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1· Introduction 

In a recent paper, Morbidelli and Giorgilli (1995) proved the superexponen-
tial stability of invariant tori. As usual in the theory of dynamical systems, 
the results are rigorously proved assuming that the perturbation is small 
enough. The numerical experiments show, however, that invariant tori per-
sist up to much larger perturbation magnitudes. Therefore, it is interest-
ing to check numerically if the superexponential stability and the other 
properties outlined in Morbidelli and Giorgilli's theorem persist up to the 
value of the perturbation for which the torus actually breaks up. Moreover, 
one would like to have a numerical indication about the size of the super-
exponentially stable region existing around a torus. Is the superexponential 
stability just an asymptotic result, or does it concern a macroscopic region 
of physical interest? 

The relation of this work with the dynamics of the solar system may 
not appear clear at a first glance. Nevertheless, it is well known that the 
fundamental problem of the stability of the solar system is connected with 
the stability of non linear Hamiltonian systems. At the beginning of this 
century Poincaré had already shown that it was impossible to demonstrate 
the integrability of the Hamiltonian system representing the motion of the 
solar system. In 1954 Kolmogorov obtained a partial integrability, for some 
small values of the perturbing parameter e, for Hamiltonian systems de-
scribed by: 

H(p,q) = Ho(p) + eH1(p,q) (1) 

The next step is due to the work of Nekhoroshev (1977) concerning the dif-
fusion of the actions of the invariant K A M tori. Although the mathematical 
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demonstrations require small perturbations (direct application implies that 
the Jupiter mass is much smaller than the size of an orange), the numer-
ical experiments (Hénon 1969) have shown the existence of the regions of 
stability up to larger perturbation magnitudes. 

This work has been realized, respect to the Morbidelli and Giorgilli's 
theorem, in the same spirit of that of Hénon respect to the K A M theorem. 
The aim is therefore to be in continuity with the researches about the 
stability of Hamiltonian systems, and hence of the solar system. 

Our numerical computations show in a striking way that the description 
of the dynamics given, for small perturbations, by Morbidelli and Giorgilli's 
result is true in reality as long as the invariant torus persists. Moreover, 
the size of the structure described by Morbidelli and Giorgilli around the 
invariant torus shrinks to 0 like exp(—€ c / (e c — e)) when the size of the 
perturbation e tends to the threshold value ec corresponding to the torus 
break-up. This implies that, when the perturbation magnitude is a lit-
tle bit smaller than the break-up threshold, the size of such structure is 
macroscopic. 

In section 2 we recall the result by Morbidelli and Giorgilli and the main 
ideas of their approach. In section 3 we discuss our numerical experiments 
and their significance. 

2. Superexponential stability of invariant tori 

In their investigation of the dynamics in the vicinity of an invariant K A M 
torus, Morbidelli and Giorgilli started from the so called Kolmogorov nor-
mal form (Kolmogorov,1954). 

According to Kolmogorov's construction, one can introduce suitable ac-
tion angle variables P, Q, such that, in the neighbourhood of the invariant 
torus Ρ = 0, the Hamiltonian writes: 

H(P,Q) = u.P + 0(P2)f(Q). 

The Kolmogorov normal form shows in an equivocally way that in the 
vicinity of the invariant torus the significant perturbation parameter is the 
distance |P | from the torus itself. 

Therefore, in the ball |P | < ρ one can introduce new action angle vari-
ables J p , φ ρ such to reduce the local perturbation to its optimal size, which, 
assuming analytic Hamiltonians, is exponentially small with 1/p , i.e. 

H(Jpj φρ) = ω ^ ρ + Ho(Jp) + ΦΡ) 

with HQ quadratic in JP and ep ~ e x p ( - l / / > ) . 
At this point, it is enough to remark that, provided ρ is small enough, 

ep is smaller than the threshold for the applicability of Arnold's version of 
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K A M theorem (Arnold, 1963) in the ball \JP\ < p. This allows to prove that 
in the vicinity of the central torus at Ρ = 0 there exist an infinity of invari-
ant tori, the volume of the complement decreasing to zero exponentially 
with 1/p. 

On the other hand, provided Ho(Jp) is convex in Jp = 0, if ρ is small 
enough, the local perturbation parameter ep is also smaller than the thresh-
old for the applicability of Nekhoroshev's theorem. This allows to prove 
that the diffusion of the actions Jp must be bounded by eb

p for all times up 
to e x p ( l / £ p ) , which, by substitution gives the superexponential estimate 
exp[exp( l / / ) ) ] . The hypothesis of local convexity is a very natural one. It 
means indeed that on a given energy surface, the torus with given frequency 
ratios is locally unique. 

The picture provided by Morbidelli and Giorgilli's result is therefore 
the following. The tori given by Kolmogorov's theory are master tori, sur-
rounded by a structure of slave tori, which accumulate in an exponential 
way to the central master torus. These slave tori are all n-dimensional 
Diophantine ones, but they are characterized by a very small Diophan-
tine constant 7 (we recall that a frequency ω is said to be Diophantine if it 
satisfies the relation \k-u\ > 7 / | A : | n + 1 for all integer vectors k and some pos-
itive 7 ) ; for this reason, they could not be found directly by Kolmogorov's 
construction. Moreover, diffusion among this structure of slave tori is super-
exponentially slow, so that chaotic orbits can enter in, or escape from, only 
in a time proportional to exp[exp(l/ /?)] . 

The interest of this result is double. On the one hand, this makes open 
the set of invariant tori from all practical point of view; this is important 
for what concerns the compatibility of K A M theorem with the errors in 
initial conditions of numerical experiments. On the other hand, a direct 
consequence of the local superexponential stability is that invariant tori 
can form, even in three or more degrees of freedom, a kind of impenetrable 
structure which orbits cannot penetrate for an exceedingly long time, very 
large even with respect to the usual Nekhoroshev's estimates. 

3. Numerical measures 

In order to test the structure of invariant tori around a chief torus we have 
taken as a model problem the standard map (Lega & Froeschlé 1995). We 
recall the set of equations for this mapping: 

mod(2w) (2) 

We have computed for a set of initial conditions on the line χ = 0 the 
rotation number associated to each initial condition. As already pointed 
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Figure 1. Variation of the fundamental frequency ν for the standard mapping, with 
e = 0.9715, in the vicinity of the golden rotation number v0 which corresponds to the 
origin of the axes. The Fibonacci terms are indicated on each figure by the set of points 
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Figure 2. A ) Variation of the inverse of the size (5 ) of the Fibonacci islands as a function 
of the inverse of the distance ρ to the golden torus. B) Variation of the threshold distance 
p* as a function of the perturbing parameter e/e c. 

out by Laskar et al. (1992), the existence of K A M tori corresponds to 

monotonie variations of the rotation number as a function of y. Conversely, 

islands correspond to constant frequencies and chaotic regions correspond 

to either noisy or simply non monotonie variations of frequencies. All this 

features appear clearly in Figure 1. On each plot the origin correspond to 

the golden torus, i.e. the torus whose rotation number is equal to the golden 

number v0 = ^(3 — y/b). We observe that the majority of orbits of Fig.la 

correspond to chaotic regions and islands. The situation changes drastically 

in Fig. lb: the noisy variation of ν corresponding to strong chaotic regions 

has disappeared, islands and crossing of hyperbolic points are still there, 

but their relative measure in the action variables is now definitively smaller 

than the relative measure of tori. This phenomenon is strongly enhanced 

in the last magnification: up to a step size of Ay = 1.6 1 0 ~ n (Fig. l c ) , we 

only see one hyperbolic point and a large continuous region of tori. It is 

clear that the magnifications represented in Figs. lb ,c show a completely 

different regime and in Fig. l c only the chief torus and its "slaves" appear 

with a density which seems to be in full agreement with the prevision of 

the Morbidelli Giorgilli theorem. We have indicated on each plot the values 

of frequencies corresponding to the Fibonacci sequence, i.e. the set of the 

successive terms obtained when developing the golden number through the 

continued fraction process. In order test the exponential decrease of the 

volume occupied by the complement of the set of tori Vc as a function of 

the distance ρ to the chief torus we have measured the size of the Fibonacci 

islands. Such islands are the largest ones and therefore they fill the major 
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part of Vc. 

Figures 2a show the variation of the size of the Fibonacci islands as 

a function of the distance ρ in a log-log diagram. The distance ρ is the 

absolute value: \yc — y0\ where yc is the action of the center of the island 

and y ο is the action of the golden torus. In the Morbidelli-Giorgilli regime 

we have also taken into account the hyperbolic points corresponding to the 

Fibonacci chain of islands. We have made an estimate of the dimension 

of the corresponding islands through the jump in frequency which occurs 

when crossing the hyperbolic point. 

On Fig.2a the change of regime is drastic: at the 19th term of the 

Fibonacci sequence we enter in the Morbidelli-Giorgilli regime where the 

size of the perturbation decreases exponentially with the distance from the 

golden torus. Let us emphasize that the measure has been done for a value 

of the perturbation parameter: e = 0.9715 very close to the critical one: 

ec = 0.971635. 

Using the same technique of the previous we have estimated the distance 

p* for a set of different values of the perturbing parameter. Fig.2b shows our 

final result on the variation of p* as a function of e/ec. After a linear decrease 

of p*, up to e = 0.95, we observe a sharp drop of p* up to p* = 8 10~ 7 for 

6 = 0.9715. It seems therefore that all the slave tori disappear at once when 

approaching the critical value € c . 

4. Conclusion 

The breakthrough provided by the Morbidelli-Giorgilli theorem seems, at 

first glance, to be out of the range of the numerical experiments. This is 

still our opinion concerning the super-exponential character of the diffusion. 

Using the frequency map analysis we have first confirmed the existence of a 

chief torus surrounded by slaves. Then we have shown that such a structure 

exist even for values of the perturbing parameter close to the one for which 

no K A M tori survive. Figure 2b shows the variation of the threshold dis-

tance p* as a function of the perturbing parameter. The behavior observed 

for p*(e) might deserve further studies. 
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