WHEN IS THE ITERATE OF A FORMAL POWER SERIES ODD?

BRUCE REZNICK

(Received 1 May 1977; revised 15 February 1979)
Communicated by E. Strzelecki

Abstract

The formal power series (fps) $f(z)=\sum_{i=1}^{\infty} a_{i} z^{i}$ is homozygous mod k if $a_{i} \neq 0$ and $a_{j} \neq 0$ implies $i \equiv j \bmod k$. This generalizes even and odd fps . If f is homozygous $\bmod k$ then all iterates of $f\left(f_{n}=f \circ f_{n-1}\right)$ are also homozygous mod k, but the converse is false-there are many non-odd fps f for which $f(f(z))=z$. It is shown that if f is not homozygous $\bmod k$ but f_{n} is homozygous, then $f_{n r}(z)=z$ for some r. If all coefficients are real then, in fact, $f(f(z))=z$.

Subject classification (Amer. Math. Soc. (MOS) 1970): 39 A 05.

1. Introduction

A formal power series (fps) may be classified as even or odd if all exponents which appear are even or odd integers. Any iterate of an even or odd fps is itself an even or odd fps , but the converse is not true. For example, the fps

$$
f(z)=c^{-1} \sum_{i=1}^{\infty}(-c z)^{i}=-z(1+c z)^{-1}
$$

satisfies $f(f(z))=z$. Roughly speaking, this will turn out to be the only type of exception; if an fps function which is not odd (or even) has an iterate which is odd (or even), then some further iterate is z.

The work in this paper grew out of an NSF Summer Undergraduate Research Project on $f(f(x))=\sin x$. My advisor at that time was Professor W. A. J. Luxemburg, and I wish to express my general gratitude to him. I also wish to thank the referee for suggesting the germ of the final corollary as well as several simplifications of the proofs.

2. Notation and preliminaries

Throughout we shall consider formal power series with fixpoint 0 (that is, $f(0)=0$). All theorems may be easily recast to allow for different fixpoints. Iteration without fixpoints requires conditions on convergence which remove us from the realm of the fps.

An fps $f, f(z)=\sum_{i=1}^{\infty} a_{i} z^{i}, a_{i}$ complex, will be called homozygous mod k if $a_{i} \neq 0, a_{j} \neq 0$ implies $i \equiv j \bmod k$. If f is not homozygous $\bmod k$ it will be called hybrid mod k. Every fps is homozygous mod 1 , even or odd fps are homozygous $\bmod 2$. The composition of the two fps f and g is written $f_{\circ} g$ and the iterates of f are defined inductively by $f_{n}=f_{\circ} f_{n-1}$. If $a_{1} \neq 0$ then the coefficients of an fps g satisfying $f(g(z))=z$ may be determined recursively; $g(z)=a_{1}^{-1} z+\ldots$ is written $f^{-1}(z)$. The fps f and g commute if $f \circ g=g \circ f$. Any two iterates of f commute.

The first lemma is trivial but useful. The proof is omitted.

Lemma 1. The following are equivalent.
(i) The fps $f(z)$ is homozygous mod k.
(ii) For some primitive k th root of unity ε and some integer $r, 0 \leqslant r \leqslant k-1$, $f(\varepsilon z)=\varepsilon^{r} f(z)$.
(iii) One can write $f(z)=\sum_{j=0}^{\infty} a_{j k+r} z^{j k+r}(1 \leqslant r \leqslant k)$.

Lemma 2. If f is homozygous mod k then all iterates of f are homozygous mod k.

Proof. If $f(\varepsilon z)=\varepsilon^{r} f(z)$ then $f\left(\varepsilon^{m} z\right)=\varepsilon^{r m} f(z)$ by induction, hence

$$
f_{n}(\varepsilon z)=\varepsilon^{r^{n}} f(z)
$$

The remainder of this paper is devoted to finding a converse for Lemma 2. We shall need several results of Baker (1962). Baker's proofs are relatively short and will not be reproduced here.

Theorem. (Baker (1962).)
(i) If g and h commute, where $g(z)=\sum_{i=1}^{\infty} a_{i} z^{i}$ and $h(z)=z+\sum_{i=m+1}^{\infty} b_{i} z^{i}$, $b_{m+1} \neq 0, m \geqslant 1$, then $a_{1}^{m}=1$.
(ii) If, in (i), $a_{1}=1$, then $a_{2}=\ldots=a_{m}=0$ while a_{m+1} is arbitrary and to each λ, there is a unique fps g, denoted h_{λ}, with $a_{m+1}=\lambda b_{m+1}$.
(iii) For each a_{1} with $a_{1}^{m}=1$, there is exactly one fps $H(z)=\sum_{i=1}^{\infty} c_{i} z^{i}$ with $c_{1}=a_{1}, H_{m}(z)=z$ and $H_{\circ} h=h \circ H$. The series $g(z)=\sum_{i=1}^{\infty} a_{i} z^{i}$ with $a_{1} z$ as leading term are precisely $H \circ h_{\lambda}$ for various λ.

3. Spadework

Suppose $f(z)=\sum_{i=1}^{\infty} a_{n_{i}} z^{n_{i}}\left(a_{n_{i}} \neq 0\right)$ is a hybrid fps $\bmod k$. Write $f \sim\left(n_{1}, n_{j}\right)_{k}$ where j is the smallest index for which $n_{j} \not \equiv n_{1} \bmod k$.

Lemma 3. If $f \sim(c, d)_{k}$ and $c>1$, then any iterate f_{m} is also hybrid $\bmod k$ and $f_{m} \sim\left(c^{m}, c^{m}+d-c\right)_{k}$.

Proof. Suppose $f(z)=\sum_{i=1}^{\infty} a_{n_{i}} z^{n_{i}}$ and $f_{s}(z)=\sum_{k=1}^{\infty} b_{m_{k}} z^{m_{k}}$ where $a_{n_{i}}, b_{m_{k}} \neq 0$. Then $f_{s+1}(z)=\sum_{i=1}^{\infty} a_{n_{i}}\left(\sum_{k=1}^{\infty} b_{m_{k}} z^{m_{k}}\right)^{n_{i}}$ and so z^{r} will appear in $f_{s+1}(z)$ only if r is a sum of n_{i} terms each of which is an m_{k}. Even so, there may be cancellations: $f(z)=\sum_{i=1}^{\infty}(-1)^{i} z^{i}, f(f(z))=z$. The lemma will be proved by induction on m; the result is true for $m=1$. Assume it for $m=s$; then, keeping the previous notation, $n_{1}=c, m_{1}=c^{s}, m_{j^{\prime}}=c^{8}+d-c$ and $m_{i} \equiv m_{1} \bmod k$ for $1 \leqslant i<j^{\prime}$. The smallest exponent in f_{s+1} will come from the smallest possible sum $\sum_{u=1}^{n_{i}} m_{k_{u}}$, which is clearly c^{s+1}. The coefficient of $z^{c^{c+1}}$ derived from $f \circ f_{s}$ is $a_{c}\left(b_{c^{\prime}}\right)^{c}$ which does not vanish. If $n_{i} \equiv n_{1}$ and each $m_{k_{u}} \equiv m_{1}$, then the sum is congruent to c^{8+1}. The smallest exponent not congruent to c^{8+1} thus arises either when $n_{i} \not \equiv n_{1}$ and each $m_{k_{u}} \equiv m_{1}$ (giving $c^{s} d$) or when $n_{i}=n_{1}$, one $m_{k_{u}}$ is m_{j}, and the rest are m_{1} (giving $c^{8+1}+d-c$). The latter is smaller and the coefficient of $z^{0+1}+d-c$ derived in this way is $c a_{c}\left(b_{c}\right)^{c-1} b_{c^{s}+d-c}$, which does not vanish. Accordingly, the induction hypothesis is verified for $m=s+1$.

Lemma 4. Suppose $f(z)=\sum_{i=1}^{\infty} a_{n_{i}} z^{n_{i}}, a_{n_{i}} \neq 0$ and $f \sim(1, t)_{k}$. Then the coefficients of z and z^{i} in f_{n} are a_{1}^{n} and $a_{t} a_{1}^{n-1} \sum_{i=0}^{n-1}\left(a_{1}^{l-1}\right)^{i}$ respectively.

Proof. The arguments of the last lemma demonstrate that any power of z less than t which appears in f_{n} is congruent to $1 \bmod k$. This lemma is also proved by induction on n and is evidently true for $n=1$. Assume it true for $n=r$. We have $f(z)=\sum_{i=1}^{\infty} a_{n_{i}} z^{n_{i}}, n_{1}=1, a_{1} \neq 0, n_{j}=t, t \not \equiv 1 \bmod k, n_{i} \equiv 1 \bmod k$ for $1 \leqslant i<j$ and $f_{r}(z)=\sum_{i=1}^{\infty} b_{m_{i}} z^{m_{i}}, m_{1}=1, b_{1}=a_{1}^{r}, m_{i^{\prime}}=t, m_{i} \equiv 1 \bmod k$ for $1 \leqslant i<j^{\prime}$. Also, $f_{r+1}(z)=f\left(f_{r}(z)\right)=a_{1} f_{r}(z)+\sum_{i=2}^{\infty} a_{n_{i}}\left(f_{r}(z)\right)^{n_{i}}$. If $d(s)$ is the coefficient of z^{\prime} in $f_{s}(z)$, then $d(1)=a_{i}$ and $d(r)=a_{i} a_{1}^{r-1} \sum_{i=0}^{r-1}\left(a_{1}^{i-1}\right)^{i}$ by hypothesis. Considering how z^{t} can appear in $f_{r+1}(z)$, we have

$$
d(r+1)=a_{1} d(r)+a_{l}\left(a_{1}^{r}\right)^{l}=a_{l} a_{1}^{r} \sum_{i=0}^{r-1}\left(a_{1}^{t-1}\right)^{i}+a_{l} a_{1}^{r l}=a_{l} a_{1}^{r} \sum_{i=0}^{r}\left(a_{1}^{l-1}\right)^{i}
$$

and the lemma is proved.

4. On the inheritance of the homozygous trait

The following theorem is a converse to Lemma 2.

Theorem. If f is hybrid mod k and f_{n} is homozygous mod k, then $f_{n s}(z)=z$ for some integer s. Further, if $f(z)=\sum_{i=1}^{\infty} a_{i} z^{i}$, then a_{1} is a primitive nsth root of unity. In particular, if f is real, then $f(f(z))=z$.

Proof. Suppose $f \sim(c, t)_{k}$. In the light of Lemma 3, we must have $c=1$, and, by Lemma 4, the coefficient of z^{t} in f_{n} is $a_{1}^{n-1} a_{t} \sum_{i=0}^{n-1}\left(a_{1}^{t-1}\right)^{i}$. As f_{n} is homozygous $\bmod k$ and $t \equiv 1 \bmod k$, this coefficient must vanish. Hence, $\left(a_{1}^{t-1}\right)^{n}=1$ and $a_{1}^{(-1} \neq 1$. Let $h=f_{n(l-1)} ; h$ is homozygous with leading term $a_{1}^{(l-1) n} z=z$. Let ε be a primitive k th root of unity and define $g(z)=\varepsilon^{-1} f(\varepsilon z)$. As f is hybrid $\bmod k$, $f(\varepsilon z) \neq \varepsilon f(z)$, so $f \neq g$. The leading term of both f and g is $a_{1} z$. Since f_{n} is homozygous, $f_{n}(\varepsilon z)=\varepsilon f_{n}(z)$ and so $g_{n}(z)=f_{n}(z)$. It follows that $f_{n(t-1)}=g_{n(t-1)}=h$.

Suppose that $h(z) \neq z$, then $h(z)=z+\sum_{n=m+1}^{\infty} b_{n} z^{n}, b_{m+1} \neq 0$ and k divides m since h is homozygous. We now apply the several parts of Baker's theorem. Since both f and g commute with h and have the same leading coefficient, there exists $H(z)=\sum_{i=1}^{\infty} c_{i} z^{i}$ and $h_{\lambda}(z)=z+\lambda b_{m+1} z^{m+1}+\ldots$ such that $f=H \circ h_{p}$ and $g=H \circ h_{q}$. By construction, the coefficient of z^{m+1} in $H \circ h_{\lambda}$ is $\lambda c_{1} b_{m+1}+c_{m+1}$, but the coefficient of z^{m+1} is the same in f and g because $m+1 \equiv 1 \bmod k$. Thus $p c_{1} b_{m+1}+c_{m+1}=q c_{1} b_{m+1}+c_{m+1}$, and, since $c_{1} b_{m+1} \neq 0, p=q$ so that $f=g$, a contradiction. Therefore, $h(z)=z$.

Finally, suppose $a_{1}^{r}=1$ for $r<n(t-1)$; we may take $r r^{\prime}=n(t-1), r^{\prime}>1$. Let $k=f_{r}$, then $k_{r}(z)=z$. If $k(z) \neq z$, then $k(z)=z+a_{t} z^{i}+\ldots a_{t} \neq 0$. By lemma 4, $k_{r^{\prime}}(z)=z+r^{\prime} a_{l} z^{i}+\ldots \neq z$, a contradiction, so $f_{r}(z)=z$ in any case. In particular, if f is real, then a_{1} is real hence $a_{1}=-1$ and $f(f(z))=z$.

5. Examples

We may characterize the $\mathrm{fps} f$ in the last theorem still further. Suppose $f_{r}(z)=z$ and $f(z)=\varepsilon_{r} z+\ldots$, where ε_{m}, in general, is an m th root of unity. There is a canonical fps T such that $f(z)=T^{-1}\left(\varepsilon_{r} T(z)\right)$. Indeed, let

$$
T(z)=r^{-1} \sum_{j=0}^{r-1} \varepsilon_{r}^{-j} f_{j}(z)
$$

$T(z)=z+\ldots$ is invertible. It is readily verified that $T(f(z))=\varepsilon_{r} T(z)$; this is a solution to the Schröder equation. Further, the expressions of f and T in terms of
each other show that they are either both homozygous mod k or both hybrid $\bmod k$. (Note that, if an fps h is invertible and homozygous, then so is $h^{-\mathbf{1}}$.)

Corollary. Using the previous notation, f is hybrid mod k and f_{n} is homozygous $\bmod k$ (and so $f_{n s}(z)=z$) if and only if $f(z)=T^{-1}\left(\varepsilon_{n s} T(z)\right)$, where $T=R \circ U$, R is hybrid mod k and homozygous mod s, and U is homozygous mod k, and both R and U are invertible.

Proof. If h is invertible and homozygous $\bmod k$ and $h_{1}=h \circ h_{2}$, then $h_{2}=h^{-1} \circ h_{1}$ so that h_{1} and h_{2} are either both homozygous or both hybrid. Suppose first that T, R and U are as described and $f(z)=T^{-1}\left(\varepsilon_{n s} T(z)\right)$. By the previous argument, T is hybrid $\bmod k$ and so f is too. Let ε_{s} be the coefficient of z in $f_{n}(z)$; it is the s th root $\varepsilon_{n s}^{n}$. We have $f_{n}(z)=T^{-1}\left(\varepsilon_{n s}^{n} T(z)\right)=T^{-1}\left(\varepsilon_{s} T(z)\right)=U^{-1}\left(R^{-1}\left(\varepsilon_{s} R(U(z))\right)\right)$. Since R is homozygous $\bmod s, \varepsilon_{s} R(U(z))=R\left(\varepsilon_{s}^{m}(U(z))\right)$, so $f_{n}(z)=U^{-1}\left(\varepsilon_{s}^{m} U(z)\right)$ and is homozygous mod k.

On the other hand, suppose f is hybrid $\bmod k$ and f_{n} is homozygous $\bmod k$. Define T as before and let $U(z)=s^{-1} \sum_{j=0}^{s-1} \varepsilon_{s}^{-j} f_{n j}(z)$. Then U is homozygous $\bmod k\left(\right.$ since f_{n} is) and $f_{n}(z)=U^{-1}\left(\varepsilon_{s} U(z)\right)=T^{-1}\left(\varepsilon_{s} T(z)\right)$. Therefore,

$$
T\left(U^{-1}\left(\varepsilon_{s} U(z)\right)\right)=\varepsilon_{s} T(z)
$$

Let $R=T \circ U^{-1}$ and $z=U^{-1}(y)$, then $R\left(\varepsilon_{s} y\right)=\varepsilon_{s} R(y)$, so that R is homozygous $\bmod s$. Since T is hybrid and U is homozygous $\bmod k, R$ is hybrid $\bmod k$.

Reference

I. N. Baker (1962), 'Permutable power series and regular iteration', J. Austral. Math. Soc. 2, 265-294.

Department of Mathematics
University of California
Berkeley, California 94720
U.S.A.

