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Abstract

A conjecture of Carlitz on permutation polynomials is as follow: Given an even positive integer n,
there is a constant Cn, such that if Fq is a finite field of odd order q with q > Cn, then there are no
permutation polynomials of degree n over F . The conjecture is a well-known problem in this area. It
is easily proved if n is a power of 2. The only other cases in which solutions have been published are
n = 6 (Dickson [5]) and n = 10 (Hayes [7]); see Lidl [11], Lausch and Nobauer [9], and Lidl and
Niederreiter [10] for remarks on this problem. In this paper, we prove that the Carlitz conjecture is
true if n = 12 or n = 14, and give an equivalent version of the conjecture in terms of exceptional
polynomials.

1980 Mathematics subject classification (Amer. Math. Soc): 12 C 05.

1. Introduction

Let Fq denote the finite field with q = pm elements where p is a prime. A
polynomial f(x) in Fq(x) is called a permutation polynomial of Fq if f(x) = a
has a solution in Fq for every a in Fq. In 1897, Dickson [5] classified the
permutation polynomials of degrees less than 7 over a finite field. His results are
quite remarkable in a number of ways. For example, he found that except for a
few "accidents" over fields of low order, the permutation polynomials of a given
degree fall into a finite number of well-defined categories. Further, his results
show that, except for "accidents", there are no permutation polynomials of degree
2, 4, and 6 except when the characteristic of the field is 2. In an address before the
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Mathematical Association of America, Professor L. Carlitz suggested that this
behaviour is perhaps characteristic: that is, Carlitz suggested the conjecture stated
in the abstract.

Dickson's results show that the conjecture is true if n = 2, 4, or 6. Hayes [7]
introduced some geometric ideas into the study of permutation polynomials. The
principal advantage in looking at permutation polynomials from this point of
view is that one is able to make use of a powerful theorem of Lang and Weil [8]
which estimated the number of rational points on an absolutely irreducible curve
defined over a finite field. Then he was able to prove the Carlitz conjecture when
n is 8 or 10. In this paper, we go further along these lines.

2. Some connected results

Hayes' ideas could reduce the Carlitz conjecture to the study of exceptional
polynomials. In this section, we present some known results on the relation
between permutation polynomials and exceptional polynomials, and give an
equivalent version of the Carlitz conjecture in terms of generalized exceptional
polynomials.

For a field K, a polynomial in K[x, y] of positive degree is called absolutely
irreducible if it is irreducible over any algebraic extension of K. A polynomial
/ G Fq(x) of degree at least 2 is said to be exceptional over Fq if no irreducible
factor of

y •*

in Fq(x, y) is absolutely irreducible. MacCluer [12], Williams [15], Gwehenberger
[6] and Cohen [2] proved the following theorem.

THEOREM 2.1. Every exceptional polynomial over Fq is a permutation polynomial
o/Fq.

When the converse of the theorem holds is a difficult problem, intimately
connected with the Carlitz conjecture. In 1967, Hayes proved the following
general theorem.

THEOREM 2.2. There exists a sequence cx,c2,... of integers such that for any
finite field Fq of order q > cn with (n,q) = 1, the following holds: iff e Fq[x\ is a
permutation polynomial of degree n, then f is exceptional over Fq.
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This theorem was proved for fields Fp, p prime, by Davenport and Lewis [3]
and quantitive versions for this case were established by Bombieri and Davenport
[1] and Tietavainen [13].

Using the Lang and Weil theorem [7], it is easily seen that the following
theorem is true

THEOREM 2.3. Let p(x, y) e Fq[x, y] be an absolutely irreducible polynomial
with total degree n, with p(x, y) not of the form a(y — x) for any a G Fq. Then for
sufficiently large q relative to n, p(x, y) has a rational point (a, /?) over Fq with

For any f(x) e Fq[x], there exists a non-negative integer t such that f(x) =
g(xp') for some g(x) G Fq[x] but with f(x) * h(xp'+1) for any h(x) G Fq[x].
We verify directly that

y—x y-x I y ~ x

When t > 0 (this happens only in the case f'(x) = 0), <j>(x, y) has an absolutely
irreducible factor y — x, and hence, f(x) is not exceptional over F . Even in this
case, f(x) may be a permutation polynomial; for example, take f(x) = xp. In
order to exclude this case, we introduce the following definition.

DEFINITION. Let f(x) = g(xp') for some g(x) e Fq[x], where g'(x) ¥= 0. We
call f(x) a generahzed exceptional polynomial over Fq if g(x) is exceptional over
F?orifdeg(g(x))=l.

From Theorem 2.1, we prove

THEOREM 2.4. There exists a sequence cx, c2,... of positive integers such that for
any finite field Fq of order q> cn the following statement holds: f(x) G Fq[x] is a
permutation polynomial of Fq with degree ( / ) > 2 // and only if f{x) is a
generalized exceptional polynomial over Fq.

PROOF. Let f(x) = g(xp'), with g'(x) # 0.
If f(x) is a generalized exceptional polynomial, then deg(g(x)) = 1, or g(x) is

exceptional over Fq. By Theorem 2.1, g(x) is a permutation polynomial over Fq,
and so is g(xp') = f(x).

If f(x) is not a generalized exceptional polynomial, then g(x) is not excep-
tional. It is easily proved that y — x \ (g(y) — g(x))/(y - x) (otherwise g'(x)
= 0). Therefore, (g(y) - g(x))/(y — x) has an absolutely irreducible factor
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h(x,y) e Fq(x, y) not of the form a(y — x). Theorem 2.3 shows that g(x) is not
a permutation polynomial, and hence f(x) is not a permutation polynomial over
Fr

For large q, Theorem 2.4 gives the converse of Theorem 2.1. It can also be used
to establish the following equivalent form of the Carlitz conjecture.

Given an even positive integer n, there is a constant Cn such that if Fq is a
finite field of odd order q with q > Cn, then there are no generalized exceptional
polynomials of degree n over Fq.

3. The Carlitz conjecture for n = 12 and n = 14

In this section, we use some ideas of Hayes to prove the Carlitz conjecture for
n = 12 and n = 14. Without loss of generality, we always suppose f(x) is a
polynomial of Fq[x] with leading coefficient 1. Let q = pm, p prime, and let £2 be
an algebraic closure of Fq. We use an idea of Hayes to prove

LEMMA 3.1. Letf(x) be a polynomial of Fq\x\ with degree n, and put

(i) / / <j>(x, y) has a linear factor of the form y - x + a, a ¥= 0, then

( 2 ) <t>(x,y) = { ( y - X y - l + d ) - -

and hence <t>(x, y) has at least /> — 1 linear factors of the form y — x + a.

Moreover, if p2 + n, then d e F .

(ii) Suppose p is odd and p2 + n. If <j>(x, y) has a linear factor of the form

y + x + ft, thenf(x) is not a generalized exceptional polynomial over Fq.

PROOF. The proof is nearly the same as Hayes [7]. We can regard

(3) v(y)=f(y)-f(x)
as a polynomial in y over the function field E = B(/(x)) , which is a sub field of
fi(x). This polynomial y(y) is irreducible over E as is well known (see van der
Waerden [14]) and has the root y = x in fi(x). Therefore, fi(jc) is a simple
algebraic extension field of E of degree d, and for any two roots yx, y2 of <p(y) in
B(x), there exists an ^-automorphism of S2(JC) which maps yy •-+ y2, by a
fundamental theorem on the extension of isomorphisms,

(i) From the definition of <p{y), we have the factorization

(4)
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Let a be an is-automorphism of fi(x) which takes the root x of <p(y) onto the
root x - a. Applying this automorphism to the factorization of <p(y) we learn
that <p(y) has the factors y — x + ia (i = 0,1,2,...,p — 1). Therefore <p(y) is
divisible by

P-\
h{x,y) = n (y - x + ia) = (y - x)p ~ ap~1(y - x)

i = 0

= (y - x)p + d(y - x).

Now, if p 2 \ n, then h(x, y) is a product of linear factors with y — x as the
homogeneous part of degree 1. Therefore, by unique factorization, any Fq-
automorphism of fi preserves the factor, as such an automorphism preserves
f(y) - / (*)• It follows that d = -ap~x belongs to Fq.

(ii) We may let ft £ Fq; then there is an F^-automorphism o of Q such that
a(P) = /?!, where Px ¥= ft is one of the conjugates of /? over Fq. Now, a(4>(x, y))
= <f>(x, y), as a is an F?-automorphism. Therefore, by applying a to the
factorization (4), we learn that y + x + Px is also a factor of q>(y). Therefore,
<p(y) has the factorization

(5) <p(y) = (y - x)(y + x + P)(y + x + ft) • <j>2(x, y).

Applying an is-automorphism of fi(jc), which takes the root x of <p(y) onto the
root -x - /?j, to the factorization (5), we obtain

<p(y) = (y + x + fii){y — x + P — Pi)(y — x) • <i>i(x, y),

which shows that <p(y) has the factor y — x + a, where a = P - Px =£ 0. By (i),
<p(y) is divisible by

P-\
(y — x)p — ap~l(y — x) = Y\ ( j ~ x + ia).

;=o
Now we apply the £-automorphism of ®(x) which maps x •-» -x — P to this last
factor and find that y(y) also has the factor

(y + x + P)p - ap'l(y + x + P)

Therefore

(6) <p(y) = (y- x){(y - xY~l + d)((y + x)p + d(y + x) + e)

where d = - a ' " 1 , e = Pp - ap~1p.
Since p2 + n, similarly to (i), we have both d and e belong to Fq. Now we

consider the polynomials xp~x + d and xp + dx + e in F9[x]. At least one of
the polynomials has a rational root c e Fq: for if xp~l + d has not root in Fq,
then the map xp + dx is an additive homomorphism of Fq into itself with kernel
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0 and hence is a permutation of Fq. Thus, there exists an element c of Fq such
that cp + dc = -e. Returning to (6), we see that <p(y) has a factor of the form
y — x + c with c # 0 or a factor of the form y + x + c in F?[x, ;>]. That is, f(x)
is not a generalized exceptional polynomial.

The following lemma is a version of a theorem of Hayes [7].

LEMMA 3.2. If p \ n, and Fq contains an n-th root of unity £ # 1 (this is
equivalent to (n, q — 1) > 1), then any polynomial of Fq[x] with degree n is not a
generalized exceptional polynomial.

The lemma shows that the Carlitz conjecture is true if p + n. We now consider
the case/ ) |n.

LEMMA 3.3. Let p = 3, and let f(x) be a polynomial of Fq[x] with degree 12.
Then f(x) is not a generalized exceptional polynomial over Fq.

PROOF. Suppose f(x) is a generalized exceptional polynomial; we deduce a
contradiction.

Case I: (y — x) \<t>(x, y). Put x = y. Then f'(x) = <j>(x, x) = 0, which implies
that f(x) = g3(x) for some g(x) e Fq[x] with degree (g(x)) = 4. Therefore

Lemma 3.2 shows that g(x) is not a generalized exceptional polynomial, and
hence f(x) = g3(jc)is not either. This is a contradiction.

Case II: (y — x) + <j>(x, y). Factor <$> in Q[x, y], obtaining

(7) <*>(*, y ) = G , ( x , y ) • G 2 ( x , y ) - - - G r ( x , y )

where the G, are absolutely irreducible. Since f(x) is a generalized exceptional
polynomial, we have G, € Fq[x, y] for all i.

Let G,7 be the homogeneous part whose degree is (degree (g,) - j) in G,; then

G,. = G,.o + Ga + G,2 + • • • ,

= G10 • G20 • • • Gr0.

(i) Suppose (y — x)2\ GiQ for some /. Then G, is preserved under any automor-
phism a of fi. Since (y — x)2 = o((y - x)2) |a(G,0) and (y - x) + G70 for
y ¥= i, then CT(G,0) = G,o, a(G,0) # G^Q. We must have a(Gt) = G,, that is,
G, G i^[x]. This contradicts G, ^ F9[x].
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(ii) Suppose (y — x)2 + G,o for all /. We may suppose {y — x)\\Gw, and
(y ~ x)\\G2o- Then G1 can only be taken to Gl or G2 under automorphisms of £2.
According to our hypothesis on f(x), Gx must be taken to G2 under some
automorphism p1 of fl.

Now, (y + x)3||G10G20 ••• Gr0. If (y + x)h\\Gl0, then (>> + x)h =
Pi(( j + -X)/I)IIPI(<J:IO)

 = G20, and hence h = 1 and some G,o (/ > 3) is divisible
by y + x: G, is then preserved under any automorphism of fi. This is a
contradiction. Therefore (>» + x)3||G30G4O • • • Gr0. Let (>> + ;c)|G30. Then
(y + x)2 + G30, for otherwise G3 is preserved under any automorphism of Q.
Therefore, we may suppose (y + x)||G30, (y + x^lG.^, (y + x)||G50 and G3, G4,
G5 can be transformed to one another.

By Lemma 3.1, no one of G3, G4, G5 can be a linear factor of the form
y + x + /?. Let ±£ be the roots of x2 + 1 in Q; then y + fx |G30 or y - £x |G30.
Without loss of generality, we suppose y - £x \ G30. We now prove that Gx and
G2 must be linear factors and

(y-£x)\G30, (y-Zx)^, (y - £x)\G50.

Let T2, T3 be F^-automorphisms of £2 such that T 2 (G 3 ) = G4, T 3 (G 3 ) = G5. If
I e F?, then similarly to the proof that (y + x) + G10, we have (y ± £x) + G10,
(y + £x) + G20, and hence both Gx and G2 are Unear factors. From (y - £x) \ G30

and £ e Ffl, it is easily seen that applications of T2, T3 show that (y — ^{G^
and(y-£x)\G50.

If £ £ F^, we also have (>> - ^ x ) ^ ^ and (y — £JC) |G50, for otherwise, let ox

be an F^-automorphism of 2 such that a ^ ) = - | (when (7 - fx) + G^, ( j -
£x) + G50). Then (>> + {JCJIG^, (>- + £x)\G50 and a!(G4) = G3, o ^ ) = G3,
which is impossible. If y - £x + G^ and 7 — £x \ G50 then 7 + £JC | G^, y + £x +
G50 and o^G^) = G4, ff^Gj) = G4, which is also impossible. Therefore, (y —
| x ) |G 3 0 , (y - I J O I G , ^ , (y - i-x)\G50. If G1 and G2 are not linear factors, then
(y + i-x)\G10, (y + i-x)\G20, and (y + i-x)\Gi0 for some / > b, which leads to
G, G F?[x]. Thus we must have both Gx and G2 are linear factors, and (y -
£*)|G30, (y - £x)\Gw, (y - £x)|G50. Let G1=y - x + a^, G2=y - x + a2,
a^j & 0.

In the factorization (7), put y = x; then

Uanx
10 + l0a10x' + • • • = f'(x) = Ula2 • G3(x, x) • • • Gr(x, x).

The right hand polynomial has degree 11 - 2 = 9, and therefore au = 0, and
a10 # 0. We put y = fx; then

12 1 £''
- 0 + agx* + ••• =G1(x,£x)--- Gr(x,Sx).
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The right hand polynomial has degree at most 11 - 3 = 8, and since 1 + | # 0,
we deduce that a10 = 0, which is a contradiction. Lemma 3.3 is proved.

LEMMA 3.4. Let p = 7, and let f(x) be a polynomial of Fq[x] with degree 14.
Then f(x) is not a generalized exceptional polynomial over Fq.

PROOF. Factorise <j>(x, y) in Q[x, y], obtaining

(8) 4>(x, y ) = f { y ) ~ f } X ) = G i ( * > y ) G i ( x > y ) - - - Gr(x, y ) .

Suppose f(x) is a generalized exceptional polynomial over F. Then all G, are
absolutely irreducible and G ,$ F[x, y].

Let Gjj be the homogeneous part of G, whose degree is (deg(G,) — j). Then

G,. = G / o + Ga + G,2 + • • • , yU ~ f = ( y - x ) \ y + x)1 = G1 0G2 0 • • • Gr0.
y x

If no one of G,o is divisible by (y + x)2, then one of them must be a linear factor
of the form y + x. Lemma 3.1 shows that f(x) is not a generalized exceptional
polynomial.

Now, suppose (y + x)h\\G10(h > 2). Since Gt <£ Fq[x, y], G: is taken to some
G, under automorphism of fl; let G2 be one of the images of G, with G2 # G:.
Then (j> + x)h\\G2. If Gx can also be taken to G3 then (y + x)h\\G3. Since
(y + x)1\\G10G20 • • • Gr0, we have h = 2, and (y + x^G^G^ • • • Gr0. Therefore
(y + x) | G,o for only one / (/ > 4); G, is then preserved and G, e f?[x, j ] . This
is impossible. Thus Gx can only be taken to G2 and h = 3 or A = 2. If ft = 3,
then (j> + x)||G3OG4O • • • Gr0 shows that G, e F?[x, >•] for some / (/ > 3), which
is also impossible.

We have proved that h = 2 and (y + x)3||G30G40 • • • Gr0. It is easily seen that
we may suppose y + x\\Gi0, y + x\\G40, y + x\\G5Q and G3, G4, G5 can be
transformed to one another. Since <j>(x, y) has no factors of the form y + x + /?,
then y - x\G30, y - x ^ , y - x\G50, and G60 • • • Gr0\(y - x)\ If G60 • • •
Gr0 ¥= 1, then one of G, (i > 6) must be a linear factor of the form y - x + a
(a ¥= 0), and Lemma 3.1 shows that <j>(x, y) would have 6 linear factors of the
form y - x + a, which is impossible, and hence G60 • • • Gr0 = 1.

Now, (y - x)6||G10 • • • G50. Let (y - x)*'||G,-. Then hx = h2, and h-i = hA =
hs > 1, 2hx + 3/i3 = 6, which leads to hx = 0, h3 = 2. In the factorization (8), we
put y = x; then

14

f'{x) = £ /a,*'"1 = Gx(x, ac) • • • Gs(x, x).
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T h e right h a n d polynomial has degree at most 13 — 3 = 10, and hence a1 3 = a12

= 0. C o m p a r i n g the homogeneous pa r t s of (8) of degree 11 , we have

.,12 .,12 G G • • • G

0 = t
y — x

, V /-it- 10"20 ' ' ' "50

0 ,7 )* (1,2) ' Gi0Gj0

= G11G21(G3OG4OG5O) (mod(y + x ) 4 ) .

Thus y + x\GuG21. Let y + x\Gn; then G1 = (y + x)2 + a(y + x) + /? for
some a, /? G fl, which contradicts that Gx is absolutely irreducible. Lemma 3.4 is
proved.

Collecting Lemmas 3.2, 3.3, 3.4 together, we have

THEOREM 3.5. Let n = 12 or 14. Then the Carlitz conjecture is valid.

Therefore, up to now the conjecture has been proved for n < 16.
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