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On Arithmetic Means of Sequences Generated
by a Periodic Function

Giovanni Fiorito

Abstract. In this paper we prove the convergence of arithmetic means of sequences generated by a periodic
function (x), moreover if ¢(x) satisfies a suitable symmetry condition, we prove that their limit is ¢(0).
Applications of previous results are given to study other means of sequences and the behaviour of a class of
recursive series.

Introduction

Let ®,7 be the class of real functions defined in R and periodic of period 2T. For every
©(X) € @1 we consider the sequence {u,} given by

U, =¢(n) VvneN;

We denote by {An,}, {Sn.} and {MRh .}, respectively, the sequence of arithmetic means,
the sequence of geometric means and the sequence of power means of order p (p € R*) of
{un}.

Using a known fact we prove that the sequences {An ,}, {Gn,} and {MRf ,} are conver-
gent; moreover, if o(x) satisfies a suitable symmetry condition, the limit of these sequences
is ¢(0). From these theorems we deduce, then, the convergence or the divergence of the
class of recursive series > that we have considered in [3] and in [4]; finally we give some
examples to complete the theory.

We introduce, now, other notations. If x is a real number we denote, as usual, by [x] the
greatest integer less than or equal to x; we denote by {7, } the sequence defined by setting

n
2T
IfT € Q*, weset 2T = | and suppose that u is prime to v.

Tn:n—[ }ZT vn € N.

1 Arithmetic Means and Applications

Theorem 1 Let o(x) € @,7, and, if T € R* — Q, let ¢(x) be bounded and Riemann-
integrable in [0, 2T]. Then!

| LT () dx fTeR" —Q
lim Ang = { (1) + sa(2)u+ e ORNrE e

LHfT € R*—Q and o(x) satisfies an other suitable hypothesis the result is known (see [2, p. 48, Exercise 2.15]).
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Proof We suppose at first that T € R* — Q. In this case, the sequence {27—;} is uniformly
distributed in [0,1] and therefore for a known fact (see for example, [1, p. 473] and [7,
p. 3, Corollary 1.1]) we have

) nmf6%+f%0+”+u%)=/namm
0

n— o0 n

where f(X) = ¢(2TX) is Riemann-integrable in [0, 1].
On the other hand we have also

P+ @)+ -+ o) _ p(m) +@(m) +--- + ()

g = n n
@ ]
@R 1 ()
n )
and
1 1 1 2T
(©)) /0 f(x)dx:/0 g0(2Tx)dx:ﬁ/0 o(x) dx.

Then, from (1), (2) and (3) the thesis follows easily.
IfT € Q*, ¥n > u, we have

e+ @)+ +p(u) + -+ p(n)

o n
(B (e +e@ -+ o) +p([B]ut ) + -+ p(n)
= - .
Then, from (4) the desired conclusion follows, and the proof is completed. ]

Remark 1 Theorem 1 cannot be extended supposing that the function ¢(x) is Lebesgue-
integrable. Indeed let us suppose that f(x) € ®,1 (T € R* — Q) and that f(x) is bounded,
Lebesgue-integrable in [0, 2T] and such that fOZT f(x)dx > 0. Then let us consider the
function (x) obtained by extending by periodicity in R the function

[t ifxe[0,2T]—E
g(X){o ifx ¢ E,

where E is the range of the sequence {,}. Therefore we have:

o(x) € @1, ©(N) =g(m)=0 VneN, A,,=0 VneN

2T 2T
/ p(x)dx = / f(x)dx > 0.
0 0

Corollary 1 Let (x) satisfy the hypotheses of Theorem 1; moreover let o (x) satisfy the sym-
metry condition? o(x) + (2T — X) = 2p(T) Vx € [0,T]. Then, VT € R* the sequence
{An,} is convergent to ¢(0).

and

2This condition is equivalent to saying that the function (x) — ¢(0) is an odd function.
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Proof We observe at first that from the symmetry condition it follows that Yk € N
¢(kT) = ¢(0)

and
(X)) + p(2kT — x) = 2p(T) Vx € [0,KT].

Therefore if T € Q* and u is even, taking into account that u = 2Tv, we have

(D) +p(2) + -+ p(u)

u
_ PO FHp(UT D+ pUT) + (VT + 1) +-- -+ p2TV — 1) + p(2TV)
u
= ¢(T) = ¢(0).
If T € Q* and u is odd, we have
p(1) +p(2) +---+p(u)
u
B @(1)+---+¢(%)+4p(m2—+1) +--+ 2TV — 1) + ©(2Tv)
u
= ¢(T) = ¢(0).

Finally, if T € R* — Q, we have easily

2T
/0 o(X) dx = 2Tep(T) = 2T(0),

and this completes the proof. ]

Corollary 2 Let p(x) > 0V¥x € R and let [p(X)]° (p € R™) verify the hypotheses of
Corollary 1. Then the sequence {M} ,,} converges to ¢ (0).

Proof Since .
o (@) (@)° + -+ ()"
My, = )
' n
it is sufficient to notice that the sequence {A, .» } converges to (<p(0)) P ]

Corollary 3 Let o(x) € ®,7, infe(x) > 0and, if T € R* — Q, let p(x) be bounded and
Riemann-integrable in [0, 2T]. Then

lim Gn, =

n—oo

{e% J3T Tog p(x) dx ifT€eR"—Q
V@ @ o) ifTeQ".
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Proof It is sufficient to observe that the function log ¢(x) satisfies the hypotheses of Theo-
rem 1, and then the sequence {A;, iog, } CONverges. From this, indeed, and from the relation

"~ log (i)
Vo@e@) -y =¢ T vneN

1
n

the desired conclusion follows immediately. ]

Corollary 4 Let o(x) verify the hypotheses of Corollary 3; moreover let p(x) verify the sym-
metry condition

PP =X) = (p(T)* W€ [0,T].
Then the sequence {G, ,} converges to ¢(0).

Proof Itis sufficient to observe that the function log ¢ (x) satisfies the hypotheses of Corol-
lary 1 and therefore the sequence {Ap jog, } COnverges to log ¢(0). ]

Corollary 5 Let o(x) verify the hypotheses of Corollary 4. Then the series >~ converges or
diverges to +oo according as ¢(0) < 1 or ¢(0) > 1.

Remark 2 Theorem 1 and the following corollaries are useful if the sequence {un} is not
convergent because in this case the well known theorems of Cesaro cannot be applicable.

This case really happens, for example, if o(x) € ®,1 NC°(R), T € R* — Q and ¢(x)
is not constant. Indeed let x;,X, € ]0,2T[ and such that ¢(x;) < @(x2). Then, by the
continuity of ¢(X) there exists § > 0 such that

[x1 —d,x3+0] C[0,2T], [x2 —d,x2 + 0] C [0, 2T],
X1 =0, x+d0]N[X2 —0,%x2+0] = @

and moreover
VX' € [xg — 6, x1+8] and VX" €[xp — 6, % + 6]
we have

p(X2) — SD(XI).

©) ") = () > T

On the other hand for Kronecker’s theorem (see for example [5, p. 373]) Vn > 0 there exist
n,m € N N [n, +oo[ such that

(6) T € [X1 —0,X3+6] and 7 € [X2 — 0,%X2 +0].

3Zf is the series whose terms are defined recursively by setting

ag=MeR*
an+1 = p(nN)an  Vn € N.

https://doi.org/10.4153/CMB-1999-022-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1999-022-7

188 Giovanni Fiorito

From (5) and (6) it follows

©(X2) — o(X1)

p(m) — p(n) = p(tm) — (™) > >

and this proves, obviously, that the sequence {un} is not regular.

Corollary 6 Let f(x) be bounded and Riemann-integrable in the interval [a,b] and let T €
R* — Q. Then*

b
™ [ 1008 =0~ 2 fim A,

where (X) is obtained by extending by periodicity in R the function f (%x +a), X €
[0,2T].

Proof We have easily

b 2T 2T
b—a b—a b—a
f)dx = —2 [ f (—t +a> dt = ——2 (x) dx.
/a 2T J, 2T 2T )y ¥

And from this relation the desired conclusion follows immediately by virtue of Theorem 1.

Example 1 Let p1(X) = sinx. We see easily that o1 (x) satisfies the hypotheses of Corol-
lary 1 (with T = 7), then the sequence {A,, } converges to 0.
We have so obtained, by other means, a well known result (see [6, p. 316, Example 5]).

Example 2 Let us consider the function

fx) = X2+ X+ A forx € [0, 7]
| X2 —3ax+272+ X forx € ]m, 27],
where A € R.
Let o, (x) be the function obtained by extending f (x) by periodicity in R. We see easily
that o, (x) satisfies the hypotheses of Corollary 1 (with T = =), therefore the sequence
{An,, } converges to \.

Example 3 Let us consider the function
pa(x) = k™™,

where k € R*.

We see easily that p3(x) satisfies the hypotheses of Corollaries 4 and 5 (with T = 7).
Therefore the sequence {S,,, } converges to k and the series >~ %* converges or diverges to
+oo according as® k < 1ork > 1.

4The formula (1) may be utilized to compute an approximate value of the integral fab f(x) dx.
5For k = 1 the series Z’/\“ diverges to +oo because the general term does not tend to 0.
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Example 4 Let

—X2+mx+k forx € [0, 7]
9(x) = k2
—X2 + 37X — 22 + k

forx € 1, 2x],

where k € R*, and let us consider the function 4 (x) obtained by extending g(x) by peri-
odicity in R. We see easily that the function ¢4 (x) satisfies the hypotheses of Corollaries 4
and 5 (with T = ). Therefore the sequence {S, ., } converges to k and the series ) "
converges or diverges to +oo according as® k < 1 ork > 1.

Example 5 Let

2

and let us consider the function (s(x) obtained by extending f (x) by periodicity in R. We
see easily that the function ¢s(x) satisfies the hypotheses of Theorem 1 (with 2T = %).
Therefore the sequence { A, } converges to

f(x) = arctanx x € [O, 8 [,

@s(1) + p5(2) + 5(3) 5 +arctan 3
3 N 3 :
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6For k = 1 the problem of determining the behaviour of the series Zf“ is open.
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