THE NUMBER OF %-COLOURED GRAPHS
DAVID A. KLARNER

Introduction. In this paper we describe an algorithm for finding the
number of non-isomorphic k-coloured graphs with # nodes and e edges. We use
Poélya’s fundamental enumeration theorem (in a form similar to that given by
de Bruijn (see 1)) which reduces the problem to finding the cycle index for a
certain permutation group. Harary (3) followed this same program for
bi-coloured graphs, but failed to find the cycle index of the relevant group for
general k-coloured graphs.

The attentive reader will note that we do not claim to have enumerated
k-coloured graphs, only that we have described an algorithm for carrying out
such an enumeration. For any fixed # and % there are a finite number of labelled
k-coloured graphs (these were enumerated by Read (4)), and these can be
listed and compared in order to determine the classes of isomorphic graphs.
Such a listing and sequence of comparisons constitutes a tremendous, but
finite, job even for (n, k) = (9, 3). The algorithm we describe reduces this
work so that hand and machine calculations are now feasible for many small
n and k. Actually, an explicit formula involving sums over partitions can be
given, but this would be too complicated to write down for the general case.

Definitions and notation. Let 0 < n; < #n, < ... < n, be a set of &
natural numbers such that n; = ... =0y = vi < g1 = - .. = Bgipas =
ve < oo < Mgt en- 4aiggl = ... =1 = v; then we shall sometimes write
(11, v oo, mg) = (M, ..., v;%) to indicate the same partition of n = n, +
no+ ...+ ny=cawi+aw:+... 4+ ap; into exactly E=vi+vo+... 4 »;
positive parts. Suppose that (ny, ..., 1) = (1™, ..., »%) is a partition of »
into % positive parts; a k-coloured graph (N, ..., N,*: E) of type (v*,

., v;%) consists of k non-empty sets V,.,° = {(¢,4): 2 =1, ..., n/] containing

coloured nodes, and a set of edges E, where E is a subset of the complete edge set
E(m®,...,v%) = {{(a,1), b,0)}: (a,7) € N% (b,7) € N1 = a < b Z R
The complete k-coloured graph of type (v1%, ..., v;%) is G(n*, ..., v,%) =
(NayYy ooy Ng¥ o E(n®, ..., »,%)); sometimes k-coloured graphs are called
k-partite graphs.

Now we wish to define certain permutations on the nodes and edges of the
complete k-coloured graph of type (m1, ..., n) = (1%, ..., »%). Let S,
denote the symmetric groupon N, = {1,...,n}. Wesay that (& : 7wy, ..., my)
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is a node permutation of G(»:%, ..., »;%) if # € S is such that #n, = #n,,, for
c=1,...,kandif7r, € S,,,c=1,...,E where

(1) (mimyy ..o, m): (¢, 1) > (we, w).

The set TG(»:%, ..., »,%) containing all node permutations of the complete
k-coloured graph of type (1%, ..., »;%) is a permutation group called the
automorphism group of G(»*, ..., »%). Each node permutation (7 : 7y, ...,
) induces an edge permutation defined by

(2) (m:my ..oy m)*: {(a, 1), (B, 7)) — {(ra, 74), (xb, )},

and the set T*G (%, ..., »;%) containing all edge permutations forms the
edge automorphism group of G(n®, ..., v%).

Two k-coloured graphs X and Y both of type (v1%, ..., »;%) are said to be
isomorphic if there is an edge permutation 7* € T*G (%, ..., »,%) such that
m* maps the edges of X one-to-one onto the edges of Y. Isomorphism is an
equivalence relation on the set of all 2-coloured graphs of type (»,%, ..., »%).
Let g(n®, ..., v%:e) denote the number of distinct equivalence classes
containing isomorphic k-coloured graphs of type (v%, ..., »;%) with e edges,
and define the counting polynomial

3) Gi®™, oo, v®ix) =2, g™, ..., v%: e)xt,

where
0<e gZarasv,va(‘;‘)vﬁ, 1Sr<ssid, 1St<i

An algorithm for computing G(»1%, ..., »% : x) is given by Pélya’s enumer-
ation theorem; for completeness we shall preesnt a brief statement of this
theorem due to de Bruijn (see 1; 2) and then describe the application of the
theorem to the problem we are treating.

Pélya’s theorem. We shall find it convenient to have a slightly modified
definition for the cycle index which is usually only defined for groups of
permutations. Suppose that = is a permutation of degree # expressed as a
product of disjoint cycles; the cycle index of = is

Z(r; &) = Z(r; %1, %, ... )=]] 0% 15k =<o,

where 7 has exactly 7; cycles of length k, 2 = 1, 2, ... ; thus, 7, = 0 for almost
all k. The cycle index of a set S containing permutations of degree # is

Z(S;z)=Z(S; %1, %3, ...) =2 Z(m; &), ® € S;
finally, the cycle index of a group G of permutations of degree # is |G|~1Z(G; &),
where |G| denotes the number of elements in G, and Z(G; Z) is the cycle index
of the set G.
Suppose that D and R are finite sets and let R denote the set of all mappings
of D into R. If G is a permutation group defined on D, two maps f, g € RP are
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G-equivalent if there is a permutation = € G such that fr = g. Let w denote a
mapping of R into C[x], the ring of polynomials over the field C of complex
numbers; w(r) is called the weight of » € R. The weight of a map f € RP is
W(f) = I w[f(d)], d € D, and the weight of an equivalence class F containing
equivalent maps f, g, ... is W(F) = W(f), where f € F; it is easy to check
that W is a well-defined function. Let w; = 3 w'(r), » € R; then Pélya’s
theorem gives the following relation between the sum of the weights of the
equivalence classes induced in R? by G and the cycle index for G:

4) > W(F) = |G]7'Z(G : w1, ws, .. .).

Suppose that (1, ..., ;) = (1%, ..., »;%) is a partition of n. If we put
D = E@m*,...,v%) and R = {0, 1}, there is an obvious one-to-one corres-
pondence between the maps in R” and the k-coloured graphs of type (v%,

., v#). (The map f € R corresponds to the graph (V% ..., N,*: E),
where X is in E if, and only if, f(X) = 1, X € D.) Furthermore, if we define
w(0) = 1, w(1) = x, then the weight of a map f € R? indicates the number of
edges possessed by the graph corresponding to f; for example, if W(f) = «°,
the graph corresponding to f has exactly e edges. Next, the edge automorphism

group of the complete k-coloured graph of type (v:%,. .., »;%) is a permutation
group defined on D such that f, g € R? are T*G(»,*, ..., v:*)-equivalent if,
and only if, the graphs corresponding to f and g are isomorphic. From this it
follows that > W(F) = G(»*, ..., v;% : x); hence, from (4) we conclude that
B) Gy .o, v % ix) =

[T*G(v®, ..., v &) [Z(T*G(r®, . ooy w®) t 1+ x, 1+ %2, ..0).

Thus, Po6lya’s theorem shows that an algorithm for computing G(»,%, . . .,
v;% : x) can be given if we can describe the cycle index of T*G(»,%, ..., »,%);
in the remaining portion of this paper we shall give a solution to this problem.

The cycle index for the group T'*G(»%, ..., »;%).Let (7 : ¢1, a2, . . ., ¢1)
be a given node permutation of G(»%,..., »%), suppose that = = (1, 2,
coy,a)le+1,...,a4+0b)...,and put dpips ... ¢ = P, Por10arz - - - Pagr =
A. We are going to find z(¢ : @), (in Lemma A) the cycle index for the restric-
tion of (7 : ¢1, ..., ¢p)* to edges which join nodes in the sets N, ..., N,%
also, we shall find 2(a, b : ®, A) (in Lemma B), the cycle index for the restriction
of (7 : ¢1, d2, ..., ¢x)* to edges which join nodes in the sets N,,!, ..., N,°
to the nodes in the sets N,'Za'tll, cor, N2 (Of course, my = ny = ... = n,,
o+l = ¢ o0 = na+,,.)

Once we have these results, the cycle index for (7 : ¢1, ..., ¢3)* can be
expressed as a product of appropriate cycle indices z(a : ®) and z(a, b : &, A).
To see this, write # = my ... m;, where =, is the restriction of 7 to the a; sets
of nodes having »; elements, and suppose that Z(w;:Z) = xPitxPi2 ...,
ji=1,2,...,1 Thus, m; may be written as a product of disjoint cycles of the
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a; colours used to colour the node sets containing »; nodes; thus, we can let
0 <c¢n = ¢y = ... denote the lengths of all the cycles of =, (so that ¢;; +

ci2+ ... =a;). Finally, if ®;, &5, ... € S; denote the products of the
permutatlons from .S, which act on the sets of nodes whose colours are
permuted by the colour cycles of length ¢, ¢js, . . ., respectively, then
6) Z((m:¢1, ¢2..., p)*:3) = {H} ‘H’ 2(Cus * Puo)2(Cuns Crs * Pugy Brs)e
Thus, for the set T*G(»%, .. ., »;%) we have that
7)) Z@*GE", . v =2 2 . 2 Z((m by, d)* 1 D).
TESE #1€8n,  HkEdn,

This formula, along with (6), leads us to think that we must calculate
certain products of permutations in order to evaluate (7), but this is not the

case. If m, 7’ € Sy, and Z(wr : %) = Z(x' : %), and if ¢1, ..., ¢y and ¢/, ...,
¢’ give rise to ®11, ..., and &1/, ..., respectively, such that Z(®;;: &) =
Z(®y/ : %), then Z((w: 1, ..., ¢)*: %) = Z((#' : b1, ..., ¢x)*: £). This

follows since the labels of the nodes can be permuted in the cycles of one of
the permutations so that it is transformed into the other. Let [r : &1, &y, .. .]*
denote (7 : é1, ..., ¢r)*, where ®;1, P, . .. are the products of permutations
defined for (6); also, for u € S,, let T(u) denote the number of u’ € S,, such
that Z(u: %) = Z(u' : £). We shall write

Z,y #e Sm)

"

to indicate a sum whose index ranges over the permutations of S, having
distinct cycle indices. The number of products A\s ... Ay = &, with
Ay e e m € S,, is (v;1)ei1/v;l = (v;!)%1~1, Using these observations, we can
sum in (7) in another way to obtain the following theorem.

THEOREM. The group T*G(n*, ..., v,%) has the cycle index

Q) [BlGN)™... @)™
X Z ! Z ! T(ﬂ') (Vl )HI_IT(CI)II) ([7!' Py, . . .]* Ii)

TESk CI’uESVI

Proof. The proof has already been indicated except that we must show that

[T*G (v1%1, ..., »%)| = kl(w)* ... (v;1)%. There are k! ways to select 7 € Si
and (v;!)% ways to select an a;- tuple of elements from Sy ; hence, the group
contains k!(vi 1) . (v:1)% elements altogether. We still have to prove

Lemmas A and B before a complete description of the cycle index of T'*G (v1%,
..., »:%) would be given.

LEMMA A. Suppose that Z(® : &) = x1/"2 ..., then

©) z2(a: @) = ﬁl Hly(a 1)y (@ 1x, %),

e=d+
where
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—fd—1)/2 - . .
XLy o fTTID Gt g s even and d is odd,

(10) (@ :x) =

2q(a—1) /2 .
x] 2D/ otherwise,
can I oy _ Jeta—D(d,e)
(11) y(a X, Xe ) = Xala,el ’

where [d, e] and (d, e) denote the least common mulitple and greatest common
divisor of d and e, respectively.

Proof. Suppose that (7 : ¢, . .., ¢;) is a node permutation of G(v1*, ...,
v¥)withe = (1,2,...,a)...,and ¢1...¢, = . We wish to show that the
restriction of (7 : ¢y, ..., ¢)* to the edges of G(»%, ..., »/%) which join
nodes in the sets Ny, ..., N,% can be given in terms of Z(® : &).

If (1,7) € N,/, and if j is in a ¢ cycle of @, then the node cycle of (7 : ¢4,
..., ¢x) which contains (1, j) is

(12) (lv]) - (21 ¢1]) ... ((l, ¢a—1 .o ¢L7) - (ly ¢]) - (2v ¢1<I)]) -
e (8 a1 1 ®) oL o (L 2Y) = (1, ).

Thus, every ¢ cycle of ® corresponds to an af cycle involving the nodes

coloured 1, 2, ..., a; hence, if Z(®: %) = x,"x," ..., then the cycle index
for the restriction of (7 :¢1, ..., @) to Nyt U ... U N2 is x/0,72 ...
X't ...

Now we determine the cycle indices for the edge permutations restricted
(1) to the edges which join nodes in the same node cycle, and (2) to the edges
which join nodes in distinct node cycles involving the nodes coloured 1, 2,

., a.

Case 1. Every edge cycle contains an edge having one node in N,,’, say
(1, 7), which is joined to (¢, p), where p = ¢.—1...¢1®; (¢ ## 1), since in this
case we are assuming that (1, j) and (¢, p) are in the same node cycle of length
ad. We can assume that ¢ £ (¢ 4+ 2)/2; now consider

(13) (L) @ P} == (6 fet - 1)y (26— L, dres .. )} —
o (L B, (6 et - g1 oL
{(cy o1 . d1®7Y), (2c — 1, pops ... 1P} > ... —
(L, #Y), (6 der - - 41HY) > > (1, ), 6 fecr - . . p287)}.

If this is a single edge cycle of length ad for each choice of p = ¢, ...
¢1®7j (we are selecting ¢ and r), then the

() -+(2)

edges which join nodes in the node cycle being considered split into edge
cycles of length ad and are

(GG -
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in number. It is easy to verify that if this is not the case, then @ is even and d
is odd; furthermore, there is exactly one choice of p which gives rise to a
different situation. Namely, when p = ((¢ 4+ 2)/2, ¢aj2 . .. 12 D72) (put
r=t—1=(d—1)/2and ¢ = (¢ + 2)/2 above), there are (ad — d — 1)/2
edge cycles of length ad and one edge cycle of length ad/2.

Case 2. Now suppose that (¢, 7) and (¢, '), ¢# ¢, are nodes such that j and
j' are contained in distinct cycles of ® having lengths d and e, respectively.
Then

(14) {(c,7), (¢, N = {lc+ 1 ¢4 (¢ + 1,65 —...

is an edge cycle of length a[d, e], where [d, ¢] denotes the least common multiple
of d and e. Thus, the a(e — 1)de edges which join nodes in the node cycle
containing (¢, ) to nodes in the node cycle containing (¢/, j') split into
a(a — 1)de/ald, e] = (@ — 1)(d, e) edge cycles of length a[d, e], where (d, )
denotes the greatest common divisor of d and e.

Now let y(a : ;') and y(a : x4/, x,°) denote the cycle indices of the edge
permutation restricted (1) to the edges which join all nodes coloured 1, 2, . . .,
a, and contained in a node cycle of length ad, and (2) to the edges which join
all nodes coloured 1, 2, . . ., ¢ and contained in a node cycle of length ad to all
nodes coloured 1, 2, ..., @ and contained in a node cycle of length ac.

Combining Cases 1 and 2 we calculate

A
r(ad—d—1)/2 (2) (a—Da
Xad

X5 /2% 0g if a is even, d odd,

(15) y(a :xdf) = b2 (5) "
xJae=D /2y 2 (a=Da otherwise,

and

—1)(,
(16) y(a 1xd,x0) = o0 @

which are the same as the definitions given in the statement of the lemma.
To see that z(a : ®) is correctly defined, we simply observe that every edge
involved is in one of the cycles we have treated.

LeEMMA B. Supposethat Z(® : ) = x;7 %22 . . .and Z(A : T) = x1/%,%2. ..

then
a7 2(a,b:®, A) =[] [] v, b : %, =),
d=1 e=1
where
(18) y(a, b :x, %) = xfagsa”.
Proof. Suppose that (¢, 7), (¢/,j’), ¢ # ¢, are nodes contained in node cycles
of length ad and be involving the nodes coloured 1, 2,...,aanda+ 1, ...,

a + b, respectively. There are adbe edges joining nodes in one of these cycles
to nodes in the other; furthermore,

(19) {.7) (i —=l+1 64 €+ 1)} —...
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is an edge cycle of length [ad, be]; thus, the adbe edges under discussion split
into adbe/[ad, be] = (ad, be) edge cycles of length [ad, be]. Since there are fg
different cases similar to this one, we have that

(20) y(a, b :x,x7) = xiapa”
as the cycle index for the edge permutation restricted to this set of edges. The
product in the statement of this lemma gives the cycle index for the edge

permutation restricted to edges joining nodes coloured 1, 2, ..., a to nodes
coloureda+1,a+2,...,a+ b.

Tri-coloured graphs. We shall give an example of an application of the
theorem proved in the last section by calculating the cycle indices for the
edge automorphism groups of the complete tri-coloured graphs on # nodes for
n=23,4,...,9. In this case, we use one of the three relations (21), (22), or
(23), depending on whether the node sets N,,!, N,? N,?* are such that
{n1, no, ma} = {\, m, v}, {u, v?}, or {»%}, respectively, where A, u, and » are distinct
natural numbers. (We have simplified these expressions by noting that
z2(1:¢) =1,forp € S, f=1,2,....) The relations are

(21) FO\ w, v)/Nul vl

(22) (Flu v, ) + G, )}/21 w11
(23) {F(v, v, v) + 3G (v, v) + 2H®»)}/3!(»!)3,
where

FO\ )= 2" 20" 22 "T(¢o0)T(62)T(3)

PLES) $268, ¢2€8,
X Z(l, 1: ¢1: ¢2)Z(1r 1: ¢1: ¢3)Z(1, 1: ¢2, ¢3),
Gu,v) = 25" 2" WT(¢0)T($2)3(2 : $2)2(L, 2 : ¢1, ),

$1€S, #2€8,
HE) = 2" 0)°*T(9)33 : ¢).
#€5,
In the table below we give the cycle index for the group T*G(ni, ns, n3),
where (n1, ns, #3) ranges over the partitions of # into three positive parts for
n=323 4 ...,9 If 1+ «*is substituted for x; in these polynomials, the

coefficient of x¢ in the resulting polynomial is the number of non-isomorphic
tri-coloured graphs with e edges on the nodes N,,!, N,,? and N,2.

(1,1,1)  {x:® + 3xrx2 + 2x3} /3,

(1,1,2)  {x:® + 3xaxs?/(21)2,

(1,1,3)  {x17 4 3wiPx2? + 4ocixe® + 2123 + 2x1x6} /2! 31,

(1,2,2) {x1® + 4 203 + x0% 4+ 2x5204}/(21)3,

(1, 1,4)  {x1® 4 6x1%%2% 4+ Sx1%x32 + 13x1x2* + Sxuxoxe + 12x1x42} /21-41,
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(1,2,3) {xr! 4 3x1®x2® + x13x0* + 2x1203% + 3x1x2° + 2x9x5x6} /213,
(2, 2, 2) {x1” + 390149624 + 12x12x25 + 4x26 + 8x34 + 12x43 + 8x62}/3'(2')3,

(1,1,5)  {xa™ + 10x1"%% + 20x15%32 + 15x1%%9% + 30x13x42 + 26x1%,°
+ 20x1x22x32 + 40x1x22xs + 30361302X42 + 24x1x52 + 24x1x10}/2'5',

(1, 2, 4) {x114 + 6x18x23 + 8x15x33 + 6361496'25 + 9x12x26 + 6x12x43 + 8x1x22x3x5
+ 3x27 —+ 6x2x43}/2!-4!,

(1, 3, 3) {x115 + 6.’)0179624 + 15x13x26 + 4x13x34 ‘I" 12x1x2x32x6 + 18x1x2x43
+ 435 + 12x35x62 /21(31)2,

(2, 2, 3) {x116 + 3x18x24 + 230163025 + 230149034 + 1406123(727 + 6x12x2x62 + 4x28
+ 436'229632366 + 2x22x62 + 6x44 + 4x4x12}/(2!)33!,

(1,1,6) {x:'® 4 15x17x2% + 40x,7x32 + 45x1°%%2* + 90x15%42 4+ 120x,3x22x52
+ 144x13x52 + 913613026 + 16090196233(36 + 2703(?13(7229042 + 1440013(32.%’10 + 4Ox1x34
+ 280x1x62} /216!,

(1,2,5) {x:!" 4 10x11xs3 + 20x:3%3° + 16x1%%2° 4+ 30x1%%43 + 10x3x,7
+ 2Ox12x23x33 + 20x12x23x3x6 + 24:36123(353 + 15x1x23 + 3096136223643 + 20x24x3x5
+ 243623659(310} /2'5‘,

(1: 3, 4) {xlw + 6ciMleat 4+ 3xc1%xe® + 8x1Tx3* 4 18x1%%,7 4+ 2x1%55 + 3xqdx,®
+ 24x13%0.%03206 + 61304 + 12x120003%%6 + Ox12® + 18x 1024 + 16x123°
+ 6x22x3x62 + 123(733643612}/3!'4:!,

(2,2,4) {212 4 6% + 22,8658 + 8x,803* + 15x,%%,% + 6crtes?
+ 2096129629 + 16301296233(332006 + 16x12x23x62 + 1236123623644 + 16x21° + 830249662
+ 18x22x44 + 329045 + 16.%'423012}/(2!)34!,

(2,3,3)  {x:® + 6oMea!® 4 x1%,8 4 4x1%%5% + 9x1%x,% + 18x,°x,°
+ 12x120%3%s + 91010 + 36x102x 4% + 4x03x33xs + 12x:3x5062 + 4acy”
+ 4x33x52 + 24:9039653}/(2')2(3')2,

(1,1,7)  {xd® + 21wy es® 4 70x1%c52 + 105x,7x9* 4+ 210x,7%,% 4 420x,5%5%c5*
-+ 504x1%%52 + 630x13%.2x42 + 280x13x3* + 840x13x62 + 952x1%57

+ 21036196'243632 + 700301.’)624966 + 84Ox1x23x42 + 5043613622.’)652 + 1008.’)6190223610

+ 1120xx9x06% + 420 1x3%c,2 + 420210206 + 720x1%14) /2!- 71,

(1, 2, 6) {x12° + 15x114x23 + 4:0301119633 + 45x18x26 + 90.%’183043 —l" x16x27
+ 120x15%0%x33 + 144x:%x53 + 15x1%28 + 40x,3x.% 306 + 60x1%x2°
—+ 180x12x9%x 43 + 40x12x3% + 120x,2x6% + 120x1x0%x 306 + 144x102%¢5%10
+ 15x510 + 90x9%x 43 + 40x9x3%x62 + 120x0x6%} /2!-6!,

(1,3,5) {x12% 4+ 10x,2 %t + 3118 4+ 200, M%3% 4+ 45x17%s% + 30,7x4*
+ 60x15%.%% 3206 + 201538 + 45x13%910 4 20x1%%2% 3 4+ 90x 3% 22044
+ 20x:13x9x3%%6 + 24x13%5* + 40x,2x37 4+ 60x162°%3206 + 30x1%9203%062
+ 7230136296523610 + 60x1x32x4x12 + 403029635366 + 4:83633053015}/3!'5!,
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(1, 4:, 4) {x124 + 12361143625 —*— 16x19x35 + 3630183028 + 96x15x22x33x6 -+ 30)61436'210
+ 12x,% 45 4 64x,3x37 + 36x12x,1! + 144x,2x03x4% + 72x,200%45
+ 48x1x24x3x62 + 192x1x2x3x63 + 96x1x3x42x12 -l— 93(3212 + 36x22x45

+ 108x,8 + 14dxg% /21(41)2,

(2,2,5) {x12* + 10x,1x2* 4+ 200, 2x3¢ + 2x,1%,7 + 15x18%2% + 30x,8x4*
+ 20x1%%5° + 20x1%x0%5* 4 40x1%0otx3%06 + 241t 4 82x12x,11
+ 80x12x25x52 + 120x12x23x44 + 48901290290102 + 26.76212 + 40x25x32x5
+ 4Ox2°x62 + 303C24.'XJ44 + 240622.%‘102 + 48.%'230523610 + 1123046 + 80x43x12
+ 4836'4362()}/(2')35',

(2,3,4) {x:1%6 4 6x11%5% 4 3x0114x55 4 %0127 4 8oy 1lacs® 4 18%,%%6,°7 4 2x,%x58
4+ 9x15%,10 + 6x,5%45 + 24x,5%,3x33%¢5 + 3x140.%9%5 + 12,4052 3%

—+ S8x13%2%c33xs + 9x12¢012 + 18x12x,10%, + 18x12x:2x4% + 16x,%x58

4 24x1x93%3%6 6% + 3218 + Oxallcy + 2x0%x3%0s + 18%0%x32062 4 Bxyixed

+ 6x23x45 + 18x2x46 + 16x2x62x34 + 12x32x42x12 + 12x42x6x12} /2'3'4',

(3, 3, 3) {x127 + 9x115x26 + 6x19x36 + 27x17x2‘° + 99x13x212 + 36x13x23x34x6
4 36x1%x53%x63 + Hdx1X0%32x62 + 216x1%93%45 + 108x1x42x6x10 + 92x35°
+ 36x;%x62 + 432x3x6* + 144x4%} /(31)4
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