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Abstract

We prove that the modified Benjamin—-Ono—Burgers equation is globally well-posed in H® for s > 0.
Moreover, we show that the solution of the modified Benjamin—Ono—Burgers equation converges to that
of the modified Benjamin—Ono equation in the natural space C([0, T']; H*), s > 1/2, as the dissipative
coefficient € goes to zero, provided that the L? norm of the initial data is sufficiently small.
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1. Introduction

The purpose of this paper is to study the global well-posedness and the inviscid limit
behaviour of the Cauchy problem for the modified Benjamin—Ono—Burgers (mBOB)

equation
U + Hityy — €ty = uuy,
(1.1
u(x, 0) =¢(x),
where u(x,t) :R x R— R, 0 < € <1 and H is the Hilbert transform:
1 +00
Hu(x) = — p.V./ “ gy (12)
b1 oo X —Y

When the nonlinearity in (1.1) is —u?u,, it can also be treated by our method.
Formally, letting € =0, then (1.1) becomes the modified Benjamin—Ono (mBO)
equation:
ur + Huey = uluy,  u(x,0)=¢x). (1.3)

Thus it is natural to conjecture that the solution of (1.1) converges to that of (1.3) as €
tends to zero in the natural space C ([0, T'] : H*). The same problem for the Benjamin—
Ono-Burgers equation (with quadratic nonlinearity uu, in (1.1)) was suggested by
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Tao [13], who proved that the Benjamin—Ono equation is globally well-posed in
H'(R). The inviscid limit problems are very interesting from the physical viewpoint
and have been studied by many authors [5, 15, 16]. The limit in the low regularity
space was first studied by Guo and Wang [5] where they used the I'-type X** structure.

In [2], Guo showed that (1.3) is globally well-posed for ¢ € H*,s > 1/2, and ||| ; 2
sufficiently small. In this paper, we show that (1.1) is globally well-posed for ¢ € H®,
s > 0. In [14], Vento considered the Cauchy problem for dissipative Benjamin—Ono
equations

u; + Huyy + |D|%u + uu, =0, t>0,xeR,

u(x, 0) = ¢ (x),

where |D|* is the Fourier multiplier with symbol |£]|*, 0 <o <2. When 0 <« < 1,
the author gave the ill-posedness in H*(R), s € R, in the sense that the flow map
uo — u (if it exists) fails to be C2 at the origin. For 1 < o < 2, the author proved the
global well-posedness in H*(R), s > —« /4. Comparing to [14], we mainly consider
the situation o = 2 and with nonlinearity —u2u,. In [3], Guo considered the Cauchy
problem for the dispersion generalized Benjamin—Ono equation

(1.4)

du + D" u + uu, =0, (x,1t) € R?,
u(x, 0) =up(x),

(1.5)

where 0 < o < 1, and showed that (1.5) is locally well-posed in H® fors > 1 — «. The
o = 0 result of [3] follows from our estimates.

The main ingredients of our ideas are the methods in [5] combined with the new
observation in [2] for the modified Benjamin—Ono equation. However, there are some
new difficulties, since the resolution spaces are different from the one used in [5].
Fortunately, we can overcome these difficulties by using the ideas from [5, 6, 10] and
some new techniques.

We now give some notation. Let ng: R — [0, 1] denote an even smooth function
supported in [—8/5, 8/5] and equal to 1 in [—5/4,5/4]. For k € Z, let xi(§) =
n0(€/2%) — no(£/271), where xi is supported in {£ : || € [(5/8) - 2%, (8/5) - 2¥]}

and
ko

Xlk1,ka]l = Z xr for any ki <kyelZ.
=k,

For simplicity of notation, let ny = xx if k > 1l and ny =0if k < —1. For k; <k € Z,

let
ky ky
Nk ko] = Z N and <, = Z k-
k=ky

k=—o00

For k € 7, let P, denote the operators on L?(R) defined by

Peu(€) = xx () (€).
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By a slight abuse of notation, we also define the operators P; on L?(R x R) by
formulas F(Pru) (&, ) = xx (§) F(u)(, 7). Forl € Z, let

P51=ZP](, PEI=ZP]<.

k<l k>1

For& €R, let w(§) = —|&|€. Fork € Z, let I = {£ : |&] € [2F1, 28+ 1)), For k € Z4,
let I =[—2,2]ifk=0and Iy = I ifk > 1. Fork € Z, and j > 0, let

Dyj={¢ 1) eRXR:E €l T —w(E) el)).
We introduce the space used in [2, 6]. First we define the X**-type Banach spaces
Xx(R x R) for k € Z as follows:
Xi = {f € L>(R?) : f is supported in Ir x Rand

00 (1.6)
Il =D 27 jlim(r —w(®) - & Dl 2 < oo},

j=0

where .
B j = 142202005 (1.7)

The coefficients By, ; are chosen to guarantee the trilinear estimates so that Lemma 4.1
holds. For k > 100, we also define the Banach spaces Y; = Y (Rz):

k—1
Y, = {f € LZ(RZ) : f is supported in U Dy, j and
j=0 (1.8)

1 fllye =2 F (@ — @) + D FE D2 < oo}.

Then for k € Z, we define
Zy =X if k<99 and Zj:= Xp + Y if k > 100. (1.9)

The spaces Z; are our basic Banach spaces.
For s > 0, we define the Banach spaces F* = F*(R x R),

o0
o= {u eS®xR): ullk = 3 22 I F W), < °°}¥ (1.10)
k=0
and N* = N*(R x R),
NS = {u eSRxR): uls

0o (1.11)
=Y 22 Im@)(r — @) + ) Fw)ly, < oo}.
k=0
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For T > 0, we define the time-localized spaces F*(T) and N*(T') by

lull Fsry = inf {||w]lps, w(t) =u(t) on [0, T1},
weFs

. (1.12)
lellvs ey = inf {llwllys, wiz) = u() on [0, T]}.

For ¢ € L?(R), we denote by W, the semigroup associated with the mBO equation

Fe(Wo()p) (&) =explio(§)11p(§), VieR, ¢S

For 0 <€ <1, we denote by W, the semigroup associated with the free evolution
of (1.1),

Fu(We()$) () = expl—e£’t +ig|E|11p(E), Vi=0,4€8.

We extend W to a linear operator defined on the whole real axis by setting
Fu(We()$)(€) = expl—e&?|t| +iE[E11p(5), VieR, ¢S

To study the low regularity of (1.1), we introduce a variant version of Bourgain’s space
with dissipation

lull oz = G (x = (&) + €12 (E) Ul 282 (1.13)

where (-) = (1 + | - |*)!/2. The time-localized spaces is similar to (1.12). This type of
space was introduced by Molinet and Ribaud in [9]. The standard X”* space used by
Bourgain [1] and Kenig et al. [7] is defined by

el xo.s = (T — @ (&) (E)ll 2 g2y

The space X'/>%2 turns out to be very useful for capturing both dispersive and
dissipative effects. For global well-posedness, we follow the methods of Molinet
and Ribaud [9], by using X”*-type space combined with the dissipative structures.
Similar results were obtained by Vento [14] for the Benjamin—Ono-Burgers equation
(with nonlinearity uuy in (1.1)).

THEOREM 1.1. Assume that 0 <€ <1, s >0and ¢ € H*(R). For any T > 0, there
exists a unique solution u. of (1.1) in

Zr =C([0, T1, H) N X}/*2.

Moreover; the solution map @ : ¢ — u is smooth from H*(R) to Z1 and u belongs
1o C((0, 00), H*(R)).

We show the uniform global well-posedness for Equation (1.1) with respect to €.
THEOREM 1.2. Assume that p € H'/?, 0 < e <1 and ||¢|» < 1.

(a) Existence. For any T > 0, there exists a solution u to the Cauchy problem (1.1)

satisfying
ue FY2(Tyc c(-T,T]: H'?).
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(b) Uniqueness. The solution mapping ®% :¢ — u is the unique continuous
extension of the classical solution H*® — C([—T, T]: H*).

(c) Lipschitz continuity. For any R >0, the mapping ®% :¢ — u is Lipschitz
continuous from {¢p € H'/2 . |plly12 < R, ||¢ll,2 < 1} to C([~T, T1: H'/?).

(d) Persistence of regularity. If in addition ¢ € H® for some s > 1/2, then the
solution u belongs to H®.

For the limit behaviour, we have the following theorem.

THEOREM 1.3. Assume that ¢ € H'/? and ||$|» < 1. Then, for any T >0, the
solution of (1.1) obtained in Theorem 1.2 converges to that of (1.3) in C ([0, T]; H®)
fors > 1/2if e goes to 0.

In Sections 2—4 we give the proofs of Theorems 1.1-1.3.

2. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Comparing the procedure of [14, Section 4],
we can easily obtain Theorem 1.1 if the proposition below holds. In particular, the
proof that u belongs to C((0, co), H*°(R)) is parallel to the proof in Section 4 in [14],
and so we omit it.

PROPOSITION 2.1. Lets > 0,0 < n < 1, then there exists Cy ; > 0 such that, for any
uy, uz, uzon R x R,

10x (uiuous) |l x-1/24n52 < Cllutllx12s2 |2l x1/2.5.2 |3l x1/2.5.2.

We now utilize Tao’s [k; Z]-multiplier from [12] to prove Proposition 2.1. For
simplicity, We review some notation Tao used in [12]. We use A < B to denote the
statement that A < C B for some large constant C which may vary from line to line and
depend on various parameters such as the dimension n, and we use A ~ B to denote
the statement that A < B < A. Let Z be any abelian additive group with an invariant
measure d&. For any integer k > 2, we let [';(Z) denote the hyperplane

T(Z):={E,....60eZ &+ + & =0},
which is endowed with the measure
/ f3=/ fGr, .. b, =& — = &1 dE - - dE.
Iy (2) Zk=1

A [k; Z]-multiplier is defined to be any function m : I';(Z) — C, and the multiplier
norm ||m||[x.z] is defined to be the best constant such that the inequality

k k
/ m@) [] 60| < Imlusz [T 15122
I'e(Z) j=1 j=1
holds for all test functions f; on Z. For given 7, & and h(-), we write
A=t —h().
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Similarly, we put A; :=1; — h;(&;) . The quantities N; and L; measure the spatial
frequency of the jth wave and how it resembles a free solution respectively, while the
quantity H measures the amount of resonance. In this paper, we consider

h(§) = =&§11&1] — &2152] — &3183] = —A1 — A2 — A3,

which measures the extent to which the spatial frequencies &1, &>, £3 can resonate with
each other. By dyadic decomposition of the variables &;, X ;, as well as the function
h(§), one is led to consider

| X Ny, Na, N3 H Ly Lo, Ly 3R xR 2.1)
where Xy, Ny, N3:H:L;, Ly, L5 1S the following multiplier:
3
XN\ Ny N3 Hy Ly, Lo, L3 (6 T) 1= X|h(e)|~H l—[ XIEjI~N; X|hj|~Lj-
j=1

Define the quantities Npax > Nmed = Nmin to be the maximum, median, and
minimum of Njp, N, N3 respectively. Lmax = Lmed > Lmin are similar. In this
paper, we always assume that N;, L; are dyadic numbers. From the identities
&1+ & +&=0and A1 + A2 + A3 + A(§) =0 on the support of the multiplier, we
see that Xy, n, Ns:H:L,,L,,L; vanishes unless

Nmax ~ Nmed and  Lyax ~ max(H, Lmyed). (2.2)

From the estimate in [6],
|H|~ |‘$;:|max : |€|min’ (2.3)
where
3

Y & =0, |Elmax =max(iE1, |82l &]),

j=1
and

1€ lmin = min(|&1], |62], |€3]).
LEMMA 2.2 [3, Lemma4.3]. Let H, N1, Ny, N3, L1, Ly, L3 > Qobey (2.2) and (2.3).

Then:
(1) i Nmax ™~ Nmin and Lyax ~ Nmax Nmin, then
172, 1/4
(2.1) S L Loeds 2.4)
(ii) if N2 ~ N3 > Ni and NmaxNmin ~ L1 2 L2, L3, then
12 2,—1/2 N, 12
— . max
(2.1) < LminNmax min (Nmamein’ _Lmed> ) (2.5)
Nmin
and similarly for permutations;
(ii1) in all other cases,
1/2 =172 .
(2.1) < Lm/inNmax/ min(Nmax Nmin, Lmed)l/z- (2.6)
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We now prove Proposition 2.1. By duality and the Plancherel theorem, it suffices to

show that
‘ (61 +5 +8)(4) <1

(s — w(Ea) + 61270 [T () (1) — 0 () + D2 | iy ™

We estimate |£ + & + &3] by (£4). We then apply the inequality
3
(E) TS DY i),
j=1
where we assume that s > 0. By symmetry it suffices to show that
‘ (1)~ (63) " (60) V2 (80) /2 -
(14 — (&) +iEF)1/2 l_[izl(fj —wéE)+ 1'512)1/2 [4.RxR]

We may replace (1o — w(&) + 1'522)1/2 by (12 — w(&) + i&zz)l/z_”. By the TT*
identity [12, Lemma 3.7] this estimate is reduced to the bilinear estimate below.

LEMMA 2.3. Lets > 0; forallu,von R x Rand 0 < n < 1,

luv ||L2(1RxR) S llu ||X1/27n771/2,2(RX1R) v ||X1/2,~\'12(R><R)-

PROOF. By the Plancherel identity, it suffices to show that

’ (&) S (E2)1/2

(11 — (&) + 1)1y — w(&) + iE7)1/2n
Observe that, by the translation invariance of the [k; Z]-multiplier norm, we can
always restrict our estimate on A; 2 1 and max(Ny, N2, N3) 2 1. The comparison
principle and orthogonality [12, Lemmas 3.1, 3.11] reduce our estimate to show that

<1
[3,RxR]

(N1) " (No)'/2
Nmax~;med~N LM%szl max(Ly, (N1)?)!/2 max(La, (N2)?)!/2=n 2.7)
X | XNy Ny N3; Liax: L1 Lo, L3 I 3:R xR S 1
and
(N1)™5(Np)!/2
Nmax%:nedw Lma;;med H«ZL:M max(Ly, (N2 max(La, (N2 5 )

X | XNy Ny, Na: H: Ly Lo, La 3R xR S 1

forall N 2 1.
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First we prove (2.8). We may assume that (2.3) holds. By (2.6), it suffices to prove

that
1/2 A, 1/2
Z Z LminNmin
Nmax~Nmed~N LmaxNLmedZNminNmax
2.9)
(N1)~* (N) /2
X <1
max (L1, (N1)?)!/2 max(La, (N2)?)1/2=n
Bounding
N1/2
(N1) "5 (N2) 2 S :
(Nmin>s

max(Ly, (N1)2)'"? max(La, (N2)?)'/271 > L}2 n20/2=

and performing the L summations, it suffices to show that

v W)

N1/2—217 ~
Nmax~Nmed~N

which is true when s > 0.
We now prove (2.7). First we assume that (2.4) holds. In this case, we have Ny, Na,
N3 ~ N 2 1. Therefore, it suffices to show that

N1/2-s

1/2 ; 1/4 <
ZNZ max (L1, N2)1/2 maX(Lz, NZ)I/Z—n Lmianed ~ L, (210)

Lmax~
and this is easily verified when s > 0 and Lpax ~ Nmax Nmin-

Now we consider the case where (2.5) holds. We do not have perfect symmetry and
must consider three cases

N~N~N>>»N;3; H~L32 Ly, Lo, (2.11)
N~Ny~N3>»Ni; H~L| 2Ly, L3, (2.12)
N~N;y~N3>»Ny; H~L>2 Ly, L3, (2.13)
separately.
In the first case we reduce by (2.5) to
N1/27S
Z Z max(L1, N2)1/2 max(Ly, N2)1/27n

N3&N 1<L;,Ly<NN;

s N 1/2
X Lm/ianl/Z min(NN3, ELmed) ,S L.

Performing the N3 summation, we reduce to
Z N1/2-s 12
2172 2y1/2—n “min

I<LILa<N? max(Ly, N-)'/* max(Ly, N4)

which is similar to (2.10).

—1/2 71724 1/4
NTIANIEL I <1,
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Considering the second and third cases, it suffices to deal with the worst case
N~Ny~N3>»Ny; H~L| 2Ly, Ls.
Using the first part of (2.5),
Ni; —sN1/2
>y NS,
Nmin<KN lsLminsLmed<<NNmin LminN 7

We may assume that Nyin = N ~! since the inner sum vanishes otherwise. Performing
the L summation, we reduce to

—sN1/2N1/2

Z (Nmin) min <1
N1-2n ~
N_IS,Nmin<<N

which holds when s > 0.
To finish the proof of (2.7), it remains to deal with the case where (2.6) holds. This
reduces to

) ) (N1)~5(Np)!/2 L2122 <
NNt~ N Lo~ N Ny MAX(L 1, (N1)2) /2N 20 /2= med ~
max "~ Vmed ™ max "~ Vmax {Vmin

Performing the L summations, we reduce to

1/2
Nmin 1
1/2—=2n ~ 7
Nmax~Nmed~N (NI>SN / !
which is easily verified when s > 0. (N

3. Proof of Theorem 1.2

Observing that (1.1) is invariant under the scaling

_ 1 x t 1 _ 1 X a1
M(X,l)—mx—mu T 2) Eﬁém, ¢A—m¢ %) (3.1

we can see that ||@||;2 is invariant under this scaling, and so we require that
l¢ll;2 < 1. Before embarking on the proof of Theorem 1.2, we establish two results.
Let

/ _ 2
T pEltlE

it
L(f)(x, 1) = Wo@)y (1) /RZ A F(Wo(=0) )&, T')dE dT’. (3.2)

it + €£?
Here we take ¥ = ng, and it is easy to verify that

t

xry (OL(f)(x, 1) = XR+(I)1/I(I)/O We(t — ) f(7) d. (3.3)

LEMMA 3.1. Ifs > 1/2 and ¢ € H®, there exists C > 0 such that, for any 0 <€ <1,
(@) - (We@@)llps < Cll@las-
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PROOF. We use an idea from [5] in our proof. In view of the definition, it suffices to
prove that if k € Z, then

Ik @) F (@) - (W)l z, < CllmkE)E) 2 (3.4)

First, we consider the case k =0. Observing that |£| <2 in this case, and using
Taylor’s expansion,

1m0 (E)F (Y () We (1))l x,

o
Sy 2R+ 2205
j=0

R —De 2
(&) E)F: (wm > ()n—‘eg|t|n>(f)77j(f) :

n>0 Lé,r

4n ~
S Z ;|Ino(€)¢(€)|ILz|I|t|”1/f(t)||H1

n>0 "’

< 0@ @) 2,

which is (3.4) as desired.
Secondly, we consider the case k > 1. Observing that if |§] ~ 2% then for any j >0,

1P @2 S 1Py @2,
which follows from Plancherel’s equality and the fact that

=l _
Fle "NH(r) _C1 TRE

It follows from the definition that
Inx () F (¥ (1) We(2)P) |l x,

<2 B I ©SE N @F W O )@
j=0 '
Y2 B IO P D)D)z,
j=0 '

SO 2P @@ 2 sup [P0 0]z

j=0 |§1~2%

Therefore, it suffices to show that

o
> 225 sup P e M) @) 2 S 1 (3.5)
j=0 |&|~2k
We may assume that j > 100 in the summation. Using the para-product
decomposition,
o¢]
iy =Y [(Pr1u1)(P<r1u2) + (P<rtt)(Pryiu)] (3.6)

r=0
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and

Pi(uyuz) = Pj( Z [(Pry1ur)(P<y41u2) + (Pgrul)(PrHuz)])

r>j—10 3.7

= P;(I +1I).

Now we take u1 = ¥ (¢) and up = o€l
When j <2k, we have By ; ~ 1, and the situation can be treated as in [5]. When
J > 2k, it suffices to bound
Z 2j/222(j—2k)/5 ” P] (II) ”L?OL’2
=100

j—k
<2 YT Y IRl I Per g,
j>100 r>j—10

SID DI D 1 AR TE] PP

j=100 r=j—10
—k —elr]2%
S 2P e P
r

—1—k 1 —elr|2%
S22 P e P
r
27 e 2 e gy <1,
2,1

where we use the fact that e € le , and =<2l ||321 o el/22k| e~ ||le -
The first term, P;(I), in (3.7) can be handled in an easier way. This corﬂpletes the
proof of the proposition. O

The next lemma provides an estimate for the retarded linear term.

LEMMA 3.2. Fors > 1/2 andu € S(R x R), there exists C > 0 such that

v (OL@)Fs < Cllvllns.

PROOF. In view of the definitions, it suffices to prove that if k € Z, then

IneE)FLO)z, S M) + T — o) ' F@)liz,-
Observe that

, itt’ _ —elr|g2
Fo(L(v)) =w(t)e”w@)/ ¢ —¢ DE, T+ w(&)) dT

R it + €&

o ® e—ito(®) it _ e—e|t|§2
= y(t)e
v /]R i(t — w(§)) + €&

ey . _ 2
et _ettw(é)e €|t|E

R (T —w(§)) +€&?

V(E, ) dT’

VE, ) dT

=y (1)
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and
T — 1) — Fo(r(t)e ME) (¢ — w(é)),\(g
i(t'— w(§)) + €&?

Fork € Z, let fi(€, T') = F()(E, T)m@E) (' — &) + i)'
For f € Zy, let

F(L)(E, T)Z/]R i

B =) = WO - 0)
rE = [ itk R s

x (' —w(@) +i)dt'.

It suffices to show that

IT1z,—z, <C uniformlyink € Z. 3.9
First, we consider the case k € [0, 99], so fi = fi,; is a function supported in Dy ;.
Let
RiE W)= fijE W +o@) and THfRDE W =T )E 1+ o@).
Thus,

N —elrlg?
z/f(r D= FWOTEND L 3.10)

T*(fo) . ©) = / fE T

it + €£?
Let
emelig®
w(r) = Wo(—D)u(0),  ke(t) = Y (1) / Tegzw(é, oydr.
For (3.9), by definition, it suffices to prove that
o0
2 2Bl @n; (O Fi ke) (Ol 2
= ’ (3.11)

<D 27 e jlme @ (BE. Ol 2

We use an idea from [5] to decompose

it | oelig?
ke () = ¥ (1) el T GEZW(S 1) dt + ¥ (1) e mw(f, 7)dt
it —et|g2 R
+ ¥ (@) e it +€€2w(§, ) dt — Y (1) el mw(fv 7)dt

=I+10+01-1V.

We estimate each of the above four parts.
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First, we consider the contribution of /V. Using the Taylor expansion for k =0
and (3.5) for k > 1, we get

drt

Sy o I (©)D(E, Dl 2
DYl & POl < Y 2By, /| 1
_ =3

= |1 7|

X sup (&) P (W (De™ ") @) 2
Eely

<D 2Pl 0y OBE D2 -
=0 ’

Secondly, we consider the contribution of /II. Let

_ 9.0l
g€, )= it + e€2|X|T|ZI'
When j > 2k,
> 2Bl @ P @ 2,
j=0 |

&
<D YRR B e ()d * 86 D2
=0 ’

nj (@) k)W, T/)||L§

o

< N 99i/105—4k/5 '

NZ lit| A L?
jzl ’
OO .

<227 e jlm@nBE. Ol 2
j=0 |

where we used the fact that Bg/ 110 is a multiplication algebra and F -1 (|1///\ ) e Bzg’/ 110.

When j < 2k, we can get the desired result by the same estimate as in [5].
Thirdly, we consider the contribution of /1. For €& 2> 1, as for IV, we get

1D D2

2Bl P DO 2, S Y 2B, / e
=0 20 (7)

J

X sup (&) P (1 — =) @) 2

sely

S ZO 272 B jllme @ (BE Ol 3
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For €£2 < 1, using Taylor’s expansion,

> 2B @ P AN 2

=0
Sy D 2B

n>1 j=0

/ &2 E)W(E, T)|
<1 lit + €&2|

ng22n -~
(&) P, (1" (1)) 2 /H ]Mdf

n! iT+ e&?

2
Ls,t

<

~

2
Lg

S ZO 271 Be Ik @ (@OBE Ol 2,

J

where we used the fact that
|||t|"1/f(t)I|B§/110 S ey @l < C27.

Finally, we consider the contribution of /. Using Taylor’s expansion,

(itt)"

— W) dr.
Ir|<1 s l’l!(ll’ + 652)

I=4()

Thus, we get

> 202 By ik PO,
Jj=0 |

S

n>1

S L2 s ©n; R E Dl

"y (1)
n!

/| I enE oldr

rl<1 liT +€&2|

2
Lg

From the definition of the spaces Xj, we get
171 x,—x, <C uniformly ink > 1, (3.12)

as desired.
We now consider f; € Y, k > 100. As in [6], we can assume that f; is supported
in the set {(£, /) : |t/ — w(&)]| < 2720}, We decompose

T 0@ e+ ok (€, 7).

N T o0®) L
gk(g’r)_r’—w(é)—kt T —w(@)+i

By (3.12) and the fact that the result

li(t' — @)+ i) g, )llx, < Cllgklly,
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in [6] also holds for our choice B j, it suffices to show that

T/—C()(S) d /
- T
'—w(§) tieg?

T —1thdt

Hftwa)e*'”fz)(r —w(&)) / gk (&, r’)t

(&)
w(€)+16$21//(

e 3.13)

gk (&, r)
R

< Cliglly;-
Zk

The first term on the left-hand side of (3.13) can be treated by ideas similar to those
in [6]. For the second term, we decompose

W T —o@) +i , T—1
gk(é:"f)——_[,_w(s)_i_igk(f,T) T e® i gk, ).

The second term on the left-hand side of (3.13) is dominated by

‘

n0,k—11(t — w(&))

. g T — @) +1i)

T—wE)+i
- / T/—C()(E) ’
VDT e e T,
i/2 ] nj(f_w(";:)) ,
+c]§_1 ] el RS
- (3.14)
-~ N T —0@®) /
AR =L
2J/2 77/('5 w(§)) ,
+CJ; T—w(E)+i 8. 7)
- NI —w®)
XYt —1) T — () +ict2 LZ'
This concludes the proof. O

We use the following lemma to bound the first term in (3.14); other terms are
similarly treated by the method in [6].

LEMMA 3.3. Ifk > 1,0 < j <k and gy is supported in I} x R, then

—1 T —w(§) L
Hf [W”S]W w(&))gr (€, 'c):|

PROOF. Using Plancherel’s theorem, it suffices to prove that

SIF gr€ Ol 12
Lir? ;

X

<C. (3.15)
LlL®

Xt

ix€ T —w(§) . 4
R WX[H,HH(&)HS@—w(é)) 3
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In proving (3.15), we may assume that £ > 100. Observe that the function on the left-
hand side of (3.15) is not zero only if 7 ~ 2% By symmetry, it suffices to consider
the case & € [2¥72, 2k+2]. Hence we have 7 — w (&) = 7 + £2. Changing variable
T + &2 = m, it suffices to show that

e En<jm)yds| <C (3.16)
L ¢ mticE? Xlk—1.k+11(E)N<; =C. .
On twice integrating by parts the left-hand side of (3.16),
ixé m . d
A e m)([k—l,kﬂ](f)']g] (m) d§
. m 1
= /R elxsm)([k—l,kﬂ](f)nsj (m)E dm‘ (3.17)

El

1 .. d 1 d m
)?/Re’xé%[Q%<m)([k—1,k+l](§)ﬂ§j(m)>i| dm

where we use the notation £ = d&/dm and the fact that & = 1/2&. To bound the
right-hand side of (3.17), it suffices to estimate

d[1 d m
o [5% (mx[kl,kﬂ](é)ng (m)>]~

Letl =m/(m+ ieéz) and I = xjx—1,k+11(6)n<; (m). It suffices to estimate
1 4?1 1dldl d (1dll dl d (1
——F—=——+I— = |+ ——\ =1
& dm & dmdm dm\ & dm dmdm\ &'

=L+ L+ L3+ Lg.

Now we obtain an estimate for L. After some calculation, we obtain

R 2iem(€)?2 4 2iem&E” + 4iemEE’ — 8me2E2(£))? — 2iek? + 4€2£3¢
— X

g (m + i€§2)?
<1,

where we use the notation £” = d?& /dm? and the fact that £” = 1/4&3 and &' = 1/2¢.
Similarly, for L,,
1dll  ie&? —2iem&E'
Sedm T mtieg?
Observing the uniform boundedness of I, dI /dm, the contributions of L3 and L4 have
been controlled in [6].

<II
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Collecting the estimates above and noticing the support of x[x—1 41}, n<;(m),

/ e — Ty k+11(8)n<j(m) d&
R m+iek? ' -

< i/ eixé(i+l+i+2§>)([k—l k+11(E)n<j(m) dm‘

~1x2 g 28 4£3 ’ =

<|L / efxf(i+1+i+2s)><[k_1k+u<s>n<-<r—w(s>>2s ds‘
~laz e 2 4¢3 ’ -

2/—k
< -
N~ (27 kx)2

where we make a change of variable to m =1 — w(§). If T = 27", we get the desired
result. O

22k

For later use, we recall the following trilinear estimate.
LEMMA 3.4 [2, Proposition 6.3]. Fors > 1/2,

3
10x (W (@) uvw)llys S lullps vl prellwll gz + llull gz llvll g lwll z172
+ lull pr2llvll 2wl ps.

REMARK 3.5. In [2], the coefficients are B¢ ; =1 + 20=20/2 Lemma 3.4 also holds
for our choice By j =1+ 22(=2k)/5. gee [4] for details.

Noticing the assumption ||¢| ;2 < 1 and the scaling (3.1), it suffices to consider
(1.1) with data ¢ satisfying

lolas =r < 1.
Notice that F* € C(R; H?®) for any s > 0; see [2]. Collecting (4.3), Lemmas 3.1, 3.2,
3.4 and standard fixed-point machinery, we obtain part (a) of Theorem 1.2. The rest of
Theorem 1.2 follows from a standard argument.
4. Proof of Theorem 1.3

4.1. Uniform global well-posedness for mBOB. We now extend the local solution
obtained above to a global one. We use a conservation law to obtain our goal.
From [8, 11], we know that there are two conservation laws for the real-valued mBO
equation (1.3):

d 2
— | u“dx=0, “4.1)
R

dt
d 1 1 4
7 /R EuHux — Eu (x,t)dx =0. 4.2)
Let u be a smooth solution of (1.1). Multiply by u and use partial integration to obtain

1 2 ! 2 1 2
Sllu@®l;+e€ | Au(@)zdr=Zldl3,
2 0 2

where we use the notation A = |0y ]|.
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Turning to the conservation law for (1.1), let
Hlu] = / lu'Hux — iu4 dx.
R 2 12
Noticing that (4.2) is a conserved quantity of (1.3),

dH[] /BH Ls d
—_— u| = Uty — —U U X
dt Rt X 3 t

1
=€ / Uyx Huy — —u3uxx dx
R 3

=—e||A3/2u||%—|—6/ uzui dx
R

3/2 2 2 2
—e|| A3 2u|l3 + ellux 3 lully

€
< —ell A Pull3 + 5||A3/2u||§,

A

where we use |lullz < ||¢ll2 < 1, the Gagliardo—Nirenberg inequality and the
interpolation inequality

1/2 1/2 1/3 3/2 2/3
lulloo S Nl a3/ Nuxlla S Huelly 1A% 2u ).

Therefore,

T 1/2
sup ||u<r>||H1/z+e”2</0 ||A3/2u(r>||%dr) <C(T, |¢llgy), YT >0,

[0,T]
(4.3)
Hence the solution is global.

4.2. Limit behaviour. From persistence of regularity of Theorem 1.2, it suffices to
show that s = 1/2. We reprise some ideas from [5, 15, 16] to obtain our result.

LEMMA 4.1 [4, Lemma 8.1]. Assume that § > 0. If s € R and u € L>H?, then

lalls < el 2. (4.4)

Assume that u is an H!/?-strong solution of (1.1) obtained above, and that v is an

Hl/z—strong solution to (1.3) in [2], with initial data ¢, ¢ € H1/? respectively. From
the scaling (3.1) and the assumption that ||¢; (x)||» < 1,i =1, 2, we may suppose that
o1l g2, P2l 12 K 1. Let w =u — v and ¢ = ¢ — ¢2. Then w solves

Wy + Hwyy — €wyy = uluy — 20y, (x,1) € R?,

w(0) = ¢ (x).

We first view €uy, as a perturbation to the difference equation of the mBO equation.
Consider the integral equation of (4.5):

4.5)

t
w(x, 1) = Wot)¢ — / Wo(t — T)[€ury + tluy — v2v]dr, t>0.
0
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For technical reasons, let
t
Py (w(x, 1) = lﬁ(t)[Wo(t)qﬁ - 6/0 Wot — )Y (D)uxx(t) dt
1
— % / Wo(t — ©)(w(? + u + vu)), (1) dr].
0

Then CD;(w) solves the integral equation on ¢ € [0, 1]. By Lemmas 3.1, 3.2, 3.4
and 4.1,

195 )l 172 S M@l iz + Nwll gz llull gz (ol gz + llull £12)
+ellull, 2 pse + lwllpizllullpzllvll pie.
[0.1]77%

Since from (3.1) and the assumption that ||¢;|» < 1,i =1, 2,

lilpie Sllgallgie <1, lullpie Stz <1,
we obtain

lwllipiz SNl gz +ellull o s
[0,1]

X

From the persistence of regularity of Theorem 1.2, we obtain
lu = vleqoarae S 1ot — dallge + € 2CUp1 s, b2l i)

For general ¢, € HS/Z, ¢ € Hl/z, using the scaling (3.1), we can show that there
exists T =T (|11l 52, 1921l g1/2) > O such that

lu —vleqo.rmir S ¢t — ¢2llgiz + € 2CT, o1l gse. Id2llgi2).  (4.6)

Therefore, (4.6) automatically holds for any 7' > 0, due to (4.1) and (4.2). Let S7(¢)
be the solution mapping of (1.3) with initial data ¢. For fixed T > 0, we need to prove
that for any n > 0, there exists ¢ > 0 such that if 0 < € < o, then

| ®%(¢) — ST(¢)||C([0,T];H1/2) <n. 4.7)
Denoting ¢ x = P<k ¢, we obtain

195 (@) — St lco,ry:m12) < NPT @) — DT (@K e 0,71 11/2)
+ ||cI)€T (¢K) - ST(¢K)||C([Q,T];H1/2)
+ [I1S7(¢k) — St (¢)||C([0,T];H1/2)'

From Theorem 1.3 and (4.6), we get

195 (®) — STl co.77: 112 S ok — @l g1z + € 2C(T, K, 1ok |l gs2)-

If we fix K large enough, then let € go to zero, we get (4.7).

https://doi.org/10.1017/5S0004972710001905 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972710001905

H. Zhang and Y. Ke [20]

Acknowledgement

The authors are grateful to Dr Zihua Guo for helpful discussion and valuable
suggestions.

(1]

[9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]

References

J. Bourgain, ‘Fourier transform restriction phenomena for certain lattice subsets and applications
to nonlinear evolution equations I, I, Geom. Funct. Anal. 3 (1993), 107-156, 209-262.

Z. Guo, ‘Local well-posedness and a priori bounds for the modified Benjamin—Ono equation
without using a gauge transformation’, arXiv:0807.3764.

Z. Guo, ‘Local well-posedness for dispersion generalized Benjamin—Ono equations in Sobolev
spaces’, arXiv:0812.1825v2.

Z. Guo and B. Wang, ‘Global well-posedness and limit behaviour for the modified finite-depth-
fluid equation’, arXiv:0809.2318v1.

Z. Guo and B. Wang, ‘Global well-posedness and inviscid limit for the Korteweg—de Vries—
Burgers equation’, J. Differential Equations 246 (2009), 3864-3901.

A. D. Ionescu and C. E. Kenig, ‘Global well-posedness of the Benjamin—Ono equation in low-
regularity spaces’, J. Amer. Math. Soc. 20(3) (2007), 753-798.

C. Kenig, G. Ponce and L. Vega, ‘Well-posedness and scattering results for the generalized
Korteweg—de Vries equation via the contraction principle’, Comm. Pure Appl. Math. 46(4) (1993),
527-620.

C. Kenig and H. Takaoka, ‘Global wellposedness of the modified Benjamin—Ono equation with
initial data in H'/2°, Int. Math. Res. Not. (1) (2006), 1-44.

L. Molinet and F. Ribaud, ‘On the low regularity of the Korteweg—de Vries—Burgers equation’,
Int. Math. Res. Not. 37 (2002), 1979-2005.

L. Molinet and F. Ribaud, ‘Well-posedness results for the generalized Benjamin—Ono equation
with arbitrary large initial data’, Int. Math. Res. Not. (70) (2004), 3757-3795.

T. Tao, Nonlinear Dispersive Equations, CBMS Regional Conference Series in Mathematics,
106 (Conference Board of the Mathematical Sciences, Washington, DC, 2006), pp. xvi + 373.

T. Tao, ‘Multilinear weighted convolution of L? functions, and applications to nonlinear dispersive
equations’, Amer. J. Math. 123 (2001), 839-908.

T. Tao, ‘Global well-posedness of the Benjamin-Ono equation in H'(R)’, J. Hyperbolic Differ.
Equ. 1(2004), 27-49.

S. Vento, ‘Well-posedness and ill-posedness results for dissipative Benjamin—Ono equations’,
arXiv:0802.1039v1.

B. Wang, ‘The limit behaviour of solutions for the Cauchy problem of the complex Ginzburg—
Landau equation’, Comm. Pure Appl. Math. 53 (2002), 0481-0508.

B. Wang and Y. Wang, ‘The inviscid limit of the derivative complex Ginzburg—Landau equation’,
J. Math. Pures Appl. 83 (2004), 477-502.

HUA ZHANG, College of Sciences, North China University of Technology,
Beijing 100144, PR China
e-mail: zhanghuamaths@163.com

YUQIN KE, Faculty of Economics, Guangdong University of Business Studies,
Guangzhou 510320, PR China
e-mail: keyuqin@ gmail.com

https://doi.org/10.1017/5S0004972710001905 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972710001905

