
THE EVOLUTION OF COMET ORBITS

Edgar Everhart

Abstract. This review states and defends seven conclusions on the

origin of comets and the evolution of their orbits:
-1/2

1. There is a N law of survival of comets against ejection

on hyperbolic orbits, where N is the number of perihelion passages.

2. The short-period comets are not created by single close

encounters of near-parabolic comets with Jupiter.

3. Observable long-period comets do not evolve into observable

short-period comets.

4. Unobservable long-period comets with perihelia near Jupiter

can evolve into observable short-period comets.

5. Long-period comets cannot have been formed or created within

the planetary region of the solar system. (This conclusion is somewhat

qualified because of possible effects of stellar perturbations. )

6. It is possible that some of ths short-period comets could have

been formed inside the orbit of Neptune, but it is certain that others

have the same distant source as the long-period comets.

7. The circularly-restricted 3-body problem, and its associated

Jacobi integral, are not valid approximations to use i±i studying origin

and evolution of comets.

The starting data are the orbits of known comets. We are indebted

to the compilations and catalogs of Galle (1894), Porter (1961), and

Marsden (1972). Models of comet origin and evolution must produce

distributions of periods, inclinations, and other properties that fit these

data, taking into account that the data include effects of observational

selection.
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Analytic methods are often used to study orbit evolution.

However, in my opinion treatments that are based on approximating

the solar system by the restricted 3-body problem are not valid, and

this is discussed in item 7 below On the other hand, statistical

methods, such as those of Shteins (1972) which treat diffusion of

orbits, are informative and useful.

The most obvious approach is to start from the known orbits

and calculate backwards or forwards in time. One would suppose that

upon projecting the orbit back in time and allowing for planetary

perturbations one could find the original orbit on which the comet

first entered the solar system. This procedure works reasonably

well for near-parabolic orbits. The most careful studies of these

show no original hyperbolic orbits, but some comets enter the solar

system on elliptical orbits so nearly parabolic that their original

aphelia are at 25000 to 100000 AU. This latter set correspond to

the long-period comets originating at these vast distances within a

cloud of comets described by Oort (195C).

Starting with these near-parabolic comets and calculating forward

we find that planetary perturbations during their first passage remove

half of them so that they then leave the solar system forever on hyper-

bolic orbits. The other half leave on elliptical orbits and will return,

Unfortunately, for those in elongated elliptical orbits all accuracy is

lost between the first and second passages. An example: Suppose that

a c.omet after interacting with the planets then moves well outside the

orbit of Neptune on an elliptical orbit whose period is exactly 3600

years. When it returns it may pass some distance in front of Jupiter

and lose energy such that its period after leaving the planetary

region is now 23457 years, and so on. Now take the same comet and
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start again, altering just one of its elements by one part in 10 . The

elliptical orbit might now have a period of 36003 years, and when the

comet returns the next time (three years or a quarter of a Jupiter

period later than in the first case) it passes close behind Jupiter,

gains energy and leaves the planetary region on a hyperbolic orbit never

to return. The minute difference between the two cases has caused

an entirely different evolution. Whether calculated forwards or back-

wards, the orbits of very-long-period comets are extraordinarily

sensitive to the starting conditions.

The situation is better for the short-period comets, where

the periods are more nearly comensurate with planetary periods,

(in this paper a short-period comet is one whose period is less

than 16 years) Here we recall the work of Kazimirchak-Polonskaya (1973)

in projecting the orbits of known short-period comets into the past and

into the future. These show the sort of behavior to be expected, but

in this case again most of the accuracy is lost after a close approach

to Jupiter because the impact parameter at Jupiter and the orbit

afterwards is very sensitive to the starting elements.

Probably the most powerful and exact approach is that of numerical

experiments with random starting conditions. This is the Monte Carlo

method. If one wants to find how the solar system interacts with

comets that approach it on parabolic orbits, he can throw a thousand

hypothetical parabolic comets at a fairly realistic model of the solar

system. No approximations need be made; all 9 planets can be included

in their appropriate elliptical orbits. Each comet's orbit is calculated

fairly exactly until planetary perturbations remove it on a hyperbolic

orbit, even if it makes thousands of revolutions, as it does in some

cases. There is the same extreme sensitivity to the starting elements,

but the evolution of each orbit is a typical random result, and the
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distributions of properties are not dependent on the particular set of

initial conditions. When the problem is repeated with an independent

and new set of random initial conditions, this gives the same overall

results within a certain statistical tolerance.

This Monte Carlo approach has already established seven conclusions

or facts, and these are enumerated below. I believe they are established

beyond reasonable doubt and am prepared to defend them.

1. The effect of planetary perturbations on a parabolic flux

of comets is to remove some of these on hyperbolic orbits, the number

surviving in elliptical orbits being proportional to N ' , where N is

the number of perihelion passages of each individual comet. The same

N" ' law is reached ultimately when the starting orbits are circular.

The N ' law is the result of numerical experiments, Everhart (1972b),

The straight lines of slope -1/2 in Figure 1 illustrate the law for two

cases. The upper line labeled B follows the survival of 5500 initially

parabolic comets of small perihelia, and line A that of 600 such comets

with perihelia near Jupiter's orbit.

One can think of this survival as the random walk of a population

near the edge of a cliff, each member taking steps of a certain distribution

of sizes randomly towards or away from the edge. Of course, for the

comets the steps are steps in total energy. The elliptical orbits are

back from the edge, the parabolic orbit is just at the edge, and the

hyperbolic orbit, from which there is no return, corresponds to a step

beyond the edge of the cliff. Surely this simple law found here empirically

is also derivable from random walk theory.

In the case of initially circular orbits, the population of comets

begins its random walk in energy fairly far from the edge of the cliff.

There is a delay, and no members are lost for some time. Ultimately,

however, some members are lost and the numerical experiments present-
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Fig. 1. This concerns survival of originally parabolic comets against

being thrown out of the Sun-Jupiter system on hyperbolic orbits. The

number remaining in elliptical orbits is plotted vs N, the number of

returns. Line A is for hypothetical cases whose original parabolic

elements were in the capture region, i <9 and 4 AU^q <6 AU. Line
o o

B is for 5997 cases of all inclination and with q <4 AU. There were
o

6 left after 8000 returns in case A, and 80 left after 1600 returns in
-1/2

case B. Both lines show a N dependence.
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ly approach the same N~*'^ law. See the upper curve in Figure 2. ,

which figure also appears in Everhart (1973b).

Note that this survival vs number of returns is not the same as

survival as a function of time. For comets there is no thermal

dissipation except when they are near the sun, so in a sense, their

lifetime is measured in perihelion passages rather than in years.

Lyttleton and Hammersley (1963) have studied the actual time dependence

of survival, but this does not appear to have such a simple formula.

2. Although it is possible for an orbit of short period to be

the result after a parabolic comet makes a single close encounter

with Jupiter, this mechanism does not explain the existence of the

short-period comets.

This was shown by H. A. Newton (1893). Not wanting to

believe his results, and being a little dubious about Newton's procedures,

I redid the problem as a numerical experiment and came to exactly

the same conclusions, Everhart (1969). The convincing reason that

short-period comets were not captured by Jupiter in a single encounter

is that, if this were true, then one-fourth of all short-period comets

would be retrograde, a result contrary to the data. The predicted

distribution of periods also has the wrong shape. The detailed results

may be found in Figures 6 and 7 the 1969 paper cited above.

3. There is no evolutionary path for long-period comets of

small perihelia to evolve onto orbits of 5- to 13-year periods typical

of short-period comets.

Such evolution simply does not happen in the numerical experiments,

Some insight is offered by the lower curve, labeled B, in Figure 3.

This shows the average period of those comets surviving in elliptical

orbits after N returns. Comets that begin on parabolic orbits of small

perihelia reach shorter periods very slowly. They cut across Jupiter's
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Fig. 2. This concerns the survival of hypothetical comets started in

circular orbits in the Jupiter-Saturn region. The curve on the right

plots vs revolution number the survival against loss infinity for 80

chaotic orbits. On the left is plotted vs revolution number N the

number that have not yet achieved a perihelion value less than 2. 6 AU

at least once.
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orbit at a large angle, the interaction is brief, and the energy perturbations

are small. Those that survive the attrition of removal on hyperbolic

orbits would not also survive the solar thermal dissipation of hundreds

of thousands of returns at small perihelia. These results are from a

study of the origins of short-period comets, Everhart (1972a, 1972b),

but Figures 1 and 3 here have not previously been published.

4. There is a path for long-period comets of small inclination

and with original perihelia near Jupiter's orbit to evolve into orbits

typical of short-period comets. One phase of the evolution is a near-

circular orbit just outside Jupiter's orbit.

This result from Everhart (1972a) may be understood by examining

the upper curve of Figure 3. This class of orbits is brought to short

periods rather rapidly because they interact strongly with Jupiter.

Having their perihelia near Jupiter's orbit, they experience little

solar dissipation during most of their evolution. At some stage in

the evolution the orbit can become like that of a typical short-period

comet. This happens after a rather sudden drop in the perihelion

distance. The evolution shown in Figure 4 is accelerated in that each

successive revolution as drawn might be the shape reached after inter-

grating for another 100 revolutions. The circular phase of the orbit

outside Jupiter's distance sometimes appears before and sometimes

after the small-perihelia phase. It reminds one of the present orbit

of Comet Schassmann-Wachmann I.

This evolutionary path is a qualitative result. A paper by

Joss (1973) has found the above mechanism to be unable to account

for the observed number of short-period comets, but a contrary

result by Delsemme (1973) finds the model to be quantitatively

acceptable. Joss assumes the existing numbers of long- and inter-

mediate-period comets with perihelia near Jupiter to be random in
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Fig. 3. The average period P is plotted vs the number of returns N.

Curve A is for the comets from the capture region, followed up to 8000

returns. The broken line A1 is for a particular one of these. It would

have been visible as a short period comet of low perihelion distance only

between its 784th and 848th return as indicated by the dashed circle.

Curve B is for 5997 comets of original perihelion distance q <4 AU,
o

followed up to 1600 returns where there were 80 still remaining. The

line C indicates the extent to which these curves show a (I/a) dependence

on N , equivalent to P depending on N
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their orbital parameters, and thus to have an inclination distribution

as the sine of the inclination. Accordingly, there would be a very

small number of comets with inclination near zero. Delsemme, how-

ever, looks at the number of such comets reaching perihelia per unit

time, and he concludes, following work by Shteins (1972), that there

is a tendency towards a concentration at small inclinations. This is

one reason for the different conclusions of the two papers.

Evidently the problem needs more study- As pointed out by

Kazimirchak-Polonskaya (1973), the outer planets may be effective in

capturing comets of very large perihelia, to 30 AU. Her ideas are

borne out by further numerical experiments of the writer (yet unpublished).

Extending the capture region in perihelia to 3 0 AU would enlarge by a

factor of 5 the number of long-period comets available for eventual

capture to short periods by this mechanism.

Fig. 4. The dashed line is Jupiter's orbit, and the solid line traces the

path of a comet that entered originally on a parabolic path. The evolu-

tionary path is simplified in that such changes would require hundreds of

revolutions. The comet has a large perihelion distance except when it

is in an orbit like those of the short-period comets.
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5. Long-period comets do not originate within the planetary-

regions of the solar system.

The cloud of comets described by Oort (1950), which is the

apparent source of the long-period comets, could not be composed of

comets originally created within the orbit of Neptune, if the mechanism

for removing them to large distances is that of planetary perturbations.

In numerical experiments one can watch the diffusion of 1/a-values for

hypothetical comets started within the planetary regions. (Here a is

the semimajor axis and I/a is a measure of the negative energy,

positive for ellipses, negative for hyperbolas, and zero for parabolas).

Figure 5, reproduced from Everhart (1973b), shows that the number of

orbits vs I/a goes linearly to zero at I/a = 0. (Any one-dimensional

diffusion or random walk problem, such as this one, where there is an

absorbing edge, will show a concentration that goes linearly to zero at

that edge. ) However, this does not agree with the distribution observed

for long-period comets, which shows a peak at I/a r 0, In an experi-

ment, Everhart (1973a, b), starting with circular orbits in the Jupiter-

Saturn region, and following many examples for thousands of revolutions,

not one orbit typical of an observable long-period comet was found.

It is possible, however, that stellar perturbations on comets very

far from the sun would change this conclusion. A study of these effects

is in progress by the present author.

6. It is possible that some short-period comets could have

originated within the orbit of Neptune.

If one starts a number of hypothetical comets in circular orbits

in the Jupiter-Saturn region, a fair number of these are seen to evolve

into orbits like those of short-period comets, Everhart (1973b). Thus

the distributions of their inclinations and periods are very much like

those of the observed comets. However, one also gets the same reason-

able-looking distributions if one starts with near-parabolic comets of

small inclination with perihelia near Jupiter's orbit.
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Fig. 5. The distribution of 1/a-values for 100 orbits, each followed for

3000 revolutions. Peaks are seen near Jupiter's period of 11.9 yr, near

Saturn's period of 29- 5 yr, and between these at the positions of the mid-

range orbits. The dashed line near I/a = 0 is the distribution for known

long-period comets.
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Whether the fraction of short-period comets originating within

the planetary regions is 0% or 99%, we cannot yet say on the basis of

orbital evolution studies. We do know that some, if not all, must

originate at large distances. Studies such as that of Joss and that

Delsemme referred to already, should help decide whether it is

necessary to postulate two sources of short-period comets, or whether

a single source in a comet cloud at large distances is sufficient

Within the solar system there is a class of orbits that has been

called "chaotic orbits", Everhart (1973a,b), as opposed to those in more

regular patterns such as Trojans, horseshoes, or librating orbits.

When chaotic orbits have small perihelia they resemble orbits of typical

short-period comets. The pattern of the chaotic orbits appears to be

independent of their previous history or origin.

7. The Jacobi integral (and its approximate forms, such as

the Tisserand criterion and the "constant encounter velocity near

Jupiter") should not be used in studies of evolution in the solar system.

For the purpose of studying small bodies such as comets, it

has been customary to idealize and simplify the solar system retaining

only the sun, Jupiter, and the comet in the form of the circularly-

restricted problem of 3 bodies. If this were valid then the Jacobi

integral could be used in analytic treatments on the origin and evolution

of comets. Such papers are easy to write, and there have been dozens

of them. Of course, the authors of these papers realize the approximation

they are making, but they assume without any proof that it is relatively

harmless, and with this approximation they derive simple and far-

reaching conclusions. There is a particularly strong incentive to use

the Jacobi integral because it is the only conservation equation, and

without it an analytic development is difficult, if not impossible.

Unfortunately, numerical experiments with a fairly realistic model

of the solar system shows the approximation to be downright wrong.
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One example of this: According to the restricted problem there is an

absolute barrier such that if the comet's Jacob) quantity is greater than

3.0, then the comet cannot penetrate from a perihelion outside Jupiter's

orbit to one inside Jupiter's orbit. However, the exact orbital inte-

grations show that in the course of many hundreds of revolutions

a comet can at times have its perihelion well inside Jupiter's orbit

and at other times its perihelion outside not only Jupiter's orbit

but also outside Saturn's orbit. The corresponding values of the

Jacobi quantity range from 2. 8 to 3. 6. It is just plain wrong to

assume that a comet now in a short-period orbit originally entered

the solar system with about the same Tisserand constant that it now

has. Figure 6, reproduced from Everhart (1973b), shows the large

and frequent changes in C , the Jacobi quantity referred to Jupiter,
j

in the course of 3000 revolutions. (These changes are not due to

inaccuracies in the numerical integration. When the mass of Saturn

was set to zero, and Jupiter's orbit was made circular, then C
5 J

was found to be constant to within one part in 10 in the course of

1000 revolutions. ) Some of the variations in Figure 6 occur because

Jupiter's orbit is not circular, but the major and sudden changes

in this Jacobi quantity are caused by Saturn. In the paper cited

above it is shown that there is an approximate relationship between

the changes in C and the change in heliocentric energy caused by
j

Saturn.

I hope I have persuaded readers not to write, and not to believe,

simple discussions of the evolution of comets based on the restricted

problem. Classification of comets according to their Tisserand

constant cannot be valid7 and developments based on a constant

encounter velocity of comets at Jupiter's sphere of influence are

not on a good foundation.
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Fig. 6. A detailed history of the orbit of one hypothetical comet integrated

for 3000 revolutions. The solar system model included Jupiter and Saturn,

both in elliptical orbits. Here i is the inclination, C is the Jacobi
j

quantity referred to Jupiter, q is the perihelion distance, e is the eccen-

tricity, and I/a measures the negative energy. The sloping line labeled

t measures time, repeating its traverse every 15000 years. The line j

is a comet-sun-planet angle discussed in the paper from which this figure

is taken, Everhart (1973b).
Note that C varies between 2.8 and 3.6, and that q varies between

j

1. 5 AU and 10 AU.
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DISCUSSION

B. G. Marsden: I am glad that you qualified your original point 5, for while
your calculations represent a great step forward in our understanding of the way
short-period comets evolve, I don't think we can use them to distinguish between
the possibilities that comets originate at the extreme outskirts of the solar sys-
tem or just beyond the orbit of Neptune. I must agree that the existence of the
Oort cloud, particularly now that Sekanina and I have considerably refined the
extent of the region from which "new" comets appear to have come, makes the
idea of an origin at almost interstellar distances very attractive. But at the
same time, when one considers that there are so many really spectacular comets
of aphelion distance only a couple of hundred astronomical units—comets like
Bennett, Donati, and the Kreutz sungrazers—one does rather wonder if some of
them perhaps ejected near Neptune and were never out in the Oort cloud.

B. Lowrey: I feel that comments 2, 3, and 7 are overstated or require modi-
fication. While it is true that the Jacobi integral varies in the solar system, it
is useful to study it as an evolutionary parameter. In particular, my use of the
encounter velocity u (related to Tisserand's constant) in a recent paper (June
1973 A. J.) showed that the short period comets divided into two classes—those
of high velocity and those of low velocity. The high velocity short period comets
appeared to relate closely to the long period comets, and the low velocity ones
did not. This use of the Jacobi integral therefore suggests a more detailed ex-
amination of orbit-element distributions to see if the high velocity short period
comets compare with the long period comets.

D. Yeomanns: As you know, the aphelion distance of comet Encke is 4.1
A.U. The non-gravitational acceleration of Comet Encke's mean motion has
been suggested as a possible mechanism for the evolution of Encke's aphelion
distance within Jupiter's orbit. In your investigation of the evolution of para-
bolic orbits with high perihelia into short period comets of low perihelia, did
you find any examples of short period comets whose aphelia were inside Jupiter's
orbit?

E. Everhart: No, not at all; I found that did not happen. On the other hand,
I am a little bit dubious about the non-gravitational effects having that effect on
Comet Encke, because Marsden has calculated this thing for a number of appari-
tions backward in time, and I could detect no systematic change in its energy or
its aphelia over a period of time. If I had to guess what caused Comet Encke, I
would say it was an encounter with Earth or Venus, simply because that would
and could bring it in closer.
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DISCUSSION (Continued)

B. G. Mars den: The smallest aphelion distance I know of produced by en-
tirely gravitational means from a comet that was originally on the outside is 4. 5
astronomical units, and this was in the case of Comet Oterma. That happened to
be perturbed by Jupiter into a nice resonance orbit, at 3 to 2 resonance with
Jupiter, although it's hard to see that the 3 to 2 resonance had anything to do
with where the comet was thrown out. It was at least thrown into that 4. 5 A. U.
aphelion; I suppose this is rather close to the limits that one can do by gravita-
tional means.

B. Jambor: Given a comet in a near parabolic orbit and releasing many
small particles, all in hyperbolic orbits, is it possible that these hyperbolic or-
bits could be thrown into elliptical orbits by one encounterwithJupiter (or another
planet) ?

E. Everhart: I think it's possible, but it is very unlikely. The reason why
we don't make comets in a single encounter is that the scale of influence around
Jupiter that would do it is so small it has to be a cumulative group of small
encounters.

D. A. Mendis: While it is clear that with the restricted 3-body problem one
cannot get comets with initial low relative velocity thrown out of the solar sys-
tem, repeated encounters with an elliptic, precessing and changing orbit could
energize the comet towards equipartition (as in the Fermi process) and ultimately
throw it out. This was first pointed out, I believe, by Opik, and the earliest nu-
merical calculations in support were done in 1965 by Arnold.

E. Everhart: Yes, in fact, I find this without using the restricted problem
at all, by simply doing an exact calculation. A particle which is well bound to
the solar system with not nearly enough energy to leave, sooner or later will be
thrown out by repeated encounters with Jupiter. That was the second figure,
showing 80 objects in circular orbits, and by 3000 revolutions some 20 of them
had already been thrown out of the solar system.

S. Vaghi: I understand that for your question concerning the Jacobi integral,
your conclusions were derived from an experiment, a very special experiment,
concerning only Jupiter and Saturn, which is very far from the approximation of
the 3-body problem. You know, perhaps, that in '72 a paper was published by
Kresak, concerning the use of the Jacobi integral as a classificational and evolu-
tionary parameter for comets and asteroids. I would like to know where he was
mistaken.

463
https://doi.org/10.1017/S0252921100501080 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100501080


DISCUSSION (Continued)

E. Everhart: That's one of the papers I am objecting to. I didn't mention
any names, but it's simply that, for something like an asteroid, which doesn't
get very far away from its home base, this might be all right, but for something
like a comet, I don't think so. The comet can range all over its classifications
at various times in its orbital evolution. That's one of the papers I would say is
not valid.

G. Wetherill: I think you overstated the case against the use of the Jacobi
integral in discussions of orbital evolution. If you recall your own figure, in
which the evolution of the various orbital parameters is shown, you will find
that the fluctuation from the mean value of the Jacobi integral is only 10-20 per-
cent, whereas other quantities, such as the semi-major axis and the eccentricity,
change by large factors. It would be better if you were to say that the Jacobi in-
tegral should not be misused rather than saying that it should not be used. Ac-
tually it is quite useful to follow the random walk of the Jacobi integral as well
as that of other quantities, such as I /a and e.

One way in which this is useful in is distinguishing phenomena which are
essentially dependent on the eccentricity and inclinations of the planetary orbits
from those which still would occur to about the same extent in a more simple
solar system and therefore are not critically dependent on assumptions concern-
ing the constancy of the present values of the eccentricity and inclination of the
planets. When this point of view is taken, it turns out most of your conclusions
would also be valid in a much simpler solar system. In contrast, one phenome-
non which is essentially dependent on failure of the restricted 3-body problem is
that of the evolution of nearly circular orbits into hyperbolic escape orbits. This
was understood and discussed by Arnold in his Monte Carlo work published in the
Astrophysical Journal in 1965. For this reason, as well as others, a discussion
of the possible evolution into the Oort cloud of a comet initially in a near-circular
orbit in the Jupiter-Saturn region does not say very much about the equivalent
problem in the region of Uranus and Neptune.

The other comment I would like to make concerns the previous work regard-
ing Comet Encke. I have carried out Monte Carlo calculations for short period
comets in which the perturbation of Earth and Venus as well as those of Jupiter
are included. It turns out that it is very difficult to reduce the aphelion to that
of Encke by Earth or Venus perturbations on a time scale of 103 years. Such
changes are found on a time scale of 106 years but are very improbable for a
comet young enough to still be active. It is much more likely that Encke's pres-
ent orbit is a consequence of non-gravitational forces.

E. Everhart: A comment about the Jacobi integral, I was stating that if
you regard it as a time-varying quantity whose instantaneous value tells you
something about the current orbit, then I will agree it 's properly used, but that's
not the way many people have used it.
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