More progress in congress

Dear Sir,

There have been contributions in the Gazette recently over the number of weighings necessary or sufficient to arrange n objects in linear order. Cameron (No. 394, December 1971) produced a sequence which represents sufficient numbers. Broomhead (No. 398, December 1972) showed these numbers were not necessary by solving the 10 objects problem in 23 weighings, and he went on to mention the sequence $\left[\log _{2} n!\right]+1$ giving numbers which are necessary but not necessarily sufficient. My copy of Sprague's Recreation in Mathematics (translated by T. H. O'Beirne) in effect quotes the logarithmic sequence, but makes no claims regarding its sufficiency. The only words touching on this I quote:
"However, it is not yet known whether W_{n} is always equal to the (value in the logarithmic sequence). It has actually been conjectured that 12 things need no less than 30 weighings, although the fact that $2^{29}>12!$ suggests that 29 might suffice."
Some may interpret this as implying that the logarithmic value is known to be sufficient for all $n<12$, but other interpretations are possible. 12 is a special value in that $\Delta\left(\left[\log _{2} n!\right]+1\right)=4$ for all n from 10 to 15 except $n=11$; in other words $\left[\log _{2} 12!\right]+1$ is the most critical value in this part of the range. Arguing with a mixture of looseness and intuition, it must be relatively harder to find a solution for 12 objects in 29 weighings than for 11 objects in 26 weighings. This would be an adequate reason for singling out $n=12$ as a test case if one wanted to establish the insufficiency of the logarithmic numbers.
I do not know how Broomhead produced his solution of 23 weighings for 10 objects. Below is a way of producing a sequence of sufficient numbers which is always better than the Cameron sequence for $n \geqslant 10$. It contains the ' 23 ' solution.

If the Cameron sequence is C_{n}, we take

$$
\begin{array}{rlrl}
U_{n} & =C_{n} & \text { if } n<10, \\
U_{2 n} & =2 U_{n}+2 n-1, & & \text { if } n>5 . \\
U_{2 n+1} & \left.=U_{n}+U_{n+1}+2 n\right) &
\end{array}
$$

Suppose U_{r} is a sufficient number of weighings for r objects for $r<2 n$. We shall now show that $U_{2 n}$ is sufficient for $2 n$ and $U_{2 n+1}$ for $2 n+1$ objects.

Given $x+y$ objects, they can be partitioned arbitrarily into a pile of x and a pile of y. If $x<2 n$, the first pile can then be ordered within itself in U_{x} weighings, producing

$$
A_{1}<A_{2}<\cdots<A_{x}
$$

Similarly if $y<2 n$ the second pile can be ordered within itself in U_{y} weighings producing

$$
B_{1}<B_{2}<\cdots<B_{y} .
$$

We now interlace the B terms into the A terms.
Suppose B_{t} is the first member of the B sequence to be heavier than A_{x} (though for the moment we do not know the value of t). The operations are then as follows:

Weigh B_{1} against A_{1}. If it is lighter, we can place B_{1} in its proper position in the A sequence immediately, and we have not moved any way along the A sequence.

If $B_{1}>A_{1}$, we then weigh B_{1} against A_{2}; if necessary we continue along the A sequence until B_{1} is placed. Suppose b_{1} weighings are required in this process to place B_{1}; then B_{1} must have been compared with all A s from A_{1} to $A_{b_{1}}$, and finish up between $A_{b_{1}-1}$ and $A_{b_{1}}$. We have therefore moved $b_{1}-1$ places along the sequence.

Suppose b_{2} weighings are now required to place B_{2}, the first weighing obviously being against $A_{b_{1}}$; we then move a further $b_{2}-1$ places along the sequence. This continues down to b_{t} which is x places along the sequence. B_{t} is a further b_{t} (not $b_{t}-1$) places along the sequence. Therefore

$$
x=\left(b_{1}-1\right)+\left(b_{2}-1\right)+\cdots+\left(b_{t-1}-1\right)+b_{t},
$$

so that

$$
b_{1}+b_{2}+\cdots+b_{t}=x+t-1
$$

which takes the maximum value of $x+y-1$ when $t=y$.
But when B_{t} is placed, all remaining $B s$ fit in without further weighings. Therefore total number of weighings required $\leq x+y-1$.
If all the B s are lighter than A_{x}, suppose that A_{x+1} is the lightest A to be heavier than B_{y}. As before,
B_{1} moves $b_{1}-1$ places along,
B_{2} moves a further $b_{2}-1$ places along,
...
$\dddot{B} \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots$
but, now
B_{y} moves a further $b_{y}-1$ places along.
Therefore

$$
\begin{aligned}
z & =\left(b_{1}-1\right)+\left(b_{2}-1\right)+\cdots+\left(b_{y}-1\right) \\
& =\sum b-y,
\end{aligned}
$$

and the total number of weighings required is

$$
\begin{aligned}
\sum b & =y+z \\
& \leqslant y+x-1 .
\end{aligned}
$$

Hence in either case, $x+y-1$ weighings suffice for interlacing, and
number of weighings required in all $\leqslant U_{x}+U_{y}+x+y-1$.
Applying this to $2 n$ objects, take $x=n, y=n$; then the number of weighings required $<2 U_{n}+2 n-1=U_{2 n}$. Again, taking $x=n, y=n+1$, the number of weighings required to order $2 n+1$ objects $<U_{n}+U_{n+1}+2 n=U_{2 n+1}$. Hence the U_{n} sequence gives sufficient numbers for all n.

Denoting the logarithmic sequence by W_{n}, the Cameron sequence by C_{n}, and the U sequence by U_{n}, we have:

n	W_{n}	C_{n}	U_{n}
8	16	16	16
9	19	20	20
10	22	24	23
11	26	28	27
12	29	32	31
13	33	36	35

If you continue the C_{n} and U_{n} sequences for n up to 81 , you will observe some interesting comparisons.

Yours etc.,
STANLEY COLLINGS

The Open University, Walton Hall, Bletchley, Bucks.

A rule for turning a generalised mattress

(see Classroom Note 269, October 1972)
Dear Mr. Quadling,
We turn our mattress much less frequently (and less regularly) than once a week, with the result that each time I have forgotten which way we turned it on the last occasion. So one day I wondered whether there were not one operation that could be repeated each time and still send the mattress to all four possible positions in turn. I am ashamed to say, since I am a group theorist by training, that it took me a finite time (even though it was

