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CONSTRUCTIVE COMPLETE DISTRIBUTIVITY III 
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ABSTRACT. A complete lattice L is constructively completely distributive,(CCD)(L), 
if the sup map defined on down closed subobjects has a left adjoint. We characterize 
preservation of this property by left exact functors between toposes using a "logical 
comparison transformation". The characterization is applied to (direct images of) geo­
metric morphisms to show that local homeomorphisms (in particular, product functors) 
preserve (CCD) objects, while preserving (CCD) objects implies openness. 

Introduction. A complete ordered set L is constructively completely distributive, 
abbreviated to (CCD)(L), if there is a left adjoint to the sup map V* ®L —• L, where 
CDL is the set of down-closed subobjects of L ordered by inclusion. The condition is 
equivalent to 

(V5 Ç ®L)(/\{ V S | S G 5} = V{ /\{T(S) \SeS}\Te IIS}) 

which in turn is the condition (CD)(L) for complete distributivity of L when the power 
object (PL replaces (DL. That is, (CCD) is the restriction of (CD) to down-closed subob­
jects. The name is motivated by the facts [3] that the axiom of choice (ac) implies the 
equivalence of (CD) with (CCD) for any L, while the equivalence of the two distributivity 
concepts implies (ac). In short, (CD) <F=3> (CCD) is equivalent to choice. In any topos, 
<PX is (CCD) for all X whereas the statement that <PX is (CD) for all X is equivalent to 
(ac). Hence (CCD) is clearly a relevant notion in most toposes—those where (ac) fails. 

The power objects <PX are not generally boolean algebras in a topos E and the condition 
that they are such, denoted (boo)(E), makes a difference in the theory of constructive 
complete distributivity. We write (CCD°P)(L) for (CCD)(L°P). In [6] we showed that a 
topos is boolean precisely when the conditions (CCD) and (CCDop) are equivalent for 
allL. 

This article is concerned with studying the preservation of the (CCD) property by 
left exact functors and geometric morphisms between toposes. Let E be a topos. We 
denote the 2-category of ordered objects in E by ord(E), where an order is assumed to 
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be reflexive and transitive, but not necessarily antisymmetric, as in [3]. We denote by 
idl(E) the 2-category with the objects of ord(E), arrows the ideals, and transformations 
just containments. 

Let T: E —> S be a left exact functor between toposes. We define a "logical com­
parison transformation" 7#: T(D^E —• (D^TE in ord(S) using ideals and their calculus. 
This 1E is 2-natural and we show that T preserves cocomplete objects in ord(E) precisely 
if 1E always has a left adjoint. It turns out that T preserves (CCD) objects precisely if 7# 
has a left adjoint which has a left adjoint. 

Turning to geometric morphisms, we use the results above to show that direct im­
ages of local homeomorphisms preserve (CCD) objects. Geometric morphisms which 
preserve (CCD) objects are open. Counterexamples show that neither of these impli­
cations is reversible, and that essential geometric morphisms need not preserve (CCD) 
objects. Since local homeomorphisms preserve (CCD) objects, so do arbitrary product 
functors. Thus a power of a (CCD) objects is a (CCD) object. Furthermore, the cotensor 
ord(E)(X, L), for L a (CCD) object and X in ord(E), is a (CCD) object [6]. 

1. Left exact functors. Let E and S be elementary toposes and T: E —• S a left 
exact functor. It induces a 2-functor ord(T): ord(E) —> ord(S) which we abbreviate 
to T. It is also convenient to define the 2-category idl(E) whose objects are those of 
ord(E), whose arrows are (order) ideals and whose transformations are "containments". 
For ordered objects X and Y, an ideal from X to Y is a subobject r: R * - Y x X which 
is "down-closed in F ' and "up-closed in X". In terms of "elements", we mean that if 
/ < y and yRx and x < x', then y' <x'. We write r < s to indicate that r factors through 
s: S " *• Y x X. Horizontal composition is given by composition of relations. 

While ord(E) is locally ordered, idl(E) is locally antisymmetrically ordered as a result 
of our having defined ideals in terms of subobjects rather than just monomorphisms. A 
word about our apparent switch in generality may be helpful. Given an ordered object X 
in E and *, y in X we write x = y if and only if both x < y and y < x. The associated 
antisymmetric ordered object is X/= and we have q: X —> X/= in ord(E). However, 
we cannot conclude that q is an equivalence of ordered objects because there may be 
no splitting of q in E. Now, for any object E in E write mono(£) for the ordered set 
of monomorphisms with codomain E and sub(£) for the antisymmetric ordered set of 
subobjects of E. Then mono(£) —> sub(E) is an instance of q in a suitably large 
category of sets. We do not assume choice for the latter, but if we regard the pullbacks of 
"true", r: 1 —> £1, in E as being canonically specified (which we regard as a reasonable 
working convention), then mono(£) —> sub(E) has a canonical splitting for each E and 
it seems sensible to use it. Were we to carry out this discussion in an arbitrary regular 
category we would adopt the approach of [2]. 

Ideals X —> Y are in order-isomorphic correspondence with ord(E) arrows Yop x 
X —• Q, which in turn are in order isomorphic correspondence with ord(E) arrows 
X —• <DY. We write 

( )A: idI(E)(Z, Y)T-ôZZord(E)(X, <DY): ( ) 
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and note that y G (fAx if and only if yipx; yhvx iff y E hx. Iff: X —> Y in ord(E) we 
define/.:^ —> Finidl(E)byv/+;cif and only if y <fx. Similarly,/"*": Y —>Xis defined 
by xf+y if and only iffx < y. We have/+ H/+ in idl(E) and ( )+: ord(E) —• idl(E) 
is proarrow equipment. (See [7, 8].) Sometimes we suppress ( )+ when we feel that it 
does not cause confusion. Note that applying T to subobjects does not give a 2-functor 
idl(r): idl(E) —• idl(S) unless T happens to preserve images. However, (together with 
ord(r)) it does give an arrow of "jF' as described in great detail in [1]. Abbreviating 
idl(r) by T, we record those facts about idl(r) which we need for this paper: 

(i) T(lx) = lrx for all X in idl(E) 
(ii) T(f+) = (r / )+ for al l / in ord(E) 

(iii) T(f+) = (Tf)+ for al l / in ord(E) 
(iv) T(iff) = TifTf for al l / in ord(E) and tp in idl(E) 
(v) T(f+ip) = i y + I > for al l / in ord(E) and <p in idl(E) 
Note too that ord(r) preserves full faithfulness of an arrow/: X —• Y in ord(E). For 

/ is fully faithful if and only if/+/ = 1*. 
As usual, we write j#: E —• (DEE in ord(E) for the down-segment (yoneda) arrow 

given by [E(x) = [x = {y G Ey < x}. We define 1E' T^E —> <DSTE in ord(S) by 

1E = (rurA. 
LEMMA 1. ( )V: ord(E)(X, fDY) —• idl(E)(X, Y) is given by composition with the 

arrow | J : <DY —> Y. That is 

(XJU<DY)y=X-^<VY-^Y 

PROOF. We have 

ya+
Yh+)x iff (3T e <DY)(yl+

YTh+x) 
iff (3T e 0Y)([Y(y) ÇTÇhx) 

iff (iy(y) Ç hx) 
iff (yehx) m 

COROLLARY 2. ForX-^Y and Y - ^ <DZ in ord(E), (hf)y = hvf+ in idl(E). 

PROOF. 

(hf)w = l+
z(hf)+ = l+

zh+f+ = hvf+ 

LEMMA 3. Fonp:F — • E in idl(E) 

T<DEE 

(r^r 
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PROOF. It suffices to show I > = (lE • I>A)V 

(7E-r^A)v = ((n/)A-r^A)v 

= T U + - r ^ A (by Corollary 2) 

= n u + • ̂ ) 
= T(ipAV) (by Lemma 1) 

COROLLARY 4. ForEinE 

in ord(S). 

T<DEE 

PROOF. (£ - ^ £)A = | £ : £ —> <DEE. 

VsTE 

LEMMA 5. For h:X —> <DY and g:Z —> Y in ord(E), (<Dg • h)y = g+hv in idl(E). 

PROOF. Consider 

»2>Y 

where g\ denotes the left adjoint to *Dg: (DY —• *DZ. (D is given on arrows by inverse 
image.) The square commutes because [ is natural from the identity to ( )t. Taking right 
adjoints of the arrows in the square, the result follows immediately from Lemma 1. • 

COROLLARY6. ForEinE 

T<DEE 1E <DSTE 

<Dsr<DEE 
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PROOF. 

(VSTIE • W ) v = r l / * ir̂ z*V by Lemma 5 
= rj,£ • IrîkE 

LEMMA 7. For T: E —> S /e/r exacf, 7 is a 2-natural transformation: 

o r d ( E ) " ^ • 

order)"** 

o r d ( S ) c o ^ • 

£>E ord(E) 

ord(r) 

ord(S) 

PROOF. Because ord(S) is a locally ordered 2-category, it suffices to prove ordinary 
naturality of 7. Let/: X —> y be an arrow of ord(E) and consider: 

T<DEY
 Tqhf • T<DEX 

lx 

VsTY 
2 W 

£>sTX 

(ix • r w ) v = ((rixr
A • r w ) v 

= ( ( n x ) + ( r W ) + (Lemma 2) 
= HiJ <Drf) 
= r(T-1?) 
= r r • (r 1K)+ 

= ( ( 0 s r / ) ( r l r)+ A)v (Lemma 5) 
= ( (2W)7y) v . 

THEOREM 8. For T: E —> S « left exact functor between toposes, the following 
statements for all E in ord(E) are equivalent: 

(i) 1E has a left adjoint 
(ii) E cocomplete => 7# has a left adjoint 

(Hi) E cocomplete => YE cocomplete 
(iv) T<DEE is cocomplete. 

PROOF, (i) => (ii) Trivial, (ii) => (iii) E is cocomplete iff [E: E —• <DEE has a left 
adjoint ( V^)- The implication follows immediately from Lemma 4 since ord(r) preserves 
adjunctions, (iii) => (iv) Trivial, since (DEE is cocomplete for all E in ord(E). (iv) => 
(i) Consider the factorization of 7# given in Corollary 6. The left adjoint of (DSTIE is, 
in any event, (T[E)\. Cocompleteness of T*DEE means, precisely, the existence of a left 
adjoint for lnz)E£ • • 
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Our goal is change of base criteria for (CCD) objects. Write pamord(E) for the 
locally full sub-2-category of ord(E) determined by the complete objects of ord(E) and 
the inf-preserving arrows between them and define the cocomplete objects therein to be 
those E for which [E: E —• CDEE has a left adjoint in pamord(E). Since an arrow is 
inf-preserving precisely if it has a left adjoint we see that (CCD) objects of ord(E) are the 
cocomplete objects of pamord(E) and this suggests that we structure our preservation 
of (CCD) criteria parallel to those of Theorem 8. 

Such an approach also suggests the question of a left exact version. For if we write 
lexord(E) for the locally full sub-2-category of ord(E) determined by the finitely com­
plete objects of ord(E) and the left exact arrows between them and define cocompleteness 
of E in lexord(E) to mean the existence of a left adjoint to [E in lexord(E), then the 
cocomplete objects of lexord(E) are the locales of ord(E). We write (LOC)(E) for the 
statement "E is a locale" and record without proof 

THEOREM 9. For Y: E > S a left exact functor between toposes the following 
steatements for all E in lexord(E) are equivalent: 

(i) 1E has a left exact left adjoint 
(ii) (LOC)(E) => 1E has a left exact left adjoint 

(Hi) (LOC)(E) => (LOC)(TE) 
(iv) (LOQÇT&EE). m 

In fact we can say somewhat more. 

THEOREM 10. For Y: E —> S a left exact functor between toposes, each of the 
equivalent statements of Theorem 8 is equivalent to each statement of Theorem 9. 

PROOF ((iii) OF THEOREM 8 =» (iii) OF THEOREM 9). Let E be finitely complete. If E 
is a locale then certainly by (iii) of Theorem 8, YE is cocomplete. However, T, being left 
exact, preserves Heyting algebras; so if E is a locale then YE is a locale, ((iv) of Theorem 
9 => (iv) of Theorem 8). Let E be an object of ord(E). We have [E\ E • - (D^E, fully 
faithful, and hence, via Y([E)\ H YD^IE, Y<DEE is coreflective in Y<DEŒ)EE. For any £, 
(D^E is in lexord(E); by assumption Y*DE <DEE is a locale and hence cocomplete; finally 
YCDEE is complete and hence cocomplete. • 

THEOREM 11. For Y: E —• S a left exact functor between toposes the following 
statements for all E in pamord(E) are equivalent: 

(i) 1E has a left adjoint which has a left adjoint, 
(ii) (CCD)(E) => 1E has a left adjoint which has a left adjoint, 

(iii) (CCD)(E) => (CCD)(YE) 
(iv) (CCD)(Y<DEE). 

PROOF, (i) => (ii) Trivial, (ii) => (iii) (CCD)(E) iff [E has a left adjoint which has a 
left adjoint. The implication follows immediately from Corollary 4 (iii) => (iv) Trivial, 
since (CCD)((DEE) for all E in ord(E). (iv) => (i) Consider the factorization of 7^ given 
in Corollary 6. Here we have 

(IV*)! H (TIE)I H VETIE and JJr2)EzH \Jr^E ^i^2)E£ 
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where, as in [3], we write JJH V f° r (CCD) objects. • 

REMARK. One might enquire whether condition (i) in each of Theorems 8, 9 and 11 
is expressible in terms of the power object functor (P. For Theorem 8 this is easy. For 
any X in E we have &X = *DDX, where D: E —• ord(E) is the discrete order functor, 
left adjoint to the forgetful functor, | |. Certainly, then (i) of Theorem 8 implies 

(VX in E)Ox: T(PEX —> Ps^X has a left adjoint) 

(where we have abbreviated IDX by lx and noted that ord(r) preserves discreteness.) 
This condition implies (i) of Theorem 8. For any E in ord(E) we have the counit for the 
adjunction, D H | |, D\E\ —• E. Invoking the left adjoint to *D of this arrow, which is 
down closure, ( ) 7 , and naturality of 7, Lemma 7, it is easy to describe a left adjoint for 
1E in terms of a left adjoint for 1D\E\. 

The situation in Theorems 9 and 11 is not so simple with respect to 7, however the 
following characterization is also useful. • 

THEOREM 12. For Y: E —> S a left exact functor between toposes, 

(V£ in ord(E)) ((CCD)(E) => (CCD)(TE)) 

if and only if 

(VX inE)((CCD)(T(PX)). 

PROOF. Power objects are always (CCD). For the converse, invoke the Raney-Buchi 
presentation of (CCD) objects: 

E- j £>£• -L V(D\E\) 

(see [3]) and note that ord(r) preserves adjunction and full faithfulness. Then (CCD)(TE) 
follows from Propositions 10 and 11 of [3]. • 

It is clear that T preserves (D (in the sense that 7 is an isomorphism) if and only if T 
preserves fP. Hence: 

THEOREM 13. Logical functors between toposes preserve (CCD) objects (and, of 
course, locales and complete objects.) m 

2. Geometric morphisms. We turn now to a brief discussion of geometric mor-
phisms. 

Let Y: E —y S be geometric with inverse image A: S —y E, unit 77: Is —• TA and 
counit e: Ar —y 1E- The previous considerations for T apply to A too and we write 
6s: A(DsS —y (D^^S for (A|5)+A. We refer to 7, respectively 6, as the logical comparison 
transformation associated to T, respectively A. 
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LEMMA 14. For T: E —> S geometric, 

r £ , E £ r ^ . r<DEATE nè+rE) - TA<DSTE ^ ^ • <DSTE 

7 £
v 

re 

PROOF. Consider the following diagram: 

TVEE
 Yq*£E • r̂ DEAre ^ ^ + rA#sre (r^sr£)+ • Dsr£ 

HÏ 

re re* 

TMh 

TATE 
(ITEY re 

The right hand square commutes by naturality of 77 and application of ( )+. The middle 
triangle is an instance of Lemma 4 (followed by application of ( )+ and T). For the 
left hand trapezoid recall that J, is a natural transformation from the identity to ( )t 
and consider the e^'th instance of the naturality square; take right adjoints, noting that 
(eE)î = *DE£E', apply T. The bottom region of the diagram commutes by application of 
one of the triangular identities for the A H T adjunction. Finally, 

7*v = ru+AV = i V . 

COROLLARY 15. / / 

r£>EAr£ ^—TA<DsrE 
^D s n-) + 

©sre 

is (( )+ of) an arrow oford(S) then 

1E = (msrE)+ • T(èrE)+ • T<DEeE. 

PROOF. Given the hypothesis, the composite of the three arrows shown horizontally 
in the statement of Lemma 14 is (( )+ of) an arrow of ord(S). By Lemma 1, ( )v applied 
to it is given by postcomposition with jf^. The result follows since ( )v is an order 
isomorphism. • 

THEOREM 16. Direct images of local homeomorphisms preserve (CCD) objects. 
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PROOF. Let T: E —• S be a local homeomorphism (that is, assume A is logical.) In 
this case è is an isomorphism, so (6TE)+ = ^pi- Also m t m s case> by t̂ » Sublemma p. 
88] both T] and e have both left and right adjoints at all complete arguments. (DsTE is 
complete so (J)<DSYEY is an arrow of ord(S) and the hypothesis of Corollary 15 is satisfied 
so that JE - (V^TET * F(6YE)+ * T^DE^E- It suffices to show that each of the above three 
factors have left adjoints which have left adjoints for cocomplete E. The middle factor, 
being an isomorphism, trivially does. By the result of [5] mentioned above, (TJ^YET 

satisfies the condition for all E. For all E we have T(EE)\ H VDESE- For (co)complete E 
we have XE H SE, again by [5] and, in this case, T ^ ) » H T(SE)\ too. • 

COROLLARY 17. For all a: I —• / in S, the functor Ua:S/I —• S/J preserves 
(CCD) objects. In particular, 11/: S / / —• S and - x - : S x S —• S preserve {CCD) 
objects. m 

COROLLARY 18. If Lis a (CCD) object of ord(S) and I is in S then L1 is a (CCD) 
object of ord(S). m 

COROLLARY 19. IfL is a (CCD) object of ord(S) andX is in ord(S) then ord(S)(X, L) 
is a (CCD) object o/ord(S). 

PROOF. The canonical arrow D\X\ —> X in ord(S) allows us to define another arrow 
ord(S)(X?L) —> ord(S)(D|X|,L) ^ ZJ*I, the inclusion of order preserving arrows in 
all arrows from X to L. Since L is complete the latter has both left and right adjoints, 
given by Kan extensions. Since L'x' is (CCD) the adjoint string exhibits ord(S)(X, L) as 
a (CCD) object. See [3, Proposition 10]. • 

It is not true that direct images of essential geometric morphisms necessarily preserve 
(CCD) objects. 

COUNTEREXAMPLE 1. Consider O: set —• set2 given by OX = (X —• 1). We have 
A H T H O where T(X: X0 —• Xx ) = X0 and AX = (X -^ X). Abbreviate (D^i by <D2 

and (Dset by <D. Note that 2)2(X: X0 —>X{) is given by (£>2)o —> 2>XU where (2)2)o is 
the set of all S0 —> Si with S0 in 2)X0, S{ in fDX\ satisfying 

So* ^XQ 

5 i - -Xj 

and D2X(S0 —> S\) = Sx. In particular, (D2OX) = £>2(X —> 1) can be regarded as 
1 + (DX—>2 = { 0 < l}with_L G 1 and _L < S for all 5 in <DX\ _L »-• 0; S i-> 1. Writing 
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(p for the logical comparison transformation, <pX'- ^>^X —> (D1^>X can be shown to be 

<DX -J— \ + <DX 

1 — 2 

where i is the injection into the sum. This / has a left adjoint (J_ i—> 0, S i—+ S) which has 
a left adjoint (0 i—> _L, 0 ^ 5 i—?• 5). However, the latter does not commute with the left 
adjoint to the left adjoint of 1 ( which is 0 ) for non-empty X. Thus ipx does not have a 
left adjoint in ord(set2) for any complete X in ord(set). • 

We also note that the condition "7i has a left adjoint which has a left adjoint", for 
T geometric, is precisely openness as defined in [4, p. 56]. Thus geometric morphisms 
which preserve (CCD) objects are open. However, neither the converse of this remark 
nor the converse of Theorem 16 is valid. 

COUNTEREXAMPLE 2. Let L be a locale in set which is not (CCD) . For example, 
take L to be the lattice of open subsets of the reals. Then the global sections func­
tor T: sh(L) —• set is open, as is any geometric morphism with codomain set, but 
r(^sh(L)) =" L implies that T does not preserve (CCD) objects. • 

COUNTEREXAMPLE 3. Consider the global sections (or domain) functor T: set2 —> 
set. It is evidently not a local homeomorphism. We show that it does preserve (CCD) 
objects. Let X:Xo —> X\ be any object of set2. It is well known that Œ^iX is the 
projection shown in the following lax limit diagram in ord(set). 

TV^iX > 3X 

(PsetXi 

Here 3X is direct image, the left adjoint of P^X = X - 1 . A routine calculation shows 
that the other projection is a component of the logical comparison transformation as 
suggested by the above notation.) 

Thus TT^iX = {(So,Si) G (PX0 x TXi \ X(S0) C S\}. It is easy to show that the 
projections paired give VP^iX (PXo x (PX\ with left adjoint given by the formula: 
(7b, Ti).— (7b,X(T0) U T{) and right adjoint given by: (7b, Tx) ^ (T0 f i r 1 ^ ) , 7i). 
By Corollary 17, (PXQ x TXX is (CCD). By [3, Proposition 10], r^Pset2X is (CCD). By 
Theorem 11, T preserves (CCD) objects. • 

This last counterexample together with Counterexample 1 also show that a right 
adjoint of a (CCD) preserving functor, even if the latter is geometric, need not be (CCD) 
preserving. Indeed, T: set2 —• set has right adjoint the O of Counterexample 1. 
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