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Onset of convection cells in a horizontally
rotating cylinder partially filled with liquid
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We investigate flow of liquid which is partially filled in a cylindrical container horizontally
rotating about its axis of symmetry. Even if the rotation is slow enough to keep
the liquid–gas interface almost undeformed, convection cells whose circulation axis is
perpendicular to the container’s rotational axis can be sustained. We conduct experiments
by particle image velocimetry and direct numerical simulations with the S-CLSVOF and
immersed boundary methods to reveal the condition of the Reynolds number, the aspect
ratio of the container and the filling ratio of liquid for the onset of these convection cells.
When the filling ratio is not too large, as the Reynolds number increases, convection
cells appear through a pitchfork bifurcation in an infinitely long cylinder. This bifurcation
becomes imperfect in the case of a finite-length cylinder. In contrast, when the filling
ratio is large enough, convection cells appear through a subcritical bifurcation. Through
these investigations, it becomes evident that the axial wavelength of sustained convection
cells is an increasing function of the filling ratio in an infinitely long cylinder. In practice,
to sustain intense convection cells, we should use a cylinder with the length equal to
an integer multiple of the wavelength of the most unstable mode in the infinite-length
cylinder. Although we focus on the liquid-pool regime with small Froude numbers, the
critical Reynolds number for the pitchfork bifurcation weakly depends on the Froude
number. This dependence is explained by considering the changes in the effective filling
ratio and the convection velocity.
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1. Introduction

Single-phase flow in a cylindrical container rotating about its axis of symmetry at a
constant angular velocity always tends to the solid-body rotation, and therefore axial
flow is never sustained. In contrast, multi-phase flow in a rotating cylinder exhibits a
surprisingly wide variety of states; see Seiden & Thomas (2011). For example, when we
suspend small solid particles in the fluid filled in a container, inertial waves are excited,
which lead to a periodic pattern of particle distribution (Lipson 2001; Seiden, Ungarish &
Lipson 2005). When liquid is partially filled in the cylindrical container, i.e. when there
coexist gas and liquid, flow states can be highly non-trivial and the flow is sometimes
accompanied with axial flow. It is such non-trivial flow of liquid partially filled in a rotating
cylinder (figure 1) that is the target of the present study. Here, we restrict ourselves to the
case where the cylinder rotates horizontally about its axis of symmetry.

Since this flow system is ubiquitous, numerous authors investigated it, in particular, in
the regime where a container rapidly rotates. In such a case, fluid forms a film on the
wall of the container. This rimming flow is not only scientifically interesting, but also
important in engineering applications such as paper manufacturing (Pereira, Valenzuela
& Valenzuela 2010; Ghosh 2011; Hubbe 2021; Majeed et al. 2022), evaporators (Willems
et al. 2010; Chatterjee, Sugilal & Prabhu 2019), centrifugal thermit process (Menekse,
Wood & Riley 2006), centrifugal casting process (Keerthiprasad et al. 2011; Boháček
et al. 2015) and triboelectric nanogenerators (Kim et al. 2016). In fact, flow characteristics
such as the instability of the rimming flow were extensively investigated experimentally,
theoretically and numerically (Phillips 1960; Yih 1960; Johnson 1988; Thoroddsen &
Mahadevan 1997; Hosoi & Mahadevan 1999; Tirumkudulu & Acrivos 2001; Ashmore,
Hosoi & Stone 2003; Benilov, Benilov & Kopteva 2008; Kozlov & Polezhaev 2015;
Kakimpa, Morvan & Hibberd 2016; Nicholson et al. 2019; Sadeghi, Diosady & Blais
2022).

When the rotation of the container is not fast enough to form the rimming flow, a
stationary pool of liquid exists at the bottom of the cylinder. We emphasize that flow
can be non-trivial even in this regime. More concretely, under some circumstances, flow
of partially filled liquid is accompanied by axial motion. The seminal experiments in this
flow regime were conducted by Balmer (1970), who discovered a periodic, in the axial
direction, liquid column. Since then, many experimental and theoretical studies revealed
patterns of the liquid–gas interface in a rotating cylinder (Benjamin & Pathak 1987; Melo
1993; Thoroddsen & Mahadevan 1997; Thoroddsen & Tan 2004; Chen et al. 2007). One of
the most interesting interface patterns observed in this flow is the shark-teeth-like pattern
(Thoroddsen & Mahadevan 1997). Thoroddsen & Tan (2004) visualized flow by using
small bubbles as tracers to discover counter-rotating pairs of convection cells, whose axes
were perpendicular to the rotation axis of the container. They concluded that the creation
of the shark-teeth-shaped interface was relevant to the formation of the convection cells.

We emphasize that the flow sustained in the case with even slower rotations, where
the liquid–gas interface is hardly deformed, is still interesting, although only a few authors
investigated this regime. The most fascinating phenomenon in this regime is the emergence
of the convection cells, whose axis is perpendicular to the rotational axis of the cylinder.
Romanò, Hajisharifi & Kuhlmann (2017) first numerically demonstrated this phenomenon.
Though observed convection cells remind us of those in the experiments by Thoroddsen
& Tan (2004), we note that the slip boundary condition was imposed on the undeformable
liquid–gas interface in the numerical simulations by Romanò et al. (2017). They showed
that when the Reynolds number Re = ωR2/ν, where ω is the angular velocity, R is
the container radius and ν is the kinematic viscosity of liquid, satisfied the condition
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Convection cells in a horizontally rotating cylinder

g

y

xz

R

L

ω

Figure 1. Schematic of a horizontally rotating cylinder with a liquid–gas interface and the definition of the
coordinate system whose origin is set at the centre of the cylinder. We define R,L and ω = (0, 0, ω) as the
radius, length and angular velocity of the cylinder, and g = (0,−g, 0) as the gravitational acceleration.

Re > 820 ± 50, the convection cells could be sustained in the case that the filling ratio,
which is defined as the ratio of liquid volume to the container volume, is Ψ ≈ 0.05.

Romanò et al. (2017) also demonstrated that the convection cells sustained in the pool
at the bottom of the container were relevant to liquid mixing. Since counter-rotating pairs
of convection cells enhance the stretch and fold of fluid elements, they lead to effective
mixing in the liquid phase. This implies that this simple flow system can serve as a
bladeless mixer, which is advantageous because we do not need to clean-up blades and
because it can avoid damage to delicate materials. This is why many kinds of bladeless
mixers were proposed even recently (Goto, Shimizu & Kawahara 2014; Meunier 2020;
Watanabe & Goto 2022; Goto et al. 2023). Since the current system is the simplest
possible, we expect its wide applications in many fields. Therefore, it is crucial from not
only scientific but also engineering viewpoints to reveal the condition that the convection
cells are sustained.

Since Romanò et al. (2017) showed the critical Reynolds number Rec for the onset of the
convection cells only for a single condition of the filling ratio, the filling-rate dependence
of Rec is unknown. Furthermore, since their numerical simulation neglects the deformation
of the liquid–gas interface, the effect of the deformation on Rec is also unknown. We also
emphasize that although the present system can be categorized in the same group as the
Taylor–Couette flow and Rayleigh–Bénard convection, its understanding is poor in contrast
to these flows, for which the phase diagram, bifurcations, instability, flow dynamics and
so on were extensively examined by many authors. In other words, the present study is one
of the first steps to understand this canonical flow.

Thus, the main purpose of this study is to reveal the condition under which the
convection cells of partially filled liquid are sustained in the rotating cylinder. As will
be described in detail in the following sections, the critical Reynolds number Rec depends
on the flow conditions such as the filling ratio Ψ and the Froude number Fr as well as
the aspect ratio of the container. In the present study, we determine the critical parameters
as accurate as possible and we also develop related arguments on bifurcation structures
depending onΨ . To this end, we conduct both laboratory experiments and direct numerical
simulation (DNS). Though experiments are advantageous to discover phenomena, they
are sometimes disadvantageous for a systematic parametric survey. This is particularly the
case when we consider flow with a liquid–gas interface because it depends both on the
Reynolds and Froude numbers; it is impossible to change the former with fixing the latter
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with the same container and working fluid in experiments. Therefore, we use DNS for the
parametric survey. We emphasize that accurate DNS of flow with a free interface is still
difficult, although many authors (Keerthiprasad et al. 2011; Dawedeit et al. 2012; McBride
et al. 2013; Boháček et al. 2015; Majeed et al. 2022; Sadeghi et al. 2022) already conducted
DNS of flow with significant deformations of the liquid–gas interface in the rimming flow.
Thus, in the present study, we implement state-of-the-art numerical schemes (Yokoi 2007;
Albadawi et al. 2013; De Vita et al. 2021) of multi-phase flow to conduct DNS, which we
carefully validate by using experimental data.

2. Method

2.1. Configuration and control parameters
Figure 1 shows the configuration of the examined system, where we drive flow in a
cylindrical container with radius R and axial length L by rotating it at constant angular
velocity ω about its horizontal axis. We partially fill the container with a liquid with
density ρl and viscosity μl. We denote the filling ratio of the liquid by Ψ . We also denote
the density and viscosity of gas in the container by ρg and μg, respectively.

We define Cartesian coordinate (x, y, z) as shown in figure 1, where the gravitational
acceleration g is expressed as (0,−g, 0) and the angular velocity ω of the cylinder as
(0, 0, ω).

Let us summarize the control parameters of the present system. First, the dimensionless
length L∗ = L/R of the container normalized by R and the filling ratio Ψ of the liquid are
important parameters. Once we fix L∗ and Ψ , the flow state depends on the viscous force,
inertial force, gravitational force and surface tension. Hence, three control parameters are
expressed by the ratios between these forces. Though there are several choices of the three
control parameters, we often employ the Reynolds number,

Re = ρlR2ω

μl
, (2.1)

which is the ratio between the inertial and viscous forces, the Froude number,

Fr = Rω2

g
, (2.2)

which is the ratio between the inertial and gravitational forces, and the Bond number,

Bo = gρlR2

Ψσ
, (2.3)

which is the ratio between the gravitational force and the force due to the surface
tension. Here, σ denotes the surface tension of liquid. Note that we have adopted
the definition of Bo similar to previous studies (Ashmore et al. 2003; Sadeghi et al.
2022).

In the present study, we restrict ourselves to the cases where the inertial force
is much larger than the viscous force; namely, Re � 1. However, since the main
target is the bifurcation of steady flow, the turbulence regime is beyond the scope of
this study. Therefore, we examine the cases with relatively small Reynolds numbers,
Re � O(102).

We also restrict ourselves to the cases where the liquid–gas interface is hardly deformed
because the gravitational effect dominates the inertial force and surface tension. More
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Convection cells in a horizontally rotating cylinder

concretely, we examine the cases with Fr � 0.1 for which the inertial force cannot
overcome the gravitational force to deform the liquid–gas interface. In all the examined
cases, Bo is much larger than 1 so that we can neglect the effects of surface tension.

Sometimes the flow regimes are classified by the gravitational parameter (Ashmore et al.
2003),

Λ = Ψ 2Re
Fr

, (2.4)

which denotes the ratio between the gravitational force and the viscous force because it
can be rewritten as (ρδg)/(μ(Rω/δ)), where δ(≈ ΨR) is the thickness of the uniform
liquid film for Ψ � 1. The flow is classified into three regimes in terms of Λ (the
shear-dominated regime for Λ ≤ 2, the transitional regime for 2 < Λ ≤ 5 and the
gravitational-dominated regime forΛ > 5). In the first regime, a coating flow with a nearly
uniform liquid film is formed, while the last regime is often called the liquid-pool regime
because a stationary pool of liquid is formed at the bottom of the cylinder. Since we
examine the cases with small Fr, large Re and not so low Ψ,Λ is much larger than 1.
Therefore, according to the classification in terms of Λ, we deal with the liquid-pool
regime.

In summary, the main purpose of the present study is to reveal the conditions of L∗, Ψ
and Re for the convection cells to appear for sufficiently large Bo (i.e. surface tension is
negligible) and sufficiently small Fr (i.e. the liquid–gas interface is hardly deformed). In
§ 5.3, we will also briefly examine the effect of Fr on flow states.

In experiments, we have to design the set-up so that we can capture the critical
Reynolds number Rec for the onset of convection cells, which is, as will be shown below,
O(102). First, as for the size of the experimental apparatus, we use a cylindrical container
with radius R = O(10−1) m. Then, to satisfy the condition Bo � 1, we may use either
water (σ = 0.071 N m−1) or silicone oil (0.0208 N m−1) as a working fluid. To satisfy
the condition that Re = O(102), we must set the angular velocity of the container as
ω ≈ 104μl/ρl. However, if ω is too small, it is difficult to accurately set the angular
velocity with the stepper motor (see figure 2), and tracer particles for visualizations
and measurements can settle. Therefore, we use silicone oil, rather than water, with a
kinematic viscosity ofμl/ρl ≈ 50 cSt so that we can set the angular velocity atω(≈ 1 rps).
In this experimental set-up, Fr is O(10−2) and therefore the liquid–gas interface is
undeformed to keep an almost horizontal flat surface. For DNS, we can set the parameters
arbitrarily. For simplicity, however, we ignore the surface tension as well as the wettability
in DNS.

When we show results in non-dimensional forms, we use the time and length units
of ω−1 and R, respectively. Non-dimensional time, length and velocity are denoted with
superscript ∗.

2.2. Experimental method
Figure 2(a) shows the schematic of the experimental apparatus. We rotate a cylindrical
container with R = 50 mm about the horizontal axis. Though we can set containers with
different lengths, in the following, we show results with a relatively long cylinder; namely,
L = 800 mm, therefore, L∗ = L/R = 16. The container is made of acrylic with thickness
10 mm. We drive the rotation by a stepper motor (Oriental Motor, ARM66AC-PS10) with
the step angle 0.036◦ and a pulse generator (Raspberry Pi 4 model B). The rotation axis
precisely coincides with the axis of the cylinder.
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Figure 2. (a) Schematic of the experimental apparatus. The acrylic cylindrical container (R = 50 mm, L =
800 mm, thickness 10 mm) rotates about the horizontal axis of symmetry at constant angular velocity ω. The
container is partially filled with silicone oil. We observe flow visualized by a laser sheet on the vertical plane.
(b) Acrylic jacket to reduce the refraction between the container and air.

As mentioned in the previous subsection, we use silicone oil (Shin-Etsu Silicone,
KF96-50cs) as the working fluid. We control the room temperature so that the fluid
temperature during experiments is 25.0 ± 0.3 ◦C. We measure the viscosity of the silicone
oil by the viscometer (Kokugo, TVB-10M) and the mass density as 0.0478 Pa s and
955 kg m−3, respectively. Therefore, the kinematic viscosity is estimated as 50.1 mm2 s−1.
Since the surface tension of the silicone oil is σ = 0.0208 N m−1, the Bond number is
Bo ≈ 1.1 × 103 for Ψ = 1, which is large enough to neglect the effects of the surface
tension. Since we experimentally examine the cases with Ψ = 0.2 and 0.4, 0.5π rad s−1 ≤
ω ≤ 1.8π rad s−1,Λ is always sufficiently large; for example, Λ ≈ 69 for Ψ = 0.2 and
ω = 1.8π rad s−1.

We seed nylon powder with diameter and density of approximately 50 μm and
1.02 g cm−3, respectively, for a volume fraction of approximately 40 ppm and use a
continuous laser sheet (Kanomax, CW532-2W, wavelength 532 nm, power 750 mW, width
approximately 1.5 mm) on the vertical plane through the horizontal axis to visualize and
measure by particle image velocimetry (PIV) the flow on the plane. For the visualization
and PIV, we use an acrylic jacket (figure 2b) which is set along the cylindrical container
with a clearance of approximately 1 mm. By using this jacket, we can drastically reduce
the distortion due to the index mismatch of the acrylic container and air.

The method of flow visualization is as follows. We take images with a digital camera
(Nikon, D7100, lens AI Nikkor 20 mm f /2.8S). We use a long exposure time, which is
comparable to the spin period of the container, to record the pathlines of flow on the
vertical plane. We take, in addition to images of the entire flow, close-up images through
the acrylic jacket (figure 2b).

For PIV, we use a digital camera (Ditect, HAS-02M, resolution 1024 × 1280 pixels,
frame rate 100 fps) with a lens (Fujinon, DF6HA-1B 6 mm f /1.2). To determine the
onset of the convection cells in the central region of the cylindrical container, we only
record images of the region 128 × 160 mm through the jacket (figure 2b). We use the
direct correlation method, where we set the interrogation window of size 24 × 24 pixels
to estimate the correlation function. We employ a sub-pixel analysis under the assumption
that the correlation function has a normal form. We record the time series of images for 10
revolutions.

Both flow visualizations and PIV are conducted in the steady state after a transient time,
approximately 30 revolutions, when we change flow conditions.
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Convection cells in a horizontally rotating cylinder

2.3. Numerical method
We numerically solve the two-phase Navier–Stokes equation,

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · (μD(u))+ ρg + ρf , (2.5)

and the mass conservation equation,

∇ · u = 0, (2.6)

to simulate flow in the cylinder (figure 1). Here, u = (u, v,w) is the velocity, p is the
pressure and D(u) = ∇u + (∇u)T . Note that the density ρ and viscosity μ of the fluid
(i.e. liquid and gas) are determined by the expression (2.11a,b) explained below. The
interaction force f between the fluid and solid is estimated by

f = χ
Uf − u
δt

, (2.7)

where χ is the volume fraction of the solid, Uf is the velocity of the solid and δt is
the numerical time step (Kajishima et al. 2001). This method was used, for example, to
successfully represent a pipe wall to simulate turbulent flow in it (Ardekani et al. 2018).
We set the cylindrical shell with wall thickness 12Δ, where Δ is the numerical grid width
in the x direction. Note that we set a uniform orthogonal grid, whose width depends on the
direction, in a rectangular computational domain. Then, substituting Uf = −ωyex + ωxey
into (2.7), we determine f in the domain. Here, ex and ey are the unit vectors in the x and
y directions, respectively.

To capture the motion of the liquid–gas interface, we use a simple coupled volume
of fluid with the level-set (S-CLSVOF) method (Albadawi et al. 2013), which is a
combination of the volume of fluid method (Hirt & Nichols 1981) and level-set method
(Sussman, Smereka & Osher 1994). Here, we briefly explain this method. First, we solve
the advection equation of the volume fraction φl of liquid,

∂φl

∂t
+ (u · ∇)φl = 0, (2.8)

by the THINC/WLIC method (Yokoi 2007). To impose the Neumann boundary condition
for φl on the wall and to set the contact angle as 90◦, we employ the method used in
the previous studies (Sussman 2001; Yokoi 2013; Sun & Sakai 2016). Second, we set the
initial state ψ0 of the level-set function by 0.75(2φl − 1)Δ (Albadawi et al. 2013). We then
reinitialize the level-set function ψ by the scheme proposed by Sussman et al. (1994). In
the scheme, we integrate

∂ψ

∂t′
= ψ0√

ψ2
0 +Δ2

(1 − |∇ψ |) (2.9)

to obtain the reconstructed ψ as the steady solution of (2.9). Here, t′ is an artificial time.
We conduct this operation at each time step.
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We use the level-set function ψ to define the physical properties of the fluid. The density
ρ and viscosity μ are expressed in terms of a smooth Heaviside function,

H(ψ) =

⎧⎪⎨
⎪⎩

0 (ψ < −ε),
(ψ + ε)/2ε + sin(πψ/ε)/2π (|ψ | ≤ ε),

1 (ψ > ε),

(2.10)

where ε = 1.5Δ. Then, we estimate ρ and μ by

ρ = H(ψ)ρl + (1 − H(ψ))ρg and μ = H(ψ)μl + (1 − H(ψ))μg, (2.11a,b)

respectively.
We use finite difference spatial discretization on the staggered grid. The advection

term in (2.5) is expressed by the QUICK method and the other terms are handled by the
second-order central difference method. We numerically integrate (2.5) and (2.6) using the
SMAC method. For the advection term in (2.5), we use the second-order Adams–Bashforth
method, while for the viscous term in (2.5), we use the second-order Crank–Nicolson
method modified for two-phase flow (Dodd & Ferrante 2014). We employ the first-order
Euler method for the remaining terms. The discretized form of the Poisson equation for
pseudo-pressure is solved using the direct method with the fast Fourier transform (Dodd &
Ferrante 2014; Frantzis & Grigoriadis 2019; De Vita et al. 2021). The Helmholtz equation
for the implicit integration of the viscous term is solved iteratively using the SOR method.

In our numerical method, unphysical volume-fraction transfer to the solid region can
slightly occur. Since, in some cases, we need more than 100 revolutions of the container
to obtain a steady state, we cannot ignore the change in the total volume of the liquid. To
overcome this problem, we slightly modify the location of the liquid–gas interface at each
time step. First, we integrate the smoothed delta function calculated by

δε =
⎧⎨
⎩

1
2ε

[
1 + cos

(
πψ

ε

)]
|ψ | ≤ ε

0 |ψ | > ε

, (2.12)

to estimate the area S of the liquid–gas interface. Then, we advect the interface by
the pseudo-velocity us = ∇ψδφl/Sδt to maintain the total volume of the liquid in the
container. Here, δφl is the difference between the initial and current liquid volumes in the
container. In fact, since we deal with the regime where the liquid–gas interface is hardly
deformed, the normal direction of the interface ∇ψ is almost in the y direction. Therefore,
we set us ≈ (0, δφl/Sδt, 0) to the advection velocity of (2.8). We have confirmed that
the deviation ratio of the total volume of the liquid in the container is less than 0.01%
during the numerical integration of flow. Note that we cannot use this method with large
deformations of the interface.

For numerical stability, we set the viscosity and density of gas to 1/100 of the liquid. We
use the adaptive time step (Frantzis & Grigoriadis 2019) for the integration; namely, we
determine δt according to the Courant–Friedrichs–Lewy (CFL) condition. Specifically, we
set the time increment δt = CoΔ/umax at each time step, where Co is the Courant number
and umax is the maximum velocity in the computational domain. We set Co = 0.1 except
for the case with Fr = 2.26 × 10−3 in Run 7 shown in table 2.
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(a) (i)

(a) (ii)

(b) (ii)

(b) (i)

Figure 3. Visualization of pathlines on x = 0 plane at Ψ = 0.2. The angular velocities are (a) π and
(b) 1.8π rad s−1. We depict (ai and bi) the entire and (aii and bii) a part of the cylindrical container enclosed
by the red rectangle in (ai and bi). In (aii and bii), we observe flow through the jacket shown in figure 2(b).

3. Experimental results

3.1. Visualization
As mentioned in § 1, convection cells circulating perpendicular to the rotational axis of the
container appear in the cylinder. First, we experimentally demonstrate this phenomenon by
flow visualizations. We examine two cases with the filling ratio Ψ being 0.2 (figure 3) and
0.4 (figure 4), for each of which we change the container’s angular velocity ω. Note that
Fr changes with Re, since we use the same liquid and container in all the cases. In these
figures, panels (ai) and (bi) show the entire flow in the container and panels (aii) and (bii)
show the flow in a central region of the container which is visualized through the acrylic
jacket (figure 2b).

We do not observe convection cells in the central region for small ω (figures 3a and
4a), while we observe them for larger ω (figures 3b and 4b). As will be shown by DNS
in § 4.3, the convection cells appear through a supercritical pitchfork bifurcation, and the
critical angular velocity ωc depends on the filling ratio Ψ . In fact, these visualizations
(figures 3 and 4) show that ωc depends on Ψ . More precisely, ωc (and the corresponding
Reynold number Rec) for Ψ = 0.2 and 0.4 falls within the ranges π rad s−1 < ωc <
1.8π rad s−1(157 < Rec < 282) and 0.6π rad s−1 < ωc < π rad s−1(94 < Rec < 157),
respectively.
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(a) (i)

(a) (ii) (b) (ii)

(b) (i)

Figure 4. Similar to figure 3, but for Ψ = 0.4. The angular velocities are (a) 0.6π and (b) π rad s−1.

3.2. PIV
Since we cannot accurately determine ωc (and Rec) only from the visualizations (figures 3
and 4), we quantify the intensity of convection cells using PIV to clarify their onset
condition. For this PIV, to avoid the influence of refraction on the air–acrylic-jacket
interface and reflection on the liquid–gas interface, we only analyse the bulk of the
liquid phase (−0.8 < y∗ < h∗

0 − 0.05). Here, h∗
0 is the normalized height of the liquid–gas

interface without the rotation.
First, we show in figure 5 the mean flow on the x = 0 plane, which is obtained by the

temporal average over ten revolutions of the container. For Ψ = 0.2, we do not observe
convection cells at ω = 1.3π rad s−1, i.e. Re = 204 and Fr = 0.085 (figure 5a), whereas
they are visible at ω = 1.73π rad s−1, i.e. Re = 272 and Fr = 0.151 (figure 5b). For Ψ =
0.4, similarly to Ψ = 0.2, we observe no convection cells when the angular velocity is
smaller (ω = 0.7π rad s−1, i.e. Re = 110 and Fr = 0.0246 in figure 5c), while they can be
observed at the larger angular velocity (ω = 0.8π rad s−1, i.e. Re = 126 and Fr = 0.0322
in figure 5d). To clarify the flow transition, we define an indicator,

V∗ = max[|v∗(0, y∗, z∗
0)|], (3.1)

where z∗
0 is the location of the maximum downward velocity i.e. z∗

0 = 0.75 for Ψ = 0.2
and z∗

0 = 0 for Ψ = 0.4. We plot V∗ as a function of Re in figure 6. We observe that V∗
increases significantly above a certain value of Re, which is approximately 200 forΨ = 0.2
and approximately 110 for Ψ = 0.4. As will be shown by DNS in § 4.3, the convection
cells appear through a pitchfork bifurcation. However, the experimental results shown in
figure 6 seem different from this bifurcation; namely, the functional form of V∗ does not
obey V∗ ∝ (Re − Rec)

1/2 for a pitchfork bifurcation (Strogatz 2018, § 3.4). This is due to
two reasons. One is the effect of the end walls. The discussion in § 5.2 will show that the
end wall makes the pitchfork bifurcation imperfect, which explains the continuous increase
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Figure 5. Time-averaged velocity fields on x = 0 plane. Experimental results with (a) (ω, Ψ ) =
(1.3π rad s−1, 0.2), (b) (1.73π rad s−1, 0.2), (c) (0.7π rad s−1, 0.4) and (d) (0.8π rad s−1, 0.4). The arrows
on the frame indicate the wall velocity.

0.2 0.3

0.25
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0.15

0.1
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0.175

0.15

0.125
V ∗

0.1
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150 175 200 225

Re Re
250 275 80 100 120 140 160

(b)(a)

Figure 6. Indicator V∗ defined as (3.1) as a function of Re. Experimental results with L∗ = 16 and (a) Ψ =
0.2 and (b) 0.4. Note that Fr changes with Re. Red crosses in (b) are the DNS results (see § 4.1) under the
same condition as in the experiments (table 1). The vertical lines denote the critical Reynolds number Rec
estimated by DNS (see § 4.3) with slip boundary conditions. The dashed and dotted lines are the results with
Fr = 1.81 × 10−2 and Fr = 9.0 × 10−2, respectively.

of V∗ with Re. The other is the fact that Fr changes with Re in the experiments, since we
change the angular velocity for the same container and working fluid. In fact, if we take
into account the change in Fr (the red crosses in figure 6b), we can explain the functional
form of V∗; see § 4.1.

It is worth mentioning the size of convection cells. Flow visualizations in figures 3 and
4 show that the size in the axial direction of the convection cells increases with the filling
ratio. This observation is important in practice because the limited length of the cylinder
restricts the cell size and affects their onsets. We will discuss this issue in §§ 4.2 and 5.2.

In this section, we have experimentally demonstrated the onset of convection cells.
In the next section, we numerically investigate the dependence of the onset on various
parameters.

989 A9-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

44
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.443


D. Watanabe, K. Eguchi and S. Goto

Ψ R (m) L (m) ω (rad s−1) ρl (kg m−3) μl (Pa s) g (m s−2) Co Resolution (nx, ny, nz)
0.4 0.05 0.8 0.5π ≤ ω ≤ π 955 0.0478 9.81 0.1 (256, 256, 2048)

Table 1. Numerical conditions for the validation of DNS: Ψ , filling ratio; R, the radius of the cylinder; L, the
cylinder length; ω, the magnitude of the angular velocity of the cylinder; ρl, liquid density; μl, liquid viscosity;
g, the magnitude of the gravitational acceleration; Co = δtΔ/umax, the Courant number; nx, ny and nz, the grid
numbers in x, y and z directions, respectively. We impose no-slip boundary conditions on the end walls.

–0.5y∗
–1

–0.5y∗
–1

–0.5y∗
–1

–0.5y∗
–1

–0.5y∗
–1

–0.5y∗
–1

–8 –6 –4 –2 0

z∗
2 4 6 8

–8 –6 –4 –2 0 2 4 6 8

–8 –6 –4 –2 0 2 4 6 8

–8 –6 –4 –2 0 2 4 6 8

–8 –6 –4 –2 0 2 4 6 8

–8 –6 –4 –2 0 2 4 6 8

(e)

(b)

(a)

(c)

(d )

( f )

Figure 7. Instantaneous velocity fields on x = 0 plane. DNS results, where we impose no-slip boundary
conditions on the end walls, with parameters listed in table 1. The angular velocities are (a) 0.5π, (b) 0.6π, (c)
0.7π, (d) 0.8π, (e) 0.9π and ( f ) π rad s−1. The arrows on the frame indicate the wall velocity.

4. DNS results

4.1. Validation
Before the detailed investigation of the onset of convection cells, we validate the numerical
method described in § 2.3. To this, we conduct DNS using the same parameters (R =
0.05 m, L = 0.8 m, ρl = 955 kg m−3, μl = 0.0478 Pa s, Ψ = 0.4) as in the experiments
shown in § 3. We list the numerical parameters in table 1.

First, we visualize the cross-sectional flow on the x = 0 plane in figure 7. We can see that
DNS results are consistent with the experimental results shown in figure 4. Specifically, no
convection cells exist in a central region of the cylinder for ω = 0.6π rad s−1, while cells
are visible for ω = π rad s−1. We can also confirm that the number of convection cells is
14 in both of the experiment and DNS.

To make a more quantitative comparison, we calculate V∗ defined as (3.1) and plot
the results with red crosses in figure 6(b). It is evident that the DNS results are in good
agreement with the experimental data. The critical angular velocity, at which V∗ starts to
increase, also coincides with the experiments.
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Convection cells in a horizontally rotating cylinder

Here, we mention the treatment of the solid–gas–liquid contact line in DNS.
Specifically, the contact angle is set as 90◦ (see § 2.2), whereas in the experiments, the
wall of the container is wet and therefore there is no contact line. The above validation
therefore implies that the numerical treatment of the contact line has little effect on the
onset of convection cells in the examined regime.

4.2. Dependence of the cell size on Ψ
As depicted in figures 3 and 4, the axial length λ∗, normalized by R, of a pair of convection
cells depends on the filling ratio. Here, we numerically investigate the dependence of λ∗ on
Ψ . For this purpose, we impose slip boundary conditions on the end walls to simulate flow
in an infinitely long cylinder. Table 2(a) shows the numerical conditions; we investigate λ∗
in the range 0.052 ≤ Ψ ≤ 0.9 under the condition L∗ = 64 and Fr = 1.81 × 10−2. Here,
Ψ = 0.052, which corresponds to the case with the liquid height being 0.2R, is the same
filling ratio as in the DNS performed by Romanò et al. (2017). To observe the convection
cells, we must conduct DNS at a higher Reynolds number than Rec, which depends on
Ψ (see figure 6 for example). This is why we choose Re depending on Ψ as shown in
table 2(a): Re = 200 for 0.2 ≤ Ψ ≤ 0.8, 500 for 0.1 and 0.9 and 700 for 0.052. We will
discuss the detailed Ψ -dependence of Rec in the next subsection (see figure 12c).

Figure 8 shows the axial velocity component w∗ on the vertical plane (x = 0 plane).
We observe that the number of convection cells varies with Ψ : that is, 72, 52, 39 and 36
with Ψ = 0.2, 0.4, 0.7 and 0.9, respectively. Thus, we conclude that the length λ∗ of a
pair of convection cells monotonically increases with Ψ (figure 9) and the aspect ratio
of a convection cell is approximately constant irrespective of Ψ . Incidentally, our result
(λ∗ = 0.865 withΨ = 0.052) is consistent with the result (λ∗ = 0.839 ± 0.01) of Romanò
et al. (2017) with the same Ψ .

4.3. Dependence of Rec on Ψ
In this subsection, we examine the filling-rate dependence of Rec for the onset of
convection cells. Since it requires long computational time to simulate a steady flow in the
long cylinder (L∗ = 64), to reduce them, we conduct DNS of flow in a cylinder with the
length λ∗ under slip boundary conditions on the end walls. Table 2(b) shows the numerical
conditions; as λ∗ depends on Ψ (figure 9), we change the number of grids along the z
direction for different Ψ .

First, we visualize flow on the x = 0 plane to see its dependence on Re for fixed Ψ at
0.4. Figure 10 shows the results for (a) Re = 110 and (b) 115 with Ψ = 0.4. The flow has
no axial velocity components (figure 10a), while we observe a pair of convection cells at
Re = 115 (figure 10b), implying that 110 < Rec < 115. To clarify the onset of convection
cells, we use the indicator (Romanò et al. 2017)

w∗
r = max[w∗(0, h∗

0 − δ∗, z∗)], (4.1)

which quantifies the intensity of convection cells. Here, δ∗ denotes a distance from the
liquid–gas interface without rotation, and we set δ∗ = 0.13.

We plot the temporally averaged value w∗
r as a function of Re for Ψ = 0.4 and 0.7 in

figure 11(a). For Ψ = 0.4,w∗
r vanishes at Re = 110, and w∗

r starts to increase at Re ≈
114 as Re increases. This observation implies that the convection cells appear through a
supercritical bifurcation. For Ψ = 0.7,w∗

r starts to increase at Re ≈ 108, which is smaller
than the value for Ψ = 0.4. To determine Rec precisely, we use the feature that if the
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Ψ Re Fr L∗ Co Resolution (nx, ny, nz)
(a) Run 1

0.2 ≤ Ψ ≤0.8 Re = 200 1.81 × 10−2 64 0.1 (256, 256, 4096)
0.1, 0.9 Re = 500 1.81 × 10−2 64 0.1 (256, 256, 4096)
0.052 Re = 700 1.81 × 10−2 64 0.1 (256, 256, 4096)

(b) Run 2
0.052 570 ≤ Re ≤ 590 1.81 × 10−2 0.865 0.1 (256, 256, 64)
0.1 333 ≤ Re ≤ 340 1.81 × 10−2 1.19 0.1 (256, 256, 128)
0.2 184 ≤ Re ≤ 188 1.81 × 10−2 1.78 0.1 (256, 256, 128)
0.3 136 ≤ Re ≤ 140 1.81 × 10−2 2.13 0.1 (256, 256, 128)
0.4 110 ≤ Re ≤ 135 1.81 × 10−2 2.46 0.1 (256, 256, 192)
0.5 104 ≤ Re ≤ 108 1.81 × 10−2 2.78 0.1 (256, 256, 192)
0.6 100 ≤ Re ≤ 104 1.81 × 10−2 3.05 0.1 (256, 256, 192)
0.7 100 ≤ Re ≤ 120 1.81 × 10−2 3.28 0.1 (256, 256, 192)
0.8 128 ≤ Re ≤ 132 1.81 × 10−2 3.56 0.1 (256, 256, 256)

(c) Run 3
0.4 140 ≤ Re ≤ 150 1.81 × 10−2 2.46 0.1 (128, 128, 96)
0.4 114 ≤ Re ≤ 116 1.81 × 10−2 2.46 0.1 (512, 512, 384)

(d) Run 4
0.4 114 ≤ Re ≤ 116 1.81 × 10−2 2.34 ≤ L∗ ≤ 2.56 0.1 (256, 256, 192)
0.7 105 ≤ Re ≤ 108 1.81 × 10−2 3.12 ≤ L∗ ≤ 3.44 0.1 (256, 256, 192)

(e) Run 5
0.2 201 ≤ Re ≤ 205 9.0 × 10−2 1.78 0.1 (256, 256, 128)

( f ) Run 6
0.9 244 ≤ Re ≤ 252 4.53 × 10−3 3.56 0.1 (256, 256, 256)

(g) Run 7
0.2 182 ≤ Re ≤ 186 2.26 × 10−3 1.78 0.025 (256, 256, 128)
0.2 182 ≤ Re ≤ 186 4.53 × 10−3 1.78 0.1 (256, 256, 128)
0.2 182 ≤ Re ≤ 186 9.05 × 10−3 1.78 0.1 (256, 256, 128)
0.2 194 ≤ Re ≤ 198 3.62 × 10−2 1.78 0.1 (256, 256, 128)
0.2 188 ≤ Re ≤ 192 7.24 × 10−2 1.78 0.1 (256, 256, 128)
0.4 113 ≤ Re ≤ 115 2.26 × 10−3 2.46 0.025 (256, 256, 192)
0.4 113 ≤ Re ≤ 115 4.53 × 10−3 2.46 0.1 (256, 256, 192)
0.4 114 ≤ Re ≤ 116 9.05 × 10−3 2.46 0.1 (256, 256, 192)
0.4 115 ≤ Re ≤ 118 3.62 × 10−2 2.46 0.1 (256, 256, 192)
0.4 118 ≤ Re ≤ 125 7.24 × 10−2 2.46 0.1 (256, 256, 192)
0.7 104 ≤ Re ≤ 108 2.26 × 10−3 3.28 0.025 (256, 256, 192)
0.7 104 ≤ Re ≤ 108 4.53 × 10−3 3.28 0.1 (256, 256, 192)
0.7 104 ≤ Re ≤ 108 9.05 × 10−3 3.28 0.1 (256, 256, 192)
0.7 106 ≤ Re ≤ 110 3.62 × 10−2 3.28 0.1 (256, 256, 192)
0.7 107 ≤ Re ≤ 110 7.24 × 10−2 3.28 0.1 (256, 256, 192)
0.193 188 ≤ Re ≤ 192 2.26 × 10−3 1.78 0.025 (256, 256, 128)
0.386 115 ≤ Re ≤ 118 2.26 × 10−3 2.46 0.025 (256, 256, 192)
0.688 104 ≤ Re ≤ 108 2.26 × 10−3 3.28 0.025 (256, 256, 192)

Table 2. Numerical conditions of DNS to investigate (a) the axial wavelength of the most unstable mode in
a sufficiently long cylinder, (b) the critical Reynolds number Rec in the cylinder with the length determined
by part (a), (c) resolution convergence, (d) the dependence of Rec on L∗, (e) consistency with experiments,
( f ) the bifurcation at Ψ = 0.9 and (g) the dependence of Rec on Fr. We impose slip boundary conditions on
the end walls of the cylinder. We list physical and numerical parameters: Ψ , filling ratio; Re = ρlR2ω/μl, the
Reynolds number; Fr = Rω2/g, the Froude number; L∗, the cylinder length normalized by R; Co = δtΔ/umax,
the Courant number; nx, ny and nz, the grid numbers in x, y and z directions, respectively. In the case with
Fr = 2.26 × 10−3, we set Co = 0.025 for the sake of numerical stability.
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Figure 8. Axial velocity component w∗ on x = 0 plane. DNS (Run 1 in table 2) results under slip boundary
conditions on the end walls with (a) (Ψ,Re) = (0.2, 200), (b) (0.4, 200), (c) (0.7, 200) and (d) (0.9, 500). We
set Fr = 1.81 × 10−2 for all cases.
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Figure 9. Wavelength λ∗ obtained by DNS (Run 1 in table 2) under slip boundary conditions on the end walls
with cylinder length L∗ = 64 as a function of the filling ratio Ψ . The results with Ψ = 0.052 (white circle), 0.1,
0.9 (grey) and 0.2–0.8 (black) are obtained at Re = 700, 500 and 200, respectively. We set Fr = 1.81 × 10−2

for all the cases.
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Figure 10. Instantaneous velocity fields on x = 0 plane. Results of DNS (Run 2 in table 2) under slip boundary
conditions on the end walls with Ψ = 0.4,Fr = 1.81 × 10−2 and (a) Re = 110 and (b) 115. The cylinder length
is set as L∗ = λ∗ = 2.46. The arrows on the frame indicate the wall velocity.
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Figure 11. (a) Time-averaged intensity w∗
r of convection cells defined as (4.1) as a function of Re for two

different values of the filling ratio: ◦, Ψ = 0.4; •, 0.7. The cylinder length L∗ is set as λ∗ shown in figure 9.
Dashed lines represent the fitting by (4.2). Results of DNS (Run 2 in table 2) under slip boundary conditions
on the end walls. (b) Relationship between Rec and α(= L∗/λ∗). The symbols are the same as in (a). Dashed
lines represent the quadratic function passing three points of (α,Rec). Results of DNS (Run 3 in table 2) under
slip boundary conditions on the end walls.

Resolution (nx, ny, nz) Re1 Re2 Re3 w∗
r (Re1) w∗

r (Re2) w∗
r (Re3) Rec

DNScoarse (128, 128, 96) 137 138 140 1.35 × 10−2 4.79 × 10−2 8.23 × 10−2 136.6
DNSmedium (256, 256, 192) 114 115 116 4.84 × 10−2 6.70 × 10−2 8.12 × 10−2 112.9
DNSfine (512, 512, 384) 114 115 116 6.70 × 10−2 8.14 × 10−2 9.35 × 10−2 111.9

Table 3. Dependence of the critical Reynolds number Rec on the numerical resolution under the condition
Ψ = 0.4,Fr = 1.81 × 10−2 and L∗ = λ∗. We also show the data for fitting by (4.2). For the fitting, we use
three values of w∗

r at Re = Re1,Re2 and Re3.

convection cells appear through a pitchfork bifurcation, w∗
r follows

w∗
r = c

√
Re − Rec, (4.2)

where c is a constant. We determine Rec by fitting three values of w∗
r in the range

of Re above and nearest Rec. Dashed lines in figure 11(a) show the fitting curves.
Thus, determined critical Reynolds numbers for Ψ = 0.4 and 0.7 are 112.9 and 106.4,
respectively.

Here, we briefly mention the mesh convergence. We conduct DNS (table 2c)
with three different grid numbers: DNScoarse[(nx, ny, nz) = (128, 128, 96)],
DNSmedium[(nx, ny, nz) = (256, 256, 192)] and DNSfine[(nx, ny, nz) = (512, 512, 384)].
Table 3 shows Rec for the three cases together with Re and w∗

r , which are used to determine
Rec. Although the value of Rec obtained by DNScoarse differs significantly from that
by DNSmedium,Rec obtained by DNSfine matches the result of DNSmedium with only 1 %
relative difference. Therefore, we conclude that DNSmedium is fine enough to estimate Rec.

Next, we briefly mention the dependence of Rec on the cylinder length L∗. Recall that,
in Run 2 (figure 11a), we set L∗ as the axial wavelength λ∗ of the cells sustained in a long
cylinder (L∗ = 64). Recall also that we impose slip boundary conditions on the end walls
in Run 2 to mimic an infinitely long cylinder. To examine the effects of L∗ on Rec, we set
L∗ as

L∗ = αλ∗, (4.3)
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Figure 12. (a) Time-averaged intensity w∗
r of convection cells defined as (4.1) as a function of Re. Different

symbols denote results with different values of the filling ratio: ♦, Ψ = 0.052; 
, 0.1; �, 0.2; �, 0.3; ◦, 0.4; �,
0.5; �, 0.6; •, 0.7; ×, 0.8. Dashed lines represent the fitting by (4.2). (b) Same as (a) but for the close-up view
in the range 90 ≤ Re ≤ 150. (c) Rec as a function of Ψ . Results of DNS (Run 2 in table 2) under slip boundary
conditions on the end walls.

where α is a positive coefficient; see table 2(d) for the numerical conditions. Figure 11(b)
shows Rec as a function of α for Ψ = 0.4 and 0.7. We can see that Rec takes the
minimum at approximately α = 1 in both cases. This result implies that λ∗ approximates
the wavelength of the most unstable mode in the infinite-length cylinder.

To investigate the Ψ dependence of Rec, we apply the above method for various values
of Ψ . Figures 12(a) and 12(b) show w∗

r as a function of Re. Since w∗
r is well fitted by

(4.2), we may conclude that the convection cells appear through a pitchfork bifurcation for
0.052 ≤ Ψ ≤ 0.8. We also plot Rec as a function of Ψ in figure 12(c). We can see that Rec
depends on Ψ non-monotonically and it takes minimum at Rec ≈ 100 around 0.5 � Ψ �
0.7. Incidentally, we do not show the result for Ψ = 0.9 in figure 12(a) because, as will be
shown in detail in § 5.1, the convection cells appear through a subcritical bifurcation for
Ψ = 0.9.

To compare the obtained Rec with experimental results, we plot vertical dashed lines at
Rec in figures 6(a) and 6(b). For Ψ = 0.4, the dashed line well explains the experimental
observation that V∗ starts to increase as Re increases above a value around Rec. However,
for Ψ = 0.2, we see the discrepancy between Rec and the Reynolds number above which
V∗ increases. This discrepancy is mainly caused by the difference in Fr. In DNS, we fix Fr
to determine Rec. In contrast, Fr changes with Re in the experiments. Figure 6(a) shows
that the cells in the experiments appear at Re ≈ 200 for Ψ = 0.2. In this condition, Fr is
9.0 × 10−2, which differs significantly from the value (1.81 × 10−2) in DNS. Therefore,
to confirm the consistency between the experiments and DNS, we estimate Rec with
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Fr = 9.0 × 10−2 for Ψ = 0.2 by DNS (table 2e). The result (Rec ≈ 200) is shown by the
vertical grey dotted line in figure 6(a), which well explains the experiments (figure 6a).
Incidentally, for Ψ = 0.4, the convection cells appear at Re ≈ 110 (figure 6b), and in this
experimental condition, Fr ≈ 2.6 × 10−2. In fact, the difference in Fr between DNS and
the experiment has little influence on Rec in this small-Fr range (see figure 18a in § 5.3).

It is worth comparing our results with the previous study (Romanò et al. 2017). They
showed that the critical Reynolds number was approximately 820 for Ψ = 0.052. This is
significantly larger than the value (Rec = 562) in our DNS. Although their DNS does not
account for interface deformation, it seems not the main cause. To confirm this, we have
conducted DNS with sufficiently small Fr (= 4.53 × 10−3); even if we set L∗ as done by
Romanò et al. (2017), the obtained value of the critical Re is approximately 560, which is
almost the same as the value (562) for the larger Fr (1.81 × 10−2). In addition, we have
also conducted experiments with the filling ratio as used by Romanò et al. (2017), the
results (see Appendix A) support the value of Rec obtained by the present DNS.

5. Discussion

In this section, we investigate three issues. First, we investigate the onset of convection
cells for Ψ → 1. As described in § 4.3, convection cells appear through a pitchfork
bifurcation for 0.052 ≤ Ψ ≤ 0.8. In contrast, when Ψ = 1, the solid-body rotational flow
is always stable for any Re. Since the connection of these two regimes is unclear, we
investigate flow bifurcation at Ψ = 0.9. Second, we investigate the effect of the end walls
of the cylindrical container on the flow. Since real containers have end walls, it is important
to investigate their effect on the bifurcation. Third, we examine the dependence of Rec on
Fr.

5.1. Onset of convection cells at Ψ = 0.9
In the previous section, we have demonstrated that convection cells appeared through a
supercritical pitchfork bifurcation for 0.052 ≤ Ψ ≤ 0.8. However, regardless of Re, we
cannot observe convection cells when the container is filled with liquid (i.e. Ψ = 1). This
means that the simple two-dimensional rotating flow is linearly unstable for Re > Rec(Ψ )
in the examined range of Ψ (≤ 0.8), whereas it is always stable at Ψ = 1. To understand
how these two regimes are connected, here we investigate the onset of convection cells and
its bifurcation structure at Ψ = 0.9.

Table 2( f ) shows the numerical conditions, where we set the Froude number as Fr =
4.53 × 10−3. This value is smaller than in DNS shown in the previous section, so that we
can further reduce the effect of the oscillation of the liquid–gas interface on the flow.
As will be described in § 5.3, this Froude number is sufficiently small to neglect the
dependence of Fr on the flow.

We show the bifurcation diagram by using w∗
r , which is defined as (4.1), in figure 13(a).

We can see that the diagram differs from those in the cases with 0.052 ≤ Ψ ≤ 0.8
(figures 11a and 12a). We have drawn this diagram (figure 13a) through the following
procedure. First, we simulate the steady state with convection cells at Re = 252, then
gradually decrease Re to plot filled circles. Although the intensity w∗

r of convection cells
decreases as Re decreases, they still exist for Re � 245. However, w∗

r suddenly drops
to zero at Re = 244, indicating the disappearance of convection cells. However, when
increasing Re from the flow state without convection cells at Re = 244,w∗

r remains at 0
(open squares in figure 13a) in a range of Re, but w∗

r suddenly increases and reaches the
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Figure 13. (a) Time-averaged intensity w∗
r of convection cells defined as (4.1) as a function of Re. Black-filled

circles and open squares are obtained when Re decreases and increases, respectively. Open circles represent
the unstable solutions. (b) Temporal evolution of the intensity w∗

r of the convection cells at Re = 245 with
various initial conditions. Solid and dashed lines indicate the increasing and decreasing functions of time,
respectively. (c) Time derivative k of w∗

r in (b) as a function of the time-averaged intensity w∗
r
′ of convection

cells for 20π ≤ t∗ ≤ 40π. Results of DNS (Run 6 in table 2) with Ψ = 0.9 and L∗ = λ∗ under slip boundary
conditions on the end walls.

value (the filled circle) obtained by decreasing Re when the Reynolds number reaches
Re = 248. This dependence of w∗

r on Re implies that the convection cells appear through
a subcritical bifurcation at Ψ = 0.9 for sufficiently small Fr. It is worth looking at
the differences in the convection cells that appear through supercritical and subcritical
bifurcations. We compare the two cases in figure 14. Although the velocity fields shown
in figures 14(a) and 14(b) appear through supercritical and subcritical bifurcations,
respectively, we can observe no quantitative difference in the flow.

As the convection cells appear through a subcritical bifurcation in the case with Ψ =
0.9, there are unstable solutions between the upper and lower branches in figure 13(a). To
confirm this, we obtain them using a simpler procedure than the conventional ones such
as the shooting method.

Here, we explain the method to obtain the unstable solutions at Re = 245, for example.
First, we construct four initial conditions which have different intensities of convection
cells. To obtain them, we simulate flow at Re = 244 with the initial condition of the steady
state at Re = 250. As shown in figure 13(a), since the convection cells cannot be sustained
at Re = 244, they monotonically decay. Then, we select flow fields at four instances in this
decaying process as initial conditions for the runs at Re = 245. We plot in figure 13(b)
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Figure 14. Instantaneous velocity fields just above the onset of the convection cells via (a) supercritical and
(b) subcritical bifurcations. We show velocity fields on (i) x∗ = 0, (ii) −0.25 and (iii) 0.25 planes for (a)
(Ψ,Re) = (0.4, 118) and (b) (0.9, 246). DNS (Run 6 and 7 for (b) and (a), respectively, in table 2) results with
Fr = 4.53 × 10−3 and L∗ = λ∗ under slip boundary conditions on the end walls.

the evolution of the intensity w∗
r at Re = 245 with the four initial conditions. For the

initial conditions with w∗
r > 0.07,w∗

r increases with time, whereas for those with w∗
r <

0.07,w∗
r decreases. Since w∗

r does not increase or decrease on the unstable branch, we
can estimate an unstable solution by identifying the point at which the time derivative k
of w∗

r becomes zero. We evaluate k by least-square fitting of w∗
r (t

∗) between t∗ = 20π

and 40π. Figure 13(c) shows k as a function of w∗
r = (1/20π)

∫ 20π

40π
w∗

r (t
∗) dt∗. The value

of k increases monotonically with w∗
r
′, and k ≈ 0 at w∗

r
′ ≈ 0.069. We estimate w∗

r
′ for

k = 0 by the linear interpolation between two data points at approximately k = 0. We plot
w∗

r
′ for k = 0, corresponding to unstable solutions in the range 244.7 ≤ Re ≤ 247.5 in

989 A9-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

44
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.443
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Ψ Re Fr L∗ Co Resolution (nx, ny, nz)

(a) Run 8
0.4 60 ≤ Re ≤ 200 1.81 × 10−2 2.46 0.1 (256, 256, 256)
0.4 60 ≤ Re ≤ 200 1.81 × 10−2 4.92 0.1 (256, 256, 512)
0.4 60 ≤ Re ≤ 200 1.81 × 10−2 7.38 0.1 (256, 256, 768)
0.7 60 ≤ Re ≤ 200 1.81 × 10−2 3.28 0.1 (256, 256, 256)
0.7 60 ≤ Re ≤ 200 1.81 × 10−2 6.56 0.1 (256, 256, 512)
0.7 60 ≤ Re ≤ 200 1.81 × 10−2 9.84 0.1 (256, 256, 768)

(b) Run 9
0.4 Re = 200 1.81 × 10−2 1.23 ≤ L∗ ≤ 3.69 0.1 (256, 256, 256)
0.4 Re = 200 1.81 × 10−2 4.18 ≤ L∗ ≤ 6.15 0.1 (256, 256, 512)
0.4 Re = 200 1.81 × 10−2 6.65 ≤ L∗ ≤ 8.12 0.1 (256, 256, 768)
0.7 Re = 200 1.81 × 10−2 1.64 ≤ L∗ ≤ 4.92 0.1 (256, 256, 256)
0.7 Re = 200 1.81 × 10−2 5.58 ≤ L∗ ≤ 8.20 0.1 (256, 256, 512)
0.7 Re = 200 1.81 × 10−2 8.86 ≤ L∗ ≤ 10.8 0.1 (256, 256, 768)

Table 4. Numerical conditions of DNS to investigate effects of (a) the end walls and (b) the cylinder length
on the onset of convection cells. We set no-slip boundary conditions on the end walls.

figure 13(a) with open circles. Thus, from figure 13(a), we conclude that convection cells
appear through a subcritical bifurcation at Ψ = 0.9.

We have shown the overall bifurcation structures (i.e. the supercritical pitchfork
bifurcation for Ψ ≤ 0.8 and the subcritical bifurcation at Ψ = 0.9) of the present system.
To obtain a more detailed understanding of the bifurcation, in particular, in the range
0.8 < Ψ < 0.9, further investigation by linear stability analysis is required, which we
leave for a future study. Incidentally, we do not experimentally observe the subcritical
bifurcation for Ψ = 0.9 due to the effect of the end walls.

5.2. The effect of end walls on the convection cells
In § 4, we investigate flow in the cylinder under the slip boundary conditions on the end
walls. This was intended to simulate flow in an infinitely long cylinder. However, since the
cylinder’s length is finite in practice, we investigate, in this subsection, the influence of the
end walls on the onset of the convection cells by imposing no-slip boundary conditions on
the walls.

Table 4(a) shows numerical conditions for this purpose. We examine the onset of
convection cells in a finite-length cylinder with two different values of the filling ratio:
Ψ = 0.4 and 0.7. First, we investigate the dependence of flow on the cylinder length L∗
and the Reynolds number Re. More concretely, in each case of the filling ratios, we set L∗
as αλ∗ with α being 1, 2 and 3, where λ∗ is the normalized wavenumber corresponding to
the most unstable mode in the infinitely long cylinder.

We define the indicator as

Eaxis = 〈w∗2〉, (5.1)

of the axial flow intensity to quantify the effects of L∗ and Re on the flow. Here, 〈·〉 denotes
the volume average weighted by φl. We plot Eaxis as a function of Re forΨ = 0.4 and 0.7 in
figures 15(a) and 15(b), respectively. In both cases of Ψ , we observe, irrespective of α, that
Eaxis increases monotonically with Re. We can also notice that the dependence of Eaxis on
Re approaches the case under slip boundary condition (§ 4.3) as α increases. This tendency
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Figure 15. Indicator Eaxis defined as (5.1) of the magnitude of the axial velocity as a function of Re at Fr =
1.81 × 10−2. The filling ratios are (a) Ψ = 0.4 and (b) 0.7. Different symbols denote results for different
cylinder lengths: white, α = 1; grey, 2; black, 3. Dashed lines denote the result for α = 1 but with slip boundary
conditions on the end walls. Results of DNS Run 8, where we impose no-slip boundary conditions on the end
walls, in table 4.

is independent of Ψ and implies that the presence of the no-slip end walls makes the
pitchfork bifurcation imperfect. In fact, the imperfect pitchfork bifurcation approaches the
perfect one as L∗ increases because the influence of end walls becomes smaller. Note that
we consider the cases with integer α. If α is a non-integer, the dependence of the Eaxis–Re
curve approaches non-monotonically to the dashed line as α increases. It might be worth
comparing the present results with those for cavity flow because Blohm & Kuhlmann
(2002) experimentally showed that convection cells in a two-sided lid-driven cavity also
appeared through an imperfect pitchfork bifurcation.

Next, we investigate the influence of L∗ on the flow at fixed Reynolds number (Re =
200) and Froude number (Fr = 1.81 × 10−2); the other numerical conditions are listed
in table 4(b). Recall that under this condition, convection cells appear because Re > Rec
for Ψ = 0.4 and 0.7 and Fr = 1.81 × 10−2 (see figure 12c). First, we visualize flow in
figure 16 for Ψ = 0.7 on the x = 0 plane to demonstrate the dependence of flow on L∗.
We observe that the flow strongly depends on α. When α is an integer (figure 16b,d,e),
we observe convection cells, and the number of pairs of cells is equal to α. In contrast,
when α = 0.7 and 1.5, we do not observe any cells. This observation implies that the
cylinder length significantly affects the intensity of convection cells. To more qualitatively
understand the dependence of the intensity of convection cells on the cylinder length, we
plot Eaxis as a function of α in figure 17 for Ψ = 0.4 and 0.7. In both cases of Ψ,Eaxis
exhibits non-monotonic dependence on α, and Eaxis has local maxima when α is close to
an integer. This observation implies that the length L∗ of the container is appropriate when
it is an integer multiple of λ∗ to sustain the convection cells. It also implies that the optimal
length is independent of the boundary condition on the end walls. Recall that results in
figure 17 are obtained under no-slip boundary conditions, whereas those in figure 11 are
under the slip boundary conditions.

The results obtained in this subsection may be valuable for designing mixers that use
these convection cells. For rapid mixing, we should select L∗ as an integer multiple of
λ∗. For instance, Varley, Markaki & Brooks (2017) conducted experiments to investigate
the relationship between liquid flow in a partially filled cylindrical container and cell
culture efficiency. Although they did not observe convection cells probably because of the
unoptimized cylinder length, their conclusions might differ if they used a cylinder with
different L∗. Since we can generate desirable flow by appropriately setting the cylinder

989 A9-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

44
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.443


Convection cells in a horizontally rotating cylinder

1

0.5

0

–0.5

–1

1

0.5

0

–0.5

–1

1

0.5

0

–0.5

–1
–1

–3

–3–4 –2 –1 0

–2 –1 0 1 2 3

1 2 3 4

0 1

y∗

z∗

z∗

z∗

–1 –2 –1 0 1 20 1

z∗ z∗

1

0.5

0

–0.5

–1

y∗

1

0.5

0

–0.5

–1

y∗

(e)

(b)(a)

(d )

(c)

Figure 16. Instantaneous velocity fields on x = 0 plane with various cylinder lengths L∗ = αλ∗ at Re = 200
under the condition Ψ = 0.7 and Fr = 1.81 × 10−2. We impose no-slip boundary conditions on the end walls.
Results of DNS (Run 9 in table 4) for (a) α = 0.7, (b) 1, (c) 1.5, (d) 2 and (e) 3. The arrows on the frame
indicate the wall velocity.

0.05

0.04

0.03

0.02

E a
xi

s

0.01

0 1 2 3
α

Figure 17. Indicator Eaxis defined as (5.1) of the magnitude of the axial velocity as a function of α(= L∗/λ∗)
with Fr = 1.81 × 10−2 and Re = 200. The symbols are the same as in figure 11(a). Results of DNS (Run 9 in
table 4) under no-slip boundary conditions on the end walls.

length, filling ratio and angular velocity, this system has potential for mixing devices in
various applications. In particular, this system may be useful in bioengineering such as
cell culture, which requires precise control of flow.
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Figure 18. (a) Relative difference �Rec defined as (5.2) of Rec as a function of Fr. (b) Variation of liquid
height �h∗ defined as (5.3) at the centre of the cylinder as a function of Fr. (c) Magnitude of circulation
velocity Us defined as the second equation in (5.4) as a function of Fr. The symbols in panels (a), (b) and (c) are
the same as in figure 12(a). (d) Relative differences of the critical Reynolds number at Fr = 2.26 × 10−3 and
7.24 × 10−2. Different colours of charts denote the result with different definitions of the relative differences:
white, the relative difference defined as (5.2); black, both Ree and Ψ e are considered; light grey, only Ree

is considered; dark grey, only Ψ e is considered. These results are obtained by DNS (Run 7 in table 2) with
L∗ = λ∗ under slip boundary conditions on the end walls.

5.3. Dependence of Rec on Fr
In § 4, we have discussed Rec for a single value of Fr (i.e. 1.81 × 10−2). In this subsection,
we investigate the dependence of Rec on Fr. Since the objective of the present study is
to clarify the onset of convection cells in the liquid-pool regime, we investigate the Fr
dependence of Rec in a small-Fr range, 2.26 × 10−3(= Fr0) ≤ Fr ≤ 7.24 × 10−2(= Fr1)
for each of three filling ratios, Ψ = 0.2, 0.4 and 0.7 (table 2g).

Using the method described in § 4.3, we identify Rec for each combination of Fr and Ψ
to clarify the relative increase,

�Rec(Fr, Ψ ; Fr0, Ψ ) = Rec(Fr, Ψ )− Rec(Fr0, Ψ )

Rec(Fr0, Ψ )
, (5.2)

from the value at the reference Froude number Fr0. Figure 18(a) shows�Rec as a function
of Fr for Ψ = 0.2, 0.4 and 0.7. We observe that as Fr increases, �Rec increases for all
the examined Ψ , though�Rec is negligibly small for Fr � 4 × 10−3. This implies that the
flow does not significantly depend on Fr in the small-Fr range. We also observe that�Rec
in a large-Fr range is larger for smaller Ψ .

We now explain the observed Fr dependence of Rec by introducing the effective filling
ratio Ψ e and the effective Reynolds number Ree.
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First, we examine the dependence of Ψ e on Fr. Here, we define Ψ e by using the liquid
height at the centre of the cylinder. Since the container’s motion lifts the liquid more easily
for larger Fr, the liquid height in a central region decreases for large Fr. To qualify this
change, we define

�h∗ = h∗ − h∗
0, (5.3)

where h∗ is the y∗-coordinate satisfying φl(0, y∗, 0) = 0.5. We examine flow at Re slightly
lower than Rec to discuss the Fr dependence of Rec on Fr. Since the flow at Re(< Rec) is
two-dimensional, we conduct two-dimensional simulations to estimate �h∗. Figure 18(b)
shows the estimated variation �h∗ as a function of Fr. We can see that �h∗ and therefore
Ψ e decrease monotonically as Fr increases. We emphasize that Ψ e differs depending on
Fr even if Ψ is the same.

Second, we examine the Fr dependence of Ree, which we define as

Ree = ρlUsR/μl with Us = 〈u2 + v2〉1/2. (5.4)

It is known that the deformation of the interface affects the circulation velocity in the liquid
phase (Terrington, Hourigan & Thompson 2020). Hence, Ree depends on Fr because of
interface deformations for large Fr. Figure 18(c) shows Us, which is estimated by the
two-dimensional simulations, as a function of Fr. We can see that Us, and therefore Ree,
depend on Fr at any Ψ . Therefore, Ree differs for the different value of Fr even if Re is the
same.

We are ready to explain the Fr dependence of Rec by using Ree and Ψ e. More
concretely, we show that Ψ e determines Ree

c even when Fr is significantly different. To
show this, we need to set two conditions where Ψ e is common, but Fr is significantly
different. However, since we cannot prescribe Ψ e, we use the numerical observation that
Ψ e is almost the same as Ψ for sufficiently small Fr (figure 18b). Figure 19 shows the
construction of the two sets of parameters such that Fr is significantly different but Ψ e

is almost common. The first set of parameters is Fr = Fr1 and Ψ (figure 19a). Under this
condition, we conduct DNS to obtainΨ e(Fr1, Ψ ),Rec(Fr1, Ψ ) and Ree

c(Fr1, Ψ ). Note that
Ψ � Ψ e(Fr1, Ψ ) because Fr1 is sufficiently large (figure 19a). The second set is Fr = Fr0
and Ψ = Ψ e(Fr1, Ψ ) (figure 19b). Since Fr0 is sufficiently small, Ψ e(Fr0) ≈ Ψ e(Fr1).
Then, we obtain, by DNS, Rec(Fr0, Ψ

e(Fr1, Ψ )) and Ree
c(Fr0, Ψ

e(Fr1, Ψ )). Thus, we
can obtain the critical Reynolds numbers, Rec and Ree

c, at two different parameter sets
(Fr1, Ψ ) and (Fr0, Ψ

e(Fr1, Ψ )). Note that Ψ � Ψ e(Fr1, Ψ ) and Fr1 � Fr0, but Ψ e is
almost common for these two parameter sets.

We confirm our hypothesis that Ree
c is determined by Ψ e in three cases of Ψ : 0.2, 0.4

and 0.7. To this, we define

�Ree
c(Fr1, Ψ ; Fr0, Ψ0) = Ree

c(Fr1, Ψ )− Ree
c(Fr0, Ψ0)

Ree
c(Fr0, Ψ0)

. (5.5)

White charts in figure 18(d) show �Rec(Fr1, Ψ ; Fr0, Ψ ) and black ones show
�Ree

c(Fr1, Ψ ; Fr0, Ψ
e(Fr1, Ψ )). It is notable that the latter is significantly smaller than

the former for all the three cases of Ψ . This means that the dependence of Rec on Fr is
explained by Ψ e and Ree.

We emphasize that it is crucial to consider both of Ree and Ψ e. To demonstrate this, we
show the relative differences when considering only Ree (i.e. �Ree

c(Fr1, Ψ ; Fr0, Ψ )) or
Ψ e (i.e. �Rec(Fr1, Ψ ; Fr0, Ψ

e(Fr1, Ψ )) in figure 18(d). It is evident that these are larger
than �Ree

c(Fr1, Ψ ; Fr0, Ψ
e(Fr1, Ψ )). Furthermore, in the case of Ψ = 0.7, the relative

difference when considering only Ψ e exceeds the original one. These results conclude the
necessity of considering both Ree and Ψ e to understand the dependence of Rec on Fr.
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Froude number Fr1 (� Fr0) Fr0

x

y

Filling ratio

Effective filling ratio

Ψ

Ψ e (Fr1, Ψ)

Ψ e (Fr1, Ψ)

Ψ e (Fr1, Ψ)

(b)(a)

Figure 19. Schematics of the liquid–gas interface with two sets of parameters (a) (Fr, Ψ ) = (Fr1, Ψ ) and
(b) (Fr0, Ψ

e(Fr1, Ψ )) such that Fr is significantly different but Ψ e is almost common. Solid circles indicate
the cylindrical walls. Solid and dashed lines represent the liquid–gas interfaces with and without rotation,
respectively. Since Fr1 is sufficiently large, Ψ � Ψ e(Fr1, Ψ ), whereas since Fr0 is sufficiently small, Ψ ≈
Ψ e(Fr1, Ψ ). Arrows represent the liquid height at the centre of the cylinder with a rotation, whose lengths in
(a) and (b) are almost the same.

6. Conclusions

Convection cells can be sustained in liquid phase in a constantly rotating cylinder which is
partially filled with liquid (figure 1). We have investigated this canonical flow phenomenon
in detail by experiments and DNS.

First, we have demonstrated the onset of convection cells by experiments using a long
(L∗ = L/R = 16) cylindrical container (figure 2). When the angular velocity is small
enough, we do not observe the convection cells, but they are visible for a larger angular
velocity (figures 3 and 4). To identify the onset of the convection cells, we have quantified
the intensity of convection cells by using the data obtained by PIV (figure 5) as a function
of Re (figure 6). We can observe flow transition around a certain Reynolds number
Rec, which depends on the filling ratio Ψ . To systematically investigate the onset of
convection cells, we conduct DNS of two-phase flow in the container, which has been
carefully validated by comparing with experimental results (figures 6 and 7). Then, we
have addressed the following five issues: (i) the axial size of the cells; (ii) the dependence
of the critical Reynolds number on the filling ratio and aspect ratio of the cylinder in the
relatively low-Ψ range; (iii) bifurcation structures in relatively high-Ψ range; (iv) effects
of the no-slip end walls on Rec and the cell size and (v) the weak dependence of Rec
on Fr.

Concerning the first issue, the axial wavelength λ∗ normalized by R of the sustained
convective cells is longer for larger filling ratio Ψ . This tendency is qualitatively evident
in experiments (figures 3 and 4) and qualitatively shown by DNS of flows in a sufficiently
long cylinder (L∗ = 64) with sufficiently small Fr (= 1.81 × 10−2) at sufficiently high Re
(figures 8 and 9).

Concerning the second issue, we have numerically investigated the onset of the
convection cells by changing Re with Fr fixed at a small value (1.81 × 10−2). Although
ideally, we should conduct DNS with a sufficiently long cylinder like in figures 8 and
9, to reduce the computational cost, we conduct DNS under slip boundary conditions
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on the end walls (figure 10) with setting the cylinder length L∗ as the wavelength λ∗
obtained by DNS with the long cylinder. Then, we have shown that the convection cells
appear through a pitchfork bifurcation (figure 11a). Using this knowledge, we determine
the critical Reynolds number Rec by fitting the data with (4.2). Concerning the dependence
of Rec on the cylinder length, we have shown that Rec for slightly different cylinder lengths
takes a minimum value at L∗ = λ∗ (figure 11b). This may imply that the obtained Rec with
a finite length λ∗ of cylinder indeed corresponds to the critical value for a sufficiency long
cylinder.

The critical Reynolds number Rec non-monotonically depends on Ψ (figure 12c) for
fixed Fr. The critical values Rec obtained by DNS and experiments are consistent for
Ψ = 0.4 (figure 6a). Although there seems to be a discrepancy for Ψ = 0.2 (figure 6b), it
is explained by the difference in Fr (§ 4.3).

Concerning the third issue on the bifurcation structures, although the convection cells
appear through a pitchfork bifurcation for 0.052 ≤ Ψ ≤ 0.8, solid-body rotational flow
is always stable irrespective of Re at Ψ = 1. To clarify the connection between these
two regimes, we have investigated the onset of convection cells for Ψ = 0.9 (figure 13),
where we observe a hysteresis loop. This means that the convection cells appear through
a subcritical bifurcation at Ψ = 0.9. We have also determined the unstable branch (open
circles in figure 13a) between the upper (flow with convection cells) and lower (without
the cells) stable branches using the simple method explained in § 5.1.

Concerning the fourth issue on the effect of end walls, we have investigated their
effect on the onset of the convection cells. Our investigation shows the following
two points. First, the presence of no-slip end walls makes the pitchfork bifurcation
imperfect (figure 15). This figure shows that the intensity Eaxis of axial velocity increases
monotonically as Re increases in all the cases of cylinder length irrespective of Ψ , and
that the Eaxis–Re curves approach, as L∗ increases, the result obtained with slip boundary
conditions on the end walls. Second, the optimal container length to sustain convection
cells seems independent of the boundary conditions on the end walls. Figure 17 shows that
the length L∗ of the container is appropriate when it is an integer multiple of λ∗ to sustain
the convection cells. This is consistent with the visualization of flow on the x = 0 plane
(figure 16).

Concerning the fifth issue, we recall that the focus of the present study is on the
liquid-pool regime. This is why we have dealt with the small-Fr range, for which the
deformation of the liquid–gas interface is negligibly small. However, as shown in § 5.3,
Rec does depend on Fr (figure 18a), though the dependence is weak. We have shown that
Rec increases monotonically as Fr increases for all Ψ . Two primary factors contribute
to the Fr dependence of Rec. First, the liquid height in a central region changes with
Fr (figure 18b). Consequently, the effective filling ratio Ψ e also changes. Second, the
circulation velocity and therefore the effective Reynolds number Ree defined as (5.4) are
affected by Fr (figure 18c). To substantiate these considerations, we have shown that the
effective critical Reynolds number Ree

c is determined by Ψ e (figure 18d).
In the present paper, we have not mentioned the mechanism by which convection

cells emerge. To understand it, we have to carefully investigate flow structures near
the liquid–gas interface because previous studies (Thoroddsen & Mahadevan 1997;
Thoroddsen & Tan 2004) showed instability along the stagnation line on the interface.
The knowledge on the instability in cavity flows, which are driven by the motion of one
or two sidewalls, may be also helpful. Albensoeder, Kuhlmann & Rath (2001) claimed
that three-dimensional structures appeared due to centrifugal instability when the one
sidewall moves, while Kuhlmann, Wanschura & Rath (1997) concluded that they were
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(b)(a) (c)

(e)(d ) ( f )

Figure 20. Experimental results with the filling ratio Ψ = 0.052. Pathlines on x = 0 plane are visualized. The
angular velocities are (a) 1.15, (b) 1.26, (c) 1.36, (d) 1.47, (e) 1.57 and ( f ) 1.67 rad s−1, which correspond to (a)
Re = 480, (b) 525, (c) 567, (d) 610, (e) 654 and ( f ) 698, respectively.

due to elliptical instability when both the two sidewalls move. Since our system may
also experience one of these instabilities, it is an important future study to conduct linear
stability analysis to reveal the mechanism sustaining the convection cells.
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Appendix

We conduct experiments with Ψ = 0.052, which is the same filling ratio as used by
Romanò et al. (2017). The experimental set-up and methods are the same as in § 2.2
except for the working fluid and tracer particles. If we used silicone oil with a kinematic
viscosity of 50 mm2 s−1 as in the other cases (Ψ = 0.2 and 0.4), Fr could become
large at approximately Rec (Fr ≈ 1.3 at Re = 820) and the deformation of the liquid–gas
interface could not be neglected. Therefore, we use silicone oil with a kinematic viscosity
of 6 mm2 s−1 (Shinetsu-Silicone KF96-A6CS) instead. In this case, the liquid–gas
interface keeps almost horizontal, since Fr is sufficiently small (Fr ≈ 0.02 at Re = 820).
Accordingly, since the viscosity of liquid is smaller and the angular velocity is also
smaller in the transitional range (e.g. 1.15 rad s−1 for the smallest value of the angular
velocity), tracer particles easily settle. Hence, we seed nylon powder with a smaller
diameter (approximately 20 μm).
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Since the liquid height is too short to conduct PIV, we only show visualization results
in figure 20. For 1.15 rad s−1 ≤ ω ≤ 1.36 rad s−1(480 ≤ Re ≤ 567) in figure 20(a–c),
we observe no convection cells, whereas we observe them for 1.47 rad s−1 ≤ ω ≤
1.67 rad s−1(610 ≤ Re ≤ 698) in figure 20(d–f ). This implies that the convection cells
appear at approximately 567 � Rec � 610, which is consistent with the present DNS result
(Rec = 562) for Ψ = 0.052 with sufficiently small Fr.
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