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NEVENA MARIĆ,∗∗ University of Missouri–St. Louis

Abstract

Consider the problem of drawing random variates (X1, . . . , Xn) from a distribution where
the marginal of each Xi is specified, as well as the correlation between every pair Xi

and Xj . For given marginals, the Fréchet–Hoeffding bounds put a lower and upper bound
on the correlation between Xi and Xj . Any achievable correlation between Xi and Xj is a
convex combination of these bounds. We call the value λ(Xi, Xj ) ∈ [0, 1] of this convex
combination the convexity parameter of (Xi, Xj ) with λ(Xi, Xj ) = 1 corresponding to
the upper bound and maximal correlation. For given marginal distributions functions
F1, . . . , Fn of (X1, . . . , Xn), we show that λ(Xi, Xj ) = λij if and only if there exist
symmetric Bernoulli random variables (B1, . . . , Bn) (that is {0, 1} random variables
with mean 1

2 ) such that λ(Bi, Bj ) = λij . In addition, we characterize completely the
set of convexity parameters for symmetric Bernoulli marginals in two, three, and four
dimensions.
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1. Introduction

Consider the problem of simulating a random vector (X1, . . . , Xn) with second moments
where for all i the cumulative distribution function (CDF) of Xi is Fi , and for all i and j the
correlation between Xi and Xj should be ρij ∈ [−1, 1]. The correlation here is the usual notion

corr(X, Y ) = E{(X − E(X))(Y − E(Y ))}
SD(X)SD(Y )

= E{XY } − E{X}E{Y }
SD(X)SD(Y )

for standard deviations SD(X) and SD(Y ) that are finite, where E is the expectation.
Let � denote the set of matrices with entries in [−1, 1], all the diagonal entries equal 1, and

are nonnegative definite. Then it is well-known that any correlation matrix (ρij ) must lie in �.
This problem, in different guises, appears in numerous fields: physics [16], engineering [11],

ecology [4], and finance [12], to name just a few. Due to its applicability in the generation
of synthetic optimization problems, it has also received special attention from the simulation
community; see [8] and [9].

A variety of approaches exist for this well-studied problem. When the marginals are normal
and the distribution is continuous with respect to the Lebesgue measure, this is just the problem
of generating a multivariate normal with specified correlation matrix. The method in order to
accomplish this (see, for example, [6, p. 223]) for any matrix in � is well known.
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For marginals that are not normal, the question is very much harder. A common method
is to employ families of copulas (see, for example, [15]), but there are very few techniques
that apply to general marginals. Instead, different families of copulas are typically applied to
different marginal distributions.

Devroye and Letac [3] showed that if the marginals are beta distributed with equal parameters
at least 1

2 then when the dimension is three it is possible to simulate such a vector where the
correlation is any matrix in �. This set of beta distributions includes the important case of
uniform [0, 1] marginals, but the authors have not been able to extend their technique to higher
dimensions.

Chagnanty and Joe [1] characterized the achievable correlation matrices when the marginals
are Bernoulli. When the dimension is three their characterization is easily checkable, in higher
dimensions they provide a number of inequalities that grow exponentially in the dimension.

For the case of general marginals, in statistics there is a tradition of using transformations of
mutivariate normal vectors, which dates back to Mardia [14] and Li and Hammond [13]. This
approach relies heavily on developing usable numerical methods. In this paper we approach
the same problem using exclusively probabilistic techniques.

We show that for many correlation matrices the problem of simulating from a multivariate
distribution with fixed marginals and specified correlation can be reduced to showing the
existence of a multivariate distribution whose marginals are Bernoulli with mean 1

2 , and for
each pair of marginals there is a specified probability that the pair takes on the same value.
For n = 2, 3, 4, we are able to give necessary and sufficient conditions on those agreement
probabilities in order for such a distribution to exist.

The convexity graph. Any two random variables X and Y have correlation in [−1, 1], but if the
marginal distributions of X and Y are fixed, it is generally not possible to build a bivariate
distribution for any correlation in [−1, 1]. For instance, for X and Y both exponentially
distributed, the correlation must lie in [1 − π2/6, 1]. The range of achievable correlations
is always a closed interval.

For two dimensions the method to find the minimum and maximum correlation is well
known. This comes from the inverse transform method, which works as follows. First, given
a CDF F , define the pseudoinverse of the CDF as

F−1 = inf{x : F(x) ≥ u}. (1)

When U is uniform over the interval [0, 1] (write U ∼ unif([0, 1])), F−1(U) is a random
variable with CDF F (see, for example. [2, p. 28]). Since U and 1 − U have the same
distribution, both can be used in the inverse transform method. The random variables U and
1−U are antithetic random variables. Of course corr(U, U) = 1 and corr(U, 1−U) = −1, so
these represent an easy way to obtain minimum and maximum correlation when the marginals
are uniform random variables.

The following theorem comes from [7] and [10].

Theorem 1. (Fréchet–Hoeffding bound.) For X1 with CDF F1 and X2 with CDF F2, and
U ∼ unif([0, 1]),

corr(F−1
1 (U), F−1

2 (1 − U)) ≤ corr(X1, X2) ≤ corr(F−1
1 (U), F−1

2 (U)).

In other words, the maximum correlation between X1 and X2 is achieved when the same
uniform is used in the inverse transform method to generate both. The minimum correlation
between X1 and X2 is achieved when antithetic random variates are used in the inverse transform
method.
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Definition 1. Consider the random variables X and Y with finite second moments, and CDF
FX and FY , respectively. For U uniform on [0, 1], let ρ− = corr(F−1

X (U)F−1
Y (1 − U))

and ρ+ = corr(F−1
X (U)F−1

Y (U)). Then (by the Fréchet–Hoeffding bound) there is a unique
λ ∈ [0, 1] such that

corr(X, Y ) = λρ+ + (1 − λ)ρ−.

Call λ = λ(X, Y ) the convexity parameter of X and Y .

Definition 2. Consider (X1, . . . , Xn) with finite second moments, where each Xi has CDF Fi ,
and the correlation between Xi and Xj is ρij . Then the complete graph on {1, . . . , n} where
edge {i, j} has weight λij = λ(Xi, Xj ) is the convexity graph of the distribution.

Let Bn be the set of probabilities on {0, 1}n such that if (B1, . . . , Bn) ∼ μ where μ ∈ Bn,
then P{Bi = 1} = 1

2 for all i.

Theorem 2. Let (B1, . . . , Bn) ∼ μ ∈ Bn. Then λ(Bi, Bj ) = P{Bi = Bj } for all i < j .
For all distribution functions F1, . . . , Fn with second moments there exists a distribution for
(X1, . . . , Xn) such that for all i we have P{Xi ≤ x} = Fi(x) and for all i < j we have
λ(Xi, Xj ) = λ(Bi, Bj ), where P is the probability measure.

Proof. For (Bi, Bj ) with symmetric Bernoulli marginals, the value of either P{Bi = Bj }
or corr(Bi, Bj ) (which is one-to-one with λ(Bi, Bj )) completely determines the bivariate
distribution. It is then straightforward to verify that P{Bi = Bj } = λ(Bi, Bj ).

Next, consider U uniform on [0, 1] independent of (B1, . . . , Bn). Then Xi = F−1
i (UBi +

(1−U)(1−Bi)) has the correct marginals and again it is straightforward to show λ(Xi, Xj ) =
λ(Bi, Bj ).

From Theorem 2, we immediately see a way to simulate from a distribution (X1, . . . , Xn)

with given convexity parameters in linear time, provided it is possible to simulate from a multi-
variate symmetric Bernoulli with the same convexity parameters. The next result characterizes
when such a multivariate Bernoulli exists in two, three, and four dimensions, and provides
necessary conditions for higher dimensions.

Theorem 3. Suppose that (B1, B2, . . . , Bn) are {0, 1} random variables with mean 1
2 for all i.

When n = 2, it is possible to simulate (B1, B2) for any λ12 ∈ [0, 1]. When n = 3, it is possible
to simulate (B1, B2, B3) if and only if

1 + 2 min{λ23, λ12, λ13} ≥ λ23 + λ12 + λ13 ≥ 1.

When n = 4, it is possible to simulate (B1, B2, B3, B4) if and only if

1 − 1
2� ≤ 1

2 (u − 1),

where

� = min(λ14 + λ24 + λ13 + λ23, λ14 + λ34 + λ12 + λ23, λ24 + λ34 + λ12 + λ13),

u = min{i,j,k} λij + λjk + λik.

The rest of the paper is organized as follows. In section 2 we present the proof of Theorem 3.
In Section 2.2, the set of multivariate asymmetric Bernoulli distributions is linked to that of the
symmetric Bernoulli distributions. We conclude with a discussion in Section 3
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2. Proof of Theorem 3

2.1. The n = 2 and n = 3 cases

Lemma 1. For any λ12 ∈ [0, 1], there exists a unique joint distribution on {0, 1}2 such that
(B1, B2) with this distribution has B1, B2 ∼ bern( 1

2 ), and P{B1 = B2} = λ12, where ‘bern’
denotes a Bernoulli trial.

Proof. Let pij = P{B1 = i, B2 = j}. Then the equations that are necessary and sufficient
to meet the distribution and convexity conditions are

p10 + p11 = 1
2 , p01 + p11 = 1

2 , p11 + p00 = λ12, p00 + p01 + p10 + p11 = 1.

This system of linear equations has full rank, so there exists a unique solution. Given there is
a unique solution, it is easy to verify that the solution is

p00 = 1
2λ12, p01 = 1

2 [1 − λ12], p10 = 1
2 [1 − λ12], p11 = 1

2λ12.

This provides an alternate algorithm to that found in [5] for simulating from bivariate
distributions with correlation between ρ−

1,2 and ρ+
1,2.

Lemma 2. A random vector (B1, B2, B3) with Bi ∼ bern( 1
2 ) exists (and is possible to simulate

from in a constant number of steps) if and only if the convexity graph satisfies

1 ≤ λ23 + λ12 + λ13 ≤ 1 + 2 min{λ12, λ13, λ23}
Proof. Let pijk = P{B1 = i, B2 = j, B3 = k}. The first condition is

∑
i,j,k pi,j,k = 1.

There are three conditions from the marginals:

∑
j,k∈{0,1}

p1jk = 1
2 ,

∑
i,k∈{0,1}

pi1k = 1
2 ,

∑
ij∈{0,1}

pij1 = 1
2 ,

and three conditions from the correlations
∑

k∈{0,1}
p00k + p11k = λ12,

∑
j∈{0,1}

p0j0 + p1j1 = λ13,
∑

i∈{0,1}
pi00 + pi11 = λ23.

To obtain eight equations, suppose that p111 = α.
This eight-by-eight system of equations has full rank, so there is a unique solution. It is easy

to verify that the solutions are

p000 = 1
2 (λ12 + λ13 + λ23 − 1) − α, p100 = 1

2 (1 − (λ12 + λ13)) + α,

p001 = 1
2 (1 − (λ13 + λ23)) + α, p101 = 1

2λ13 − α,

p010 = 1
2 (1 − (λ12 + λ23)) + α, p110 = 1

2λ12 − α,

p011 = 1
2λ23 − α, p111 = α.

In order for this solution to yield probabilities, every p∗∗∗ must lie in [0, 1]. Since p111 = α,
α ≥ 0. From the p011, p101, and p110 equations it follows that

0 ≤ α ≤ 1
2 min{λ12, λ23, λ13}. (2)
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The p000 equation requires that

α ≤ 1
2 (λ13 + λ12 + λ23 − 1). (3)

With these two conditions, with p001, p010, and p100, we obtain the constraint

1
2 (λ13 + λ12 + λ23 − min{λ13, λ12, λ23} − 1) ≤ α. (4)

Combining (4) and (2), we obtain

1
2 (λ13 + λ12 + λ23 − min{λ13, λ12, λ23} − 1) ≤ 1

2 min{λ13, λ12, λ23}. (5)

As long as an α ≥ 0 exists satisfying (3) and (5) holds, there exists a solution.

From this result, we see that not all positive definite correlation matrices are attainable with
bern( 1

2 ) marginals. For example, if λ12 = λ13 = λ23 = 3
10 then ρ12 = ρ13 = ρ23 = − 2

5 . With
diagonal entries 1, the ρ values form a positive definite graph, but it is impossible to build a
multivariate distribution with bern( 1

2 ) marginals with these correlations.

2.2. The n = 4 case: asymmetric Bernoulli distributions

To show the n = 4 case, it will be useful to understand the problem of drawing a multivariate
Bernoulli (X1, . . . , Xn) where Xi ∼ bern(pi) where i is not necessarily 1

2 .

Lemma 3. An n-dimensional multivariate Bernoulli distribution where the marginal of compo-
nent i is bern(pi) and convexity graph � exists if and only if an n+ 1 dimensional multivariate
Bernoulli distribution exists with bern( 1

2 ) marginals and convexity graph

⎡
⎢⎢⎢⎣

p1

�
...

pn

p1 . . . pn 1

⎤
⎥⎥⎥⎦ .

Proof. Suppose that such an (n+1)-dimensional distribution exists with bern( 1
2 ) marginals

and specified convexity graph. Let (B1, . . . , Bn+1) be a draw from this distribution. Then set
Xi = 1{Bi=Bn+1}, where 1{·} is the indicator function. From the convexity graph it follows that
P{Xi = 1} = pi , and for i �= j , P{Xi = Xj } = P{(Bi = Bj } = λij .

Conversely, suppose that such an n-dimensional distribution with bern(pi) marginals exists.
Let Bn+1 ∼ bern( 1

2 ) independent of the Xi , and set Bi = Bn+1Xi + (1 −Bn+1)(1 −Xi). Then
P{Bi = 1} = 1

2pi + 1
2 (1 −pi) = 1

2 , and P{Bi = Bn+1} = pi , the correct convexity parameter.
Finally, for i �= j ,

P{Bi = Bj } = P{Xi = Xj } = λij .

Lemma 3 can be used to finish the n = 4 case.
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Lemma 4. A random vector (B1, B2, B3, B4) with Bi ∼ bern( 1
2 ) exists (and is possible to

simulate in a constant number of steps) if and only if for

� = min(λ14 + λ24 + λ13 + λ23, λ14 + λ34 + λ12 + λ23, λ24 + λ34 + λ12 + λ13),

u = min{i,j,k} λij + λjk + λik

it is true that
1 − 1

2� ≤ 1
2 (u − 1).

Proof. By using Lemma 3, the problem is reduced to finding a distribution for (X1, X2, X3)

where Xi ∼ bern(λi4) and the upper three-by-three minor of � is the new convexity graph.
Just as in Lemma 2, this provides eight equations of full rank with a single parameter α. Letting
qijk = P{X1 = i, X2 = j, X3 = k}, the unique solutions are

q000 = 1
2 (λ12 + λ13 + λ23) − 1

2 − α,

q001 = − 1
2 (λ14 + λ24 + λ13 + λ23) + 1 + α,

q010 = − 1
2 (λ14 + λ34 + λ12 + λ23) + 1 + α,

q011 = 1
2 (λ24 + λ34 + λ23) − 1

2 − α,

q100 = − 1
2 (λ24 + λ34 + λ12 + λ13) + 1 + α,

q101 = 1
2 (λ14 + λ34 + λ13) − 1

2 − α,

q110 = 1
2 (λ14 + λ24 + λ12) − 1

2 − α,

q111 = α.

All of these right-hand sides lie in [0, 1] if and only if 1 − 1
2� ≤ 1

2 (u − 1), and α is chosen
to lie in [1 − 1

2�, 1
2 (u − 1)].

As with the three-dimensional case, this proof can be used to simulate a four-dimensional
multivariate symmetric Bernoulli: generate (X1, X2, X3) using any α ∈ [1− 1

2�, 1
2 (u−1)] and

the q-distribution, then generate B4 ∼ bern( 1
2 ), and then set Bi to be B4Xi + (1 −B4)(1 −Xi)

for i ∈ {1, 2, 3, 4}.

3. Conclusions

The Fréchet–Hoeffding bounds provide a lower and upper bound on the pairwise correlation
between two random variables with given marginals. Hence, for higher dimensions the corre-
lation matrix provides edge weights for a convexity graph whose parameters indicates where
on the line from the lower to the upper bound the correlation lies. If it is possible to build a
multivariate distribution with these convexities for marginals that are symmetric Bernoulli then
it is possible to build a multivariate distribution with these convexities for arbitrary marginals.
For two, three, and four dimensions, the set of convexity matrices that yield a symmetric
Bernoulli distribution is characterized completely. For five or higher dimensions, every subset
of three and four have these characterizations as necessary conditions.
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