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In a recent study [1] the effect of ionization and losses on the propagation of ion
acoustic solitary waves is investigated. For that purpose the corresponding source
and sink terms of the form

Qi − νLni, (1)

are included in the right-hand side of the ion continuity equation. The related
contribution of the source–sink effects in the ion momentum equation is then
given as the above source–sink term multiplied by the ion velocity, so that the
ion momentum equation used in [1] becomes

ni

(
∂vi
∂t

+ vi
∂vi
∂x

)
= −ni

∂φ

∂x
− σi

∂ni
∂x

− νinivi − (Qi − νLni)vi. (2)

The objective of this Comment is to show that the last term in (2) cancels out
exactly, as will be shown in the further text, so that any effect originating from this
term is spurious. In addition, this term implies that the velocity of the neutrals that
become ions, before the impact ionization (or whatever the cause of its ionization
may be), is equal to the velocity of ions that become neutrals, since this source–sink
term is multiplied by the same velocity. A similar improper model has been used
previously in the literature (see the references cited in [1]). It is remarked that
the proper inclusion of the source–sink effects has been described in the literature
before, although it seems to remain unnoticed. Therefore, it is timely to address
this issue in order to provide a formally correct model for future studies.
Normally, in deriving the fluid equations that describe waves in multi-component

plasmas which involve elastic as well as inelastic collisions, one follows a well known
procedure. One starts from the corresponding kinetic equation which can be written
in the form

∂fα

∂t
+ v · ∂fα

∂r
+
Fα
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=

(
∂fα
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)
el

+
(

∂fα

∂t

)
inel

. (3)

Here, on the right-hand side (∂fα/∂t)el is the change in the unit time of the number
of particles α in the six-dimensional phase space r, v due to elastic collisions, and
the second term is the corresponding change due to inelastic collisions (in principle
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any of the aforesaid). Fα is the total average force in the phase space acting on
particles of the species α.
Following the standard procedure, the macroscopic continuity equation for

the plasma species α is obtained after an appropriate integration of (3) over all
velocities yielding

∂nα

∂t
+ ∇ · (nαvα) =

∫
d3v

(
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∂t

)
inel

=
∂

∂t

(∫
fαd3v

)
inel

=
(

∂nα

∂t

)
inel

≡ Sα. (4)

Here, Sα ≡ Sα,source + Sα,sink is the appropriate sum of all source/sink terms due to
the inelastic collisions. The elastic collisions do not cause a change of the mass in
a plasma unit volume. In a stationary equilibrium (the subscript 0 will be used to
describe equilibrium quantities) plasma we have

Sα,source,0 + Sα,sink,0 = 0. (5)

From the same kinetic equation, after multiplication with vd3v and integration
over all velocities, one obtains the momentum (motion) equation

∂(nαvα)
∂t

+ ∇ · {nαvα, vα} = Σα, (6)

where Σα is the summation of all forces acting on an elementary volume of the
plasma species α, including the friction force caused by elastic collisions, i.e. the
term (∂fα/∂t)el, as well as the term caused by inelastic collisions (∂fα/∂t)inel.
Here, vα is now the macroscopic velocity of the species α. The Poisson bracket

in (6) is subject to a transformation of the form ∇ · {a, b} ≡ b(∇ · a) + (a · ∇)b, so
that (6) becomes

nα

[
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∂t
+ (vα · ∇)vα

]
+ vα

[
∂nα

∂t
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]
= Σα. (7)

Consequently, using (4), the equation of motion reduces to

nα
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]
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(
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, (8)

since Σα in (6) contains the term∫
vd3v
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It is seen that the term vαSα in the left-hand side of (8) cancels out with the identical
term on the right-hand side (given in (9)). Hence, the only term that should affect
the dynamics is entirely due to the inelastic collisions which remain under the term
Σα in the equation of motion

nα

(
∂vα

∂t

)
inel

≡ crnαvα. (10)

Note that exactly the same procedure is presented in a classical book [2].
As for the specific concrete expressions for the source–sink contribution (10) in the

momentum equation, we point out [3] and [4] where the equations are derived from
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the first principles. In [3] (using the same notation, which is, however, equivalent
to our notation used above) the ion momentum equation is written in the form

∂

∂t
(MNV) + ∇ · (NT I+ MNvv+ πi) = F+ eN(E+ v× B) − νxMn(V− U)

− νrMNV+ νzMnU. (11)

Here I is the unit diad, νr denotes the recombination rate, νz the electron impact
ionization rate, νx the charge exchange, and n,U the number density and velocity
of neutrals. The corresponding continuity equation is given by

∂N

∂t
+ ∇ · (NV) = −νrN + νzn. (12)

Combining these two equations with the cancellation as in the previous text, we
obtain the following two terms on the right-hand side of the momentum equation

· · · = −νxMn(V− U) − νzMn(V− U). (13)

The equations should be supplemented by an appropriate set of equations for
neutrals, especially if neutrals are created/lost whenever ions are lost/created; more
details on this issue can be found in [3] and [4]. This inclusion is in fact simple
because the source/sink terms enter with opposite signs in the equations for ions
and neutrals. One can argue that (11) and (12) are also based on some model and
limited by assumptions used in the derivations. Yet, the point is that the source–sink
term used in the momentum equation of the commented paper is not correct. Our
Comment suggests that using the source–sink term approach in studying physical
phenomena, such as the ionization instability, is suspect and more care must be
taken to provide the necessary physical insight.
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