

F (I) =
∑
k�2

(
ηk(x2 + y2)k + νkz2k

)
. (2.2)

(iii) Consider system (1.2) where b2(b1 − a1), a1(a2 − b2) and a1b2 − a2b1

are rational numbers different from zero with the same sign. Let p :=
b2(b1 − a1)m, q := a1(a2 − b2)m and s := (a1b2 − a2b1)m with m a ratio-
nal number such that p, q and s are natural numbers and gcd(p, q, s) =
1. Then, there exists a scalar function I = I2M +

∑
k>M I2k, with I2M =

(x2 + y2)pz2q((b1 − a1)(x2 + y2) + (b2 − a2)z2)s, (i.e. M = p + q + s) with
I2k unique if k �≡ 0(modM), and I2Mk unique module Ik

2M , for all k, that
verifies

F (I) =
∑

q(k−1) �≡0(mod M)

νkz2k +
∑

q(k−1)≡0(mod M)
p(k−1)�≡0(mod M)

ηk(x2 + y2)k (2.3)

+
∑

k−1≡0(mod M)

(
νkz2k + ηk(x2 + y2)k

)
.
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Proof. Taylor expansion of the associated vector field of system (1.2) is F =
F1 + F3 +

∑
j�2 F2j+1, with F1 = (−y, x, 0)T and F3 = (−y + x(a1(x2 + y2) +

a2z
2), x + y(a1(x2 + y2) + a2z

2), z(b1(x2 + y2) + b2z
2))T . If I = I2 +

∑
k�2 I2k

with I2k ∈ P2k, then F (I) has only even-degree homogeneous terms. The equation
F (I) = 0 to degree two is satisfied. The 2k-degree term of F (I), k � 2 is

F (I)2k = F1(I2k) + F3(I2k−2) + R2k

where R2k =
∑k−2

j=1 F2k−2j+1(I2j).
The procedure for obtaining the scalar function I will have the following scheme:

For each order k, we first compute I2k to get an expression more reduced of R2k.
Let us note that the term I2k, in general, is not unique. Later on, in the following
step, we will use the no-uniqueness of I2k−2 for obtaining the simplest expression
of F (I)2k.

The above scheme suggests us to consider the following linear operators. The
operator

�(3)2k : P2k −→ P2k

μ2k −→ F1(μ2k).
(2.4)

It is easy to prove that Ker(�(3)2k) = Span{(x2 + y2)k, (x2 + y2)k−1z2, · · · , z2k}.
Moreover, P2k = Range(�(3)2k)

⊕
Ker(�(3)2k). Therefore, for all k � 2, we can

choose Cor(�(3)2k) = Ker(�(3)2k), a complementary subspace to Range(�(3)2k).
We also consider the linear operator:

�̃
(3)
2k : Ker(�(3)2k−2) −→ Cor(�(3)2k)

μ2k−2 −→ F3(μ2k−2).
(2.5)

The transformed by �̃
(3)
2k of an element of the basis of Ker(�(3)2k−2), (x2 + y2)k0z2j0

with 0 � k0, j0 � k − 1, k0 + j0 = k − 1, is

�̃
(3)
2k ((x2 + y2)k0z2j0) = 2Aj0,k0(x

2 + y2)k0+1z2j0 + 2Bj0,k0(x
2 + y2)k0z2j0+2, (2.6)

where Aj0,k0 = b1j0 + a1k0 and Bj0,k0 = b2j0 + a2k0.

Therefore, the operator �̃
(3)
2k is well-defined.

We analyse each case:
Consider system (1.2) with a1 = a2 = 0 and b1b2 �= 0. The proof consists on the

computation, degree to degree, of the homogeneous terms of I = I2 + I4 + · · · , with
I2 = x2 + y2, satisfying (2.1).

The transformed by �̃
(3)
2k of an element of the basis of Ker(�(3)2k−2) is

�̃
(3)
2k ((x2 + y2)k0z2j0) = 2b1j0(x2 + y2)k0+1z2j0 + 2b2j0(x2 + y2)k0z2j0+2.

Therefore, Ker(�̃(3)2k ) = Span{(x2 + y2)k−1} and we can choose Cor(�̃(3)2k ) =
Span{(x2 + y2)k, z2k}.
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We write I2k−2 = Ia
2k−2 + Ib

2k−2 with Ib
2k−2 fixed in the previous step and Ia

2k−2 ∈
Ker(�(3)2k−2). So, for k � 2,

F (I)2k = �(3)2k(I2k) + �̃
(3)
2k (Ia

2k−2) + F3(Ib
2k−2) + R2k.

We now write R̃2k = F3(Ib
2k−2) + R2k = R̃

(r)
2k + R̃

(c)
2k with R̃

(r)
2k ∈ Range(�(3)2k) and

R̃
(c)
2k ∈ Cor(�(3)2k).
Reasoning as in the classical Normal Form Theory, we choose I2k such that

�(3)2k(I2k) = −R̃
(r)
2k and choose Ia

2k−2 in order to annihilate the part of R̃
(c)
2k belong-

ing to the range of the operator �̃
(3)
2k . So, we have that F (I)2k = ηk(x2 + y2)k +

νkz2k ∈ Cor(�̃(3)2k ), with ηk and νk real numbers.
Last on, we note that the solutions of the equation (2.1) are I2k + λk(x2 + y2)k,

where I2k is the unique solution chosen following the recursive procedure and λk

real, that is, I2k is unique module (x2 + y2)k.
Consider system (1.2) with b1 = b2 = 0 and a1a2 �= 0. In this case, we derive,

degree to degree, the homogeneous terms of I = I2 + I4 + · · · , with I2 = z2,
satisfying the equation (2.2).

It has that Ker(�̃(3)2k ) = Span{z2(k−1)} and we can choose Cor(�̃(3)2k ) = Span{(x2 +
y2)k, z2k}. Reasoning as before, we obtain the result.

For systems (1.2) where b2(b1 − a1), a1(a2 − b2) and a1b2 − a2b1 are ratio-
nal numbers different from zero with the same sign, we compute the homo-
geneous terms of I = I2M +

∑
k>M I2k, with I2M = (x2 + y2)pz2q((b1 − a1)(x2 +

y2) + (b2 − a2)z2)s, satisfying the equation (2.3). It has that �̃
(3)
2k ((x2 + y2)k0z2j0)

is given by (2.6) where

Aj0,k0 = b1j0 + a1k0 =
1

(b2 − a2)m
((p + s)j0 − qk0) ,

Bj0,k0 = b2j0 + a2k0 =
1

(a1 − b1)m
(−pj0 + (q + s)k0) ,

with 0 � k0, j0 � k − 1, k0 + j0 = k − 1. Note that (p + s)j0 − qk0 = Mj0 − q(k −
1), i.e. {Aj0,k0}, j0 = 0, . . . , k − 1, is an arithmetic progression whose difference is
M �= 0, and −pj0 + (q + s)k0 = Mk0 − p(k − 1), i.e. {Bj0,k0}, k0 = 0, . . . , k − 1,
is an arithmetic progression whose difference is M . Therefore, the numbers Aj0,k0

with 0 � k0, j0 � k − 1, k0 + j0 = k − 1, are different and the numbers Bj0,k0 also
are different. Fixed k, this fact allows us to distinguish the following cases:

If Aj0,k0 �= 0 for all 0 � k0, j0 � k − 1, with k0 + j0 = k − 1, (i.e. q(k − 1) �≡
0(mod M)), it has that Ker(�̃(3)2k ) = {0} and we can choose Cor(�̃(3)2k ) = Span{z2k}.

If there exists j1 with 0 < j1 < k − 1 such that Aj1,k1 = 0, that is Mj1 = q(k − 1),
and Bj0,k0 �= 0 for all 0 � k0, j0 � k − 1, it has that Ker(�̃(3)2k ) = {0} and we can
choose Cor(�̃(3)2k ) = Span{(x2 + y2)k}.

Otherwise, there exist (j1, k1), (j2, k2) such that Aj1,k1 = 0 and Bj2,k2 = 0.
We are going to prove that k − 1 is a multiple of M . Indeed, we have that
k − 1 = j1

q M = k1
p+sM = j2

q+sM = k2
p M, i.e. p(k−1)

M , = q(k−1)
M and s(k−1)

M are natu-

ral numbers. Thus, (n1p+n2q+n3s)(k−1)
M is an integer number, for all n1, n2, n3 ∈ Z.
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On the other hand, from Bezout identity, there exist m1, m2, m3 ∈ Z such that
m1p + m2q + m3s = 1 since gcd(p, q, s) = 1. Therefore, k−1

M is a natural number.
So, k − 1 is a multiple of M .

If we write k = 1 + k̂M, it has that Ker(�̃(3)2k ) = Span{I k̂
2M}. Moreover, j1 =

q
q+sj2. Thus j1 < j2 and we can choose as a complementary subspace of the range

of the operator �̃
(3)
2k to Cor(�̃(3)2k ) = Span{(x2 + y2)k, z2k}. Reasoning as before, we

obtain the result. �

The following result characterizes the analytic integrability of system (1.2). An
algorithm for obtaining necessary conditions of existence of a first integral can be
derived following the scheme of the proof of proposition 2.1.

Theorem 2.2. Consider system (1.2) with (a1, a2, b1, b2) satisfying one of the
following two conditions:

(a) a1 = a2 = 0 and b1b2 �= 0 (or b1 = b2 = 0 and a1a2 �= 0).

(b) b2(b1 − a1), a1(a2 − b2) and a1b2 − a2b1 are rational numbers different from
zero with the same sign.

Then, system (1.2) has one, and only one, functionally independent analytic first
integral if, and only if, the equations (2.1), (2.2) and (2.3), introduced in proposition
2.1, satisfy ηk = 0 and νk = 0 for all k.

Proof. Consider the function I introduced in proposition 2.1. The sufficient condi-
tion is trivial. If ηk = νk = 0, for all k, then the function I is a formal first integral
since F (I) = 0. From lemma 3.1, system (1.2) admits an analytic first integral.
Moreover, from Garćıa [14] it is not completely analytically integrable because it
is not linearizable. Therefore, system (1.2) has a unique functionally independent
first integral.

Let us prove the necessary condition. If system (1.2) has an analytic first inte-
gral then, from theorem 1.1, according to each case, it admits an analytic first
integral Ĩ of the form x2 + y2 + · · · , z2 + · · · or (x2 + y2)pz2q((b1 − a1)(x2 +
y2) + (b2 − a2)z2)s + · · · , having only even-degree homogeneous terms. Then, Ip =
Ĩ − ∑

k�2 βk Ĩk is also a formal first integral, i.e. F (Ip) = 0. To complete the proof
it is enough to choose βk such that Ip is the unique scalar function given by
proposition 2.1. Thus, by the uniqueness of Ip, ηk = νk = 0, for all k. �

We can also provide an integrability criterium based on the existence of an inverse
Jacobi multiplier of system (1.2). First, we give an auxiliary result.

Proposition 2.3. The following statements are satisfied:

(i) Consider system (1.2) with a1 = a2 = 0 and b1b2 �= 0. Then, there exists a
scalar function

J = J5 +
∑
k�3

J2k+1
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with J5 = (x2 + y2)z(b1(x2 + y2) + b2z
2) and J2k+1 ∈ P2k+1 unique module

(x2 + y2)k−1z(b1(x2 + y2) + b2z
2) for all k, that verifies

F (J) − Jdiv(F) =
∑
k�3

(
ηkz(x2 + y2)k + νkz2k+1

)
. (2.7)

(ii) Consider system (1.2) with b1 = b2 = 0 and a1a2 �= 0. Then, there exists a
scalar function

J = J5 +
∑
k�3

J2k+1

with J5 = (x2 + y2)z(a1(x2 + y2) + a2z
2) and J2k+1 ∈ P2k+1 unique module

(x2 + y2)z2k−3(a1(x2 + y2) + a2z
2) for all k, that verifies

F (J) − Jdiv(F) =
∑
k�3

(
ηkz(x2 + y2)k + νkz2k+1

)
. (2.8)

(iii) Consider system (1.2) where b2(b1 − a1), a1(a2 − b2) and a1b2 − a2b1 are
rational numbers different from zero with the same sign. Let p := b2(b1 −
a1)m, q := a1(a2 − b2)m and s := (a1b2 − a2b1)m where m is a rational such
that p, q and s are natural numbers with gcd(p, q, s) = 1. Then, there exists
a scalar function

J = J5 +
∑
k�3

J2k+1

with J5 = (x2 + y2)z((b1 − a1)(x2 + y2) + (b2 − a2)z2), J2k+1 unique if
k �≡ 3(modM) being M = p + q + s and J2kM+5 unique module (x2 +
y2)pk+1z2qk+1((b1 − a1)(x2 + y2) + (b2 − a2)z2)sk+1 for all k, that verifies

F (J) − Jdiv(F) =
∑

q(k−3) �≡0(mod M)

νkz2k+1 +
∑

q(k−3)≡0(mod M)
p(k−3)�≡0(mod M)

ηk(x2 + y2)kz

(2.9)

+
∑

k−3≡0(mod M)

(
νkz2k+1 + ηk(x2 + y2)kz

)
.

Proof. Taylor expansion of the associated vector field of system (1.2) is F =
F1 + F3 +

∑
k�2 F2k+1, with F1 = (−y, x, 0)T and F3 = (−y + x(a1(x2 + y2) +

a2z
2), x + y(a1(x2 + y2) + a2z

2), z(b1(x2 + y2) + b2z
2))T . Thus F (J) − Jdiv(F)

has only odd-degree homogeneous terms. The term of degree five of F (J) − Jdiv(F)
is zero. The 2k + 1-degree term of F (J) − Jdiv(F), k � 3 is

F1(J2k+1) + F3(J2k−1) − J2k−1div(F3) + R2k+1 (2.10)

where R2k+1 =
∑k−2

j=1 F2k−2j+1(J2j+1) − J2j+1div(F2k−2j+1).
Applying Euler Theorem for homogeneous function, it has that F3(J2k−1) −

J2k−1div(F3) = (F3 − 1
2k−1div(F3)(x, y, z)T )(J2k−1)
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The above expression suggests us to consider the following linear operators. The
operator

�(3)2k+1 : P2k+1 −→ P2k+1

μ2k+1 −→ F1(μ2k+1).
(2.11)

It is easy to prove that Ker(�(3)2k+1) = Span{(x2 + y2)kz, (x2 + y2)k−1z3, · · · ,
z2k+1}. Moreover, we can choose Cor(�(3)2k+1) = Ker(�(3)2k+1).

We also consider the linear operator:

�̃
(3)
2k+1 : Ker(�(3)2k−1) −→ Cor(�(3)2k+1)

μ2k−1 −→ (F3 − 1
2k − 1

div(F3)(x, y, z)T )(μ2k−1).
(2.12)

The transformed by �̃
(3)
2k+1 of an element of the basis of Ker(�(3)2k−1), (x2 +

y2)k0z2j0+1 with 0 � k0, j0 � k − 1, k0 + j0 = k − 1, is

�̃
(3)
2k ((x2 + y2)k0z2j0+1) = 2Aj0,k0(x

2 + y2)k0+1z2j0+1 + 2Bj0,k0(x
2 + y2)k0z2j0+3,

(2.13)

where Aj0,k0 = b1j0 + a1(k0 − 2) and Bj0,k0 = b2(j0 − 1) + a2(k0 − 1). Therefore,
the operator �̃

(3)
2k+1 is well-defined.

If we write J2k−1 = Ja
2k−1 + Jb

2k−1 with Jb
2k−1 chosen in the previous step and

Ja
2k−1 ∈ Ker(�(3)2k−1), the expression (2.10), for k � 3, becomes

�(3)2k+1(J2k+1) + �̃
(3)
2k+1(J

a
2k−1) + R̃2k+1,

where R̃2k+1 = F3(Jb
2k−1) − Jb

2k−1div(F3) + R2k+1.

We now write R̃2k+1 = R̃
(r)
2k+1 + R̃

(c)
2k+1 with R̃

(r)
2k+1 ∈ Range(�(3)2k+1) and

R̃
(c)
2k+1 ∈ Cor(�(3)2k+1). We now choose J2k+1 such that �(3)2k+1(J2k+1) = −R̃

(r)
2k+1

and choose Ja
2k−1 in order to annihilate the part of R̃

(c)
2k+1 belonging to the range

of the operator �̃
(3)
2k+1.

Last on, we note that the solution of the equation (2.1) is J2k+1 + Jb
2k+1, for any

Jb
2k+1 ∈ Ker(�̃(3)2k+2) real and J2k+1 is unique module Ker(�̃(3)2k+1).

We finish the proof, obtaining the expression of Ker(�̃(3)2k+1) and Cor(�̃(3)2k+1) for
each case:

Consider system (1.2) with a1 = a2 = 0 and b1b2 �= 0. It has that Aj0,k0 =
b1j0, Bj0,k0 = b2(j0 − 1). So, Ker(�̃(3)2k+1) = Span{(x2 + y2)k−2z(b1(x2 + y2) + b2z

2)}
and we can choose Cor(�̃(3)2k+1) = Span{(x2 + y2)kz, z2k+1}.

Consider system (1.2) with b1 = b2 = 0 and a1a2 �= 0. It has that Aj0,k0 =
a1(k0 − 2), Bj0,k0 = a2(k0 − 1). So, Ker(�̃(3)2k+1) = Span{(x2 + y2)z2(k−2)(a1(x2 +

y2) + a2z
2)} and we can choose Cor(�̃(3)2k+1) = Span{(x2 + y2)kz, z2k+1}.

For the systems (1.2) with b2(b1 − a1), a1(a2 − b2) and a1b2 − a2b1 are rational
numbers different from zero with the same sign, it has that �̃

(3)
2k ((x2 + y2)k0z2j0+1)is
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given by (2.13) where

Aj0,k0 =
1

(b2 − a2)m
((p + s)j0 − q(k0 − 2)) ,

Bj0,k0 =
1

(a1 − b1)m
(−p(j0 − 1) + (q + s)(k0 − 1)) .

Note that (p + s)j0 − q(k0 − 2) = Mj0 − q(k − 3) i.e. {Aj0,k0}, j0 = 0, . . . , k − 1,
is an arithmetic progression whose difference is M �= 0, and −p(j0 − 1) + (q +
s)(k0 − 1) = M(k0 − 1) − p(k − 3), i.e. {Bj0,k0}, k0 = 0, . . . , k − 1, is an arith-
metic progression whose difference is M .

Therefore, the numbers Aj0,k0 with 0 � k0, j0 � k − 1, k0 + j0 = k − 1, are dif-
ferent and the numbers Bj0,k0 also are different. Fixed k, this fact allows us to
distinguish the following cases:

If Aj0,k0 �= 0 for all 0 � k0, j0 � k − 1, with k0 + j0 = k − 1, then Ker(�̃(3)2k+1) =

{0} and we can choose Cor(�̃(3)2k+1) = Span{z2k+1}.
If there exists j1 with 0 < j1 < k − 1 such that Aj1,k1 = 0, that is Mj1 = q(k − 3),

and Bj0,k0 �= 0 for all 0 � k0, j0 � k − 1, it has that Ker(�̃(3)2k+1) = {0} and we can

choose Cor(�̃(3)2k+1) = Span{(x2 + y2)kz}.
Otherwise, there exist (j1, k1), (j2, k2) such that Aj1,k1 = 0 and Bj2,k2 = 0. Rea-

soning as in the proof of proposition 2.1, we have that k − 3 is a multiple of
M .

If we write k = 3 + k̂M, it is easy to check that Ker(�̃(3)2k+1) = Span{J5I
k̂
2M}

where I2M = (x2 + y2)pz2q((b1 − a1)(x2 + y2) + (b2 − a2)z2)s and we can choose
as a complementary subspace of the range of the operator �̃

(3)
2k+1 to Cor(�̃(3)2k+1) =

Span{(x2 + y2)kz, z2k+1}. �

The following result characterizes the analytic integrability of system (1.2). An
algorithm for obtaining of necessary conditions of existence of an inverse Jacobi
multiplier can be derived following the scheme of the proof of proposition 2.3.

Theorem 2.4. Consider system (1.2) with (a1, a2, b1, b2) satisfying one of the
following two conditions:

(a) a1 = a2 = 0 and b1b2 �= 0 (or b1 = b2 = 0 and a1a2 �= 0).

(b) b2(b1 − a1), a1(a2 − b2) and a1b2 − a2b1 are rational numbers different from
zero with the same sign.

Then, system (1.2) has one, and only one, functionally independent analytic first
integral if, and only if, the equations (2.7), (2.8) and (2.9), introduced in proposition
2.3, satisfy ηk = 0 and νk = 0 for all k.

Proof. Its proof is similar to the one of theorem 2.2. �
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3. Proofs of the main results

In the proof of theorem 1.1, we will use the following result that is a direct conse-
quence of [20, theorem A]. It states that the analysis of the integrability for analytic
systems can be reduced to the formal context.

Lemma 3.1. Consider the analytic system ẋ = F(x), x ∈ R
n and denote the formal

system ˙̃x = F̃(x̃), transformed of F by the change x = φ(x̃) where φ is a formal
diffeomorphism. Then, for each Ĩ a formal first integral of ˙̃x = F̃(x̃), there exists a
formal scalar function l̂ with l̂(0) = 0, l̂′(0) = 1, such that l̂ ◦ Ĩ ◦ φ−1 is an analytic
first integral of ẋ = F(x).

Proof of theorem 1.1. As, by hypothesis (a1, a2, b1, b2) is non-zero, the system (1.1)
is not orbitally equivalent to (−y, x, 0)T . From Garćıa [14], the system (1.1) is
not completely analytically integrable, it has at most one functionally independent
analytic first integral.

We prove the sufficient condition. We see that system (1.4), satisfying one of
the series of conditions (a) or (b), it has a polynomial first integral. In fact, we
distinguish the cases separately:

(a) System (1.4) with a1 = a2 = 0, has the first integral x2 + y2. And system
(1.4) with b1 = b2 = 0, has the first integral z.

(b) Assume that there is a rational number m such that p := b2(b1 − a1)m, q :=
a1(a2 − b2)m and s := (a1b2 − a2b1)m are natural numbers. The polynomial
(x2 + y2)pz2q((b1 − a1)(x2 + y2) + (b2 − a2)z2)s is a first integral of system
(1.4).

Assume that system (1.1) is orbitally equivalent to system (1.4), i.e. there exists
a change of variables φ and a reparameterization of the time-variable such that
the first one becomes the second one. Let Ĩ a polynomial first integral of system
(1.4). Undoing the change of variables, system (1.1) is formally integrable and by
applying lemma 3.1, there exists a scalar function l̂ such that I = l̂ ◦ Ĩ ◦ φ−1 with
I(0) = 0 is an analytic first integral of the system (1.1).

We see the necessary condition. We assume that the analytic system (1.1) has
one functionally independent analytic first integral and (a1, a2, b1, b2) is non-zero,
performing a formal change of variables and a re-parameterization of the time-
variable, system (1.1) can be transformed into

ẋ = −y + xf(x2 + y2, z2),

ẏ = x + yf(x2 + y2, z2), (3.1)

ż = zg(x2 + y2, z2),

where f, g are formal functions with f(x2 + y2, z2) = a1(x2 + y2) + a2z
2 + h.o.t.

and g(x2 + y2, z2) = b1(x2 + y2) + b2z
2 + h.o.t., see [1, 17].

This system is a Poincaré–Dulac normal form, by [22] a formal first integral of
system (3.5) is a first integral of its linear part, i.e. I(x, y, z) = I(x2 + y2, z2).

https://doi.org/10.1017/prm.2022.19 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.19


844 A. Algaba, C. Garćıa and M. Reyes

By using cylindrical coordinates, the system is

ṙ = rf(r2, z2), ż = zg(r2, z2), dotθ = 1. (3.2)

Doing the change R = r2, Z = z2, Θ = 2θ and τ = 2t, system (3.2) is transformed
into

(R′, Z ′,Θ′)T :=
(

dR

dτ
,
dZ

dτ
,
dΘ
dτ

)T

= (Rf(R,Z), Zg(R,Z), 1)T (3.3)

and if the system (3.3) admits some first integral, then it is of the form I = I(R, Z),
i.e. it is invariant under rotations.

Removing the azimuthal component, we obtain the planar system
(

R′

Z ′

)
=

(
R(a1R + a2Z)
Z(b1R + b2Z)

)
+

(
Rf̂(R,Z)
Zĝ(R,Z)

)
, (3.4)

with f̂ , ĝ having terms of degree greater than or equals to two in R, Z, that is
R = 0 and Z = 0 invariant curves of the system.

Hence, the analysis of the integrability problem for system (3.3) (or for system
(1.2)) is equivalent to the corresponding one for planar system (3.4).

In summary, the system (1.2) with a2
1 + b2

1 �= 0 and a2
2 + b2

2 �= 0, admits some for-
mal first integral if, and only if, system (3.4) is formally integrable. The integrability
problem of these systems is studied in § 4.

From proposition 4.1, if system (3.4) is formally integrable, then one of the
following conditions is satisfied:

(a) a1 = a2 = 0 (or b1 = b2 = 0).
We study the first case a1 = a2 = 0 and b1b2 �= 0 (the other case is analogous
changing R by Z).
From theorem 4.2, if system (3.4) is formally integrable, then there exist a
change of variables and a reparameterization of the time such that system
(3.4) is transformed into

R′ = 0, Z ′ = Z(b1R + b2Z),

i.e., the three-dimensional system (3.3) is transformed into a system of the
form

(R′, Z ′,Θ′)T := (0, Z(b1R + b2Z), 1 + Ψ(R,Z))T (3.5)

where Ψ is a formal function and Ψ(0, 0) = 0.
Undoing the change, (x, y, z, t) = (

√
Rcos(Θ/2),

√
Rsin(Θ/2),

√
Z, τ/2), we

obtain system (1.4). These changes transform the first integral R of (3.3) into
a first integral of system (1.1) which has the expression I = I(x2 + y2, z2) =
x2 + y2 + · · ·

(b) Assume that p := b2(b1 − a1)m, q := a1(a2 − b2)m and s := (a1b2 − a2b1)m
are natural numbers and gcd(p, q, s) = 1. By theorem 4.3, if system (3.4) is
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formally integrable at the origin then it is orbitally equivalent to

R′ = R(a1R + a2Z), Z ′ = Z(b1R + b2Z),

or equivalently, system (1.1) is is orbitally equivalent to system (1.4). More-
over, in such a case, it has an analytic first integral of the form (x2 +
y2)pz2q((b1 − a1)(x2 + y2) + (b2 − a2)z2)s + · · ·

�

We give the following result we will use in the proof of theorem 1.3. It states
the well-known relationship among inverse Jacobi multipliers of formally orbital
equivalent vector fields.

Lemma 3.2. Let Φ be a diffeomorphism and η a function on U ⊂ Cn such that
detDΦ has no zero on U and η(0) �= 0. If J ∈ C[[x1, . . . , xn]] is an inverse
Jacobi multiplier of ẋ = F(x), then η(y)(det(DΦ(y))−1J(Φ(y)) is an inverse Jacobi
multiplier of ẏ = Φ∗(ηF)(y) := DΦ(y)−1η(y)F(Φ(y)).

Proof of theorem 1.3. We assume that a2
1 + b2

1 �= 0 and a2
2 + b2

2 �= 0. From Garćıa
[14], the system (1.1) is not completely analytically integrable, it has at most one
analytic first integral.

We see the necessary condition. We assume that system (1.1) has one, and only
one, functionally independent analytic first integral. From theorem 1.1, it is orbitally
equivalent to system (1.4) satisfying one of the series of conditions (a) or (b). It
is easy to check that system (1.4) has the polynomial inverse Jacobi multiplier
J5 = (x2 + y2)z((b1 − a1)(x2 + y2) + (b2 − a2)z2). From lemma 3.2, system (1.1)
has an inverse Jacobi multiplier of the form J = J5 + · · ·

We prove the sufficient condition. We assume that the analytic system (1.1) has
an inverse Jacobi multiplier of the form J = J5 + · · · and (a1, a2, b1, b2) satisfies
one of the series of conditions (a) or (b).

Reasoning as in proof of theorem 1.1 and applying lemma 3.2, system (1.1) has
an inverse Jacobi multiplier of the form J = J5 + · · · if system (3.4) has an inverse
integrating factor of the form Ĵ = Ĵ3 + · · · with Ĵ3 = RZ((b1 − a1)R + (b2 − a2)Z).

We notice that Ĵ3 = RZ(b1R + b2Z) − RZ(a1R + a2Z). Thus, applying theorem
4.4, we have the result. �

4. Auxiliary results: analytic integrability of the systems (3.4)

The following result provides necessary conditions of formal integrability of system
(3.4).

Proposition 4.1. Assume that system (3.4) with a2
1 + b2

1 �= 0 and a2
2 + b2

2 �= 0, has
a formal first integral in a neighbourhood of the origin. Then, one of the following
conditions is satisfied:

(a) a1 = a2 = 0 (or b1 = b2 = 0).

(b) b2(b1 − a1), a1(a2 − b2) and a1b2 − a2b1 are rational numbers different from
zero with the same sign.
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Proof. Let I = IM + h.o.t. a formal first integral of system (3.4) and let F = F2 +
· · · be the associated vector field to system (3.4). Equation F (I) = 0 for degree M +
1 is F2(IM ) = 0, i.e. F2(R, Z) = (R(a1R + a2Z), Z(b1R + b2Z))T is polynomially
integrable and IM is a first integral of F2. So, if F is formally integrable then F2 is
polynomially integrable.

We study the polynomial integrability of F2 (necessary condition of formal
integrability). We distinguish the following cases separately:

• Assume a1 = a2 = 0 (or b1 = b2 = 0). In such a case, I = R (or I = Z) is a
polynomial first integral of F2.

• Assume a1 = b1 �= 0. If a2 �= b2, the origin of F2 is an isolated singular point
and (R, Z)T ∧ F2 has multiple factors, thus F2 is not polynomially integrable,
by [6, theorem 3.1].

Otherwise, a1 = b1 �= 0 and a2 = b2 �= 0, the vector field F2 is of the form
(a1R + a2Z)(R, Z)T which is not polynomially integrable.

• Assume a2 = b2 �= 0. In this case, the result follows by changing R by Z.

• Assume a1 �= b1 and a2 �= b2. From [3, proposition 1.7], as the factors of
(R, Z)T ∧ F2 are R, Z and (b1 − a1)R + (b2 − a2)Z, if it exists a polynomial
first integral of F2, then it has the expression IM = RpZq((b1 − a1)R + (b2 −
a2)Z)s with p, q, s natural numbers. By imposing F2(IM ) = 0, we have that

a1(p + s) + b1q = 0, a2p + b2(q + s) = 0.

Thus, a1, a2, b1 and b2 are different from zero. The natural exponents of the
invariant curves in the expression of the first integral IM are of the form

p = b2(b1 − a1)m, q = a1(a2 − b2)m, s = (a1b2 − a2b1)m

with m a rational number. So, IM is polynomial if b2(b1 − a1), a1(a2 − b2) and
a1b2 − a2b1 are rational numbers with same sign.

�

We now provide necessary and sufficient conditions of formal integrability of the
system (3.4) with a2

1 + b2
1 �= 0 and a2

2 + b2
2 �= 0.

By proposition 4.1, we only study the system (3.4) satisfying the series of con-
ditions (a) or (b). For the formal integrability of the systems 3.4 case (a), we have
the following result.

Theorem 4.2. System (3.4) with a1 = a2 = 0 and b1b2 �= 0 (or, b1 = b2 = 0 and
a1a2 �= 0) is formally integrable if, and only if, it is formally orbitally equivalent to
system (Ṙ, Ż)T = (0, Z(b1R + b2Z))T (or, (Ṙ, Ż)T = (R(a1R + a2Z), 0)T ), i.e. it
is orbital equivalent to its lowest-degree homogeneous component.

Proof. We consider the system 3.4 with a1 = a2 = 0 and b1b2 �= 0. The other case
is analogous, it is enough to change R by Z.
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The sufficient condition is trivial because R is a polynomial first integral of system
(Ṙ, Ż)T = (0, Z(b1R + b2Z))T . Undoing the change of variables system (3.4) is
formally integrable.

We see now the necessary condition. Assume that system (3.4) with a1 = a2 = 0
and b1, b2 �= 0, is formally integrable. By theorem A.2, system (3.4) is orbitally
equivalent to G̃ = G2 + · · · given in (A.3) which is also formally integrable. We
assume that there exists k0 := min{k ∈ N, k � 2 : α2

k + β2
k �= 0}. We study two

cases separately:

• If αk

b1
= βk

b2
= λ �= 0, for all k � k0 then G̃ = (b1R + b2Z)Ḡ with Ḡ = (λRk0 +

· · · ), Z(1 + λRk0−1 + · · · )T . The origin of Ḡ is an isolated saddle node point
(the linear part evaluated at origin only has one eigenvalue zero). From [18, 19],
Ḡ is not analytically integrable. Therefore, G̃ is not analytically integrable.

• Otherwise, If αk

b1
�= βk

b2
for some k � k0 then b1R + b2Z = 0 is an invariant curve

of G̃ which pass by the origin and whose cofactor is b2Z +
∑

k�k0
(αkRk +

βkRk−1Z). Therefore b1R + b2Z is a factor of any analytic first integral at the
origin I of G̃. On the other hand, if I = IM + · · · is a first integral of G̃ then
IM is a polynomial first integral of G2 first homogeneous component of G̃. This
fact is a contradiction since IM = R.

�

For the case (b), we have a similar result.

Theorem 4.3. Consider system (3.4) such that b2(b1 − a1), a1(a2 − b2) and
a1b2 − a2b1 are rational numbers different from zero with the same sign. This sys-
tem is formally integrable if, and only if, it is formally orbital equivalent to system
(Ṙ, Ż)T = (R(a1R + a2Z), Z(b1R + b2Z))T , (that is it is orbital equivalent to its
lowest-degree homogeneous component).

Proof. Let m be an integer number such that p = b2(b1 − a1)m, q = a1(a2 − b2)m
and s = (a1b2 − a2b1)m are natural numbers with gcd(p, q, s) = 1.

Performing the scaled-change (R, Z, τ) → (−pa1R, −qb2Z, pqτ), system (3.4)
turns into

(R′, Z ′)T = (R(−qR + (q + s)Z + h.o.t.), Z((p + s)R − pZ + h.o.t.))T . (4.1)

The formal integrability of system (4.1) has been studied in [3]. By [3, theorem 2.11],
if system (4.1) is formally integrable at the origin then it is linearizable (orbitally
equivalent to its leading homogeneous term). �

The following result characterizes the formal integrability of system (3.4) through
the existence of a formal inverse integrating factor of this system.

Theorem 4.4. Consider system (3.4) with a2
1 + b2

1 �= 0 or a2
2 + b2

2 �= 0, satisfying
one of the following series of conditions:

(a) a1 = a2 = 0 (or b1 = b2 = 0).
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(b) b2(b1 − a1), a1(a2 − b2) and a1b2 − a2b1 are rational numbers different from
zero with the same sign.
Then, system (3.4) is formally integrable if, and only if, it has a formal inverse
integrating factor of the form V = RZ((b1 − a1)R + (b2 − a2)Z) + · · · .

Proof. System (3.4) is of the form (R′, Z ′)T = (P2 + · · · , Q2 + · · · )T , a perturba-
tion of a quadratic system, where P2 = R(a1R + a2Z), Q2 = Z(b1R + b2Z).

The polynomial xQ2 − yP2 = RZ[(b1 − a1)R + (b2 − a2)Z] under the series of
condition (a) or (b) has only simple factors on C[x, y]. From Algaba et al. [4,
theorem 6], system (3.4) has a formal inverse integrating factor (xQ2 − yP2) + h.o.t.
if, and only if, it is orbitally equivalent to (P2, Q2)T . From theorems 4.2 and 4.3,
the result follows. �

5. Applications

We consider the family of differential systems

ẋ = −y + x(−x2 − y2 + 3z2 + A11(x2 + y2)z2 + A02z
4),

ẏ = x + y(−x2 − y2 + 3z2 + a11(x2 + y2)z2 + a02z
4), (5.1)

ż = z(3x2 + 3y2 − z2 + b11(x2 + y2)z2 + b02z
4),

with A11, A02, a11, a02, b11, b02 real numbers. The following result gives the
systems of the family with one functionally independent analytic first integral.

Theorem 5.1. System (5.1) has one, and only one, independent analytic first
integral if, and only if, it satisfies at least one of the following conditions:

(i) A02 − a02 = A11 − a11 = b11 + 3b02 = A02 + 2b02 + a11 = 0,

(ii) A02 − a02 = A11 − a11 = b11 + a11 = A02 + 5b02 = 0.

Proof. System (5.1) is a perturbation of system (1.2) with a1 = −1, a2 = 3, b1 =
3, b2 = −1. Therefore, it has at most one functionally independent first integral.
We prove the necessary condition. For that, we apply Theorem 2.4. System (5.1)
satisfies condition (b) of theorem 2.4 since b2(b1 − a1) = −4, a1(a2 − b2) = −4 and
a1b2 − a2b1 = −8 are rational numbers different from zero with the same sign.

We impose the existence of a formal function J = J5 + · · · with J5 = (x2 +
y2)z(x2 + y2 − z2) introduced in proposition 2.3 satisfying (2.9) with p = q = 1, s =
2 that is M = 4. Equation (2.9) to degree 19 is

F (J) − div(F)J = ν3z
7 + ν4z

9 + ν5z
11

+ ν6z
13 + ν7z

15 + η7z(x2 + y2)7 + ν8z
17 + ν9z

19.

Following the procedure given in proof of proposition 2.3, we compute the
coefficients of F (J) − div(F)J and the proof consists on the vanishing of its terms:

The coefficient ν3 is null and ν4 = A02 + 10b02 + A11 + a02 + a11 + 2b11. Solv-
ing the equation ν4 = 0, we have A02 = −10b02 − A11 − a02 − a11 − 2b11. For order
11, we have ν5 = (b11 + 3b02)(2b11 + A11 + a11). Imposing ν5 = 0, we distinguish
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two cases: Case 1. b11 = −3b02. In this case, ν6 = η7 = 0 and ν7 = (A11 + a02 +
2b02)(A11 + 2a02 + a11 + 4b02).

Case 1.1. A11 = −a02 − 2b02. To order 17, we have ν8 = (a02 + a11 + 2b02)2(a02 −
a11 + 4b02). If a02 = −a11 − 2b02, we arrive to case (i). Otherwise, a02 = a11 − 4b02,
we have ν9 = (a11 − b02)2. Therefore a11 = b02, i.e. case (i).

Case 1.2. A11 = −2a02 − a11 − 4b02, we have ν8 = (a02 + a11 + 2b02)2(a02 +
3b02). If a02 = −a11 − 2b02, we arrive to case (i). Otherwise, a02 = −3b02, we have
ν9 = (a11 − b02)2. Imposing ν9 = 0, we have a11 = b02, i.e. case (i).

Case 2. b11 = − 1
2 (A11 + a11). In this case, ν6 = η7 = 0 and ν7 = (a02 +

5b02)(2a02 + A11 − a11 + 10b02). Imposing the vanishing of ν7, we have:
Case 2.1. a02 = −5b02. To order 17, ν8 = (A11 − a11)2(A11 + a11 + 6b02). If A11 =

a11, we are in the case (ii). Otherwise, A11 = −a11 − 6b02, we have ν9 = (5b2
02 +

96)(3b02 + a11)2. Thus, ν9 = 0 if a11 = −3b02, i.e. case (ii).
Case 2.2. a02 = 1

2 (−A11 + a11 − 10b02). To order 17, we have ν8 = (A11 −
a11)2(3A11 + 3a11 − 32b02). For A11 = a11, we have the case (ii). Otherwise, A11 =
−a11 + 32

3 b02, we have ν9 = (1152 + 115b2
02)(16b02 − 3a11)2. So, a11 = 16

3 b02, i.e.
case (ii).

We prove the sufficient condition. It is easy to check that (x2 + y2)z(x2 + y2 −
z2)(1 − b02z

2) is an inverse Jacobi multiplier of system (5.1) case (i) and (x2 +
y2)z(3x2 + 3y2 − 3z2 − a11(x2 + y2)z2 + 3b02z

4) is an inverse Jacobi multiplier of
system (5.1) case (ii). Thus, both are of the form J5 + · · · . The result follows
applying theorem 1.3. �

We consider the family of differential systems

ẋ = −y + A20(x2 + y2)2x + A11(x2 + y2)z2y,

ẏ = x + a11(x2 + y2)z2y + a02z
5, (5.2)

ż = z(x2 + y2 − z2 + b11(x2 + y2)zx + b02z
4),

with A20, A11, a11, a02, b11, b02 real numbers. The following result gives the
systems of the family with one functionally independent analytic first integral.

Theorem 5.2. System (5.2) has one, and only one, independent analytic first
integral if, and only if, A20 = A11 = a11 = a02 = 0.

Proof. System (5.2) belongs to the family of systems (1.2) with a1 = a2 = 0
and b1 = 1, b2 = −1. Therefore, it has at most one functionally independent first
integral.

We prove the necessary condition. For that, we apply theorem 2.2. We impose
the existence of a formal function I = (x2 + y2) + · · · introduced in proposition 2.1
satisfying (2.1). Following the procedure given in proof of proposition 2.1, we
compute the coefficients of F (I) and we obtain η = 0, ν2 = 0 and to degree 6,
it has that η3 = A20 and ν3 = a11. Thus, we impose that A20 = a11 = 0. In this
case, the equation F (I) = 0 to order 8 is zero and to order 10 and 12, we have
η5 = 0, ν5 = 5a02b11 and η6 = 0, ν6 = −10a02b02b11 − 10a2

02 − 1
4A2

11.
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On the one hand, if a02 = 0, it has that ν6 is zero if A11 is zero. On the other
hand, if b11 = 0, then ν6 = −10a2

02 − 1
4A2

11. So, if ν6 = 0, we have that A20 = A11 =
a11 = a02 = 0.

The sufficiency is trivial since x2 + y2 is a first integral of system (5.2) with
A20 = A11 = a11 = a02 = 0. �
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9 A. Buică, I. A. Garćıa and S. Maza. Multiple Hopf bifurcation in R
3 and inverse Jacobi

multipliers. J. Differ. Equ. 256 (2014), 310–325.
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16 J. Giné and D. Peralta-Salas. Existence of inverse integrating factors and Lie symmetries
for degenerate planar centers. J. Diff. Equ. 252 (2012), 344–357.

17 J. Guckenheimer and P. J. Holmes. Nonlinear oscillations, and bifurcations of vector fields,
dynamical systems (Springer-Verlag, 1983).

18 W. Li, J. Llibre and X. Zhang. Local first integrals of differential systems and diffeomor-
phisms. Z. Angew. Math. Phys. 54 (2003), 235–255.

19 W. Li, J. Llibre and X. Zhang. Planar analytic vector fields with generalized rational first
integrals. Bull. Sci. Math. 125 (2001), 341–361.

https://doi.org/10.1017/prm.2022.19 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.19


Analytic partial-integrability of a symmetric Hopf-zero degeneracy 851

20 J. F. Mattei and R. Moussu. Holonomie et intégrales premiéres. Ann. Sci. Ecole Normale
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Appendix A. An orbital normal form for systems (3.4) with
a1 = a2 = 0.

In this section, we give an orbitally equivalent normal form for a general two-
dimensional vector field F = Fn + · · · , where Fn, the leading term of F, is a
homogeneous polynomial of degree n.

For that, we need to define the following linear operators (in this section,
Pj denotes the vector space of homogeneous polynomials of degree j with two
variables):

�k−n+1 : Pk−n+1 −→ Pk

μk−n+1 −→ Fn(μk−n+1),
(A.1)

(Lie operator of the leading term of F) and
�cn+k : Δk+1 −→ Δn+k defined by

�cn+k (g) = ProjΔn+k

(
Fn − 1

n+kdiv(Fn)(x, y)T
)

(g), (A.2)

where the subspaces Δk+1 and Δn+k satisfy that Pk+1 = Δk+1

⊕
hPk−n and

Pn+k = Δn+k

⊕
hPk−1, respectively (such subspaces must be considered as

fixed), being h = 1
n+1 (x, y)T ∧ Fn a homogeneous polynomial non-zero of degree

n + 1.
Next result is [5, theorem A.32]. It provides an expression of an orbital normal

form for the vector fields F with leading term non-conservative.

Proposition A.1. Let F = Fn + h.o.t. with Fn homogeneous polynomial vector
field of degree n. If Ker

(
�cn+k

)
= {0} for all k ∈ N then F is orbitally equivalent to

G = Fn +
∑
j�n

Gj+1, with Gj+1 =

⎛
⎜⎜⎝
− ∂

∂y
gj+2 + xηj

∂

∂x
gj+2 + yηj

⎞
⎟⎟⎠

where gj+2 ∈ Cor
(
�c
j+2

)
(a complementary subspace to Range(�c

j+2) ) and ηj ∈
Cor (�j) (a complementary subspace to Range(�j)).

We apply proposition A.1 for obtaining an orbital normal form of system (3.4)
with a1 = a2 = 0 and b1, b2 �= 0.
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Theorem A.2. A formal orbital normal form for the system (3.4) with a1 = a2 = 0
and b1b2 �= 0 is

(
R′

Z ′

)
=

(
0

Z(b1R + b2Z)

)
+

∑
k�2

(
αkRk + βkRk−1Z

)(
R
Z

)
. (A.3)

where αk, βk ∈ R.

Proof. We first prove that the hypothesis of proposition A.1 are satisfied, i.e.
Ker

(
�ck+2

)
= {0} for all k ∈ N.

In this case, F2 = (0, Z(b1R + b2Z))T . Therefore, h = 1
3 (b1R + b2Z)RZ and

div(F2) = b1R + 2b2Z.

We denote F(k)
2 = F2 − 1

k+2div(F2)(R, Z)T = 1
k+2

(
−R(b1R+2b2Z)

Z((k+1)b1R+kb2Z)

)
. Consider

the following bases for departure and arrival spaces of the operator �c
k+2:

Δk+1 = Span{Rk+1, RkZ,Zk+1}, Δk+2 = Span{Rk+2, Rk+1Z,Zk+2}.
Taking into account that 3RiZjh = b1R

i+2Zj+1 + b2R
i+1Zj+2, we have that

F
(k)
2 (Rk+1) = −k + 1

k + 2
b1R

k+2 − 2
k + 1
k + 2

b2R
k+1Z,

F
(k)
2 (RkZ) =

k + 1
k + 2

b1R
k+1Z − 3k

k + 2
Rk−1h,

F
(k)
2 (Zk+1) = (−1)k+1 (k + 1)2

k + 2
bk+1
1

bk
2

Rk+1Z +
k(k + 1)
k + 2

b2Z
k+2 + g(R,Z)h

The matrix associated to the operator �
(c)
k+2 respect to the basis given is

⎛
⎜⎜⎜⎜⎜⎜⎝

−k + 1
k + 2

b1 0 0−

2
k + 1
k + 2

b2
k + 1
k + 2

b1 A

0 0
k(k + 1)
k + 2

b2

⎞
⎟⎟⎟⎟⎟⎟⎠

with A = (−1)k+1 (k+1)2

k+2
bk+1
1
bk
2

. The determinant of the matrix is not zero, therefore

Ker(�(c)k+2) = {0}. Moreover, Cor(�(c)k+2) = {0} since �
(c)
k+2 is full range.

On the other hand, the linear operator �k+1, k � 1, is �k+1(p) = Z(b1R +
b2Z) ∂

∂Z
p, with p ∈ Pk. So, the range of �k+1 has dimension k and thus the dimen-

sion of any complementary subspace of Range(�k+1) is 2. To finish the proof
of our result, it is enough to check that the subspace Span

{
Rk+1, RkZ

}
is a

complementary subspace of Range(�k+1). �
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