NOTE ON THE STRONG SUMMABILITY OF SERIES

by J. M. HYSLOP
(Received 16th February, 1949)

1. Definitions and Preliminary Remarks. Given the series $\sum_{n=0}^{\infty} a_{n}$, the n-th Cesàro sum of order k is defined by the relation

$$
A_{n}^{(k)}=\sum_{v=0}^{n} E_{n-\nu}^{(k)} a_{v}
$$

where $E_{n}^{(k)}$ is the binomial coefficient $\binom{k+n}{n}$. Let $\dot{C}_{n}^{(k)}=A_{n}^{(k)} / E_{n}^{(k)}$. Then Σa_{n} is said to be summable $(C ; k)$ to the sum s if, as $n \rightarrow \infty, C_{n}^{(k)} \rightarrow s$. The series is said to be absolutely summable ($C ; k$), or summable $|C ; k|$, if $\sum_{n=0}^{\infty}\left|C_{n}^{(k)}-C_{n-1}^{(k)}\right|$ is convergent. The series is said to be strongly summable ($C ; k$) with index p, or summable $[C ; k, p$], to the sum s if

$$
\sum_{v=0}^{n}\left|C_{\nu}^{(k-1)}-s\right|^{p}=o(n)
$$

It is assumed that k and p are positive.
In this note a consistency theorem and necessary and sufficient conditions for summability $[C ; k, p]$ are obtained. It is also shown that $[C ; k, p], p \geqslant 1$ implies $(C ; \lambda)$, for some λ, and that, whereas $|C ; k|$ implies $[C ; k, p], p \leqslant 1$, this is not true for $p>1$. Properties of strong summability have already been obtained by various writers, for example by Kuttner* in the case $k=1$ and by Winn \dagger in the case $p=1$, but $[C ; k, p]$, for general k and p does not seem to have been considered hitherto in detail.

In the proofs of the theorems the following relations, all of which are well known, will be required.

$$
\begin{array}{r}
A_{n}^{(k+\delta)}=\sum_{\nu=0}^{n} E_{n-\nu}^{(\delta-1)} A_{\nu}^{(k)}, \delta>0, \ldots \ldots \\
E_{n}^{(k)}=O\left(n^{k}\right), \ldots \ldots \ldots \ldots \ldots \\
-n\left\{C_{n}^{(k)}-C_{n-1}^{(k)}\right\}=k\left\{C_{n}^{(k)}-C_{n}^{(k-1)}\right\}, \ldots \\
n E_{n}^{(k+\delta)} a_{n}^{(k+\delta)}=\sum_{\nu=0}^{n} E_{n-\nu}^{(\delta-1)} \nu E_{\nu}^{(k)} a_{\nu}^{(k)}, \delta>0, \tag{4}
\end{array}
$$

where $a_{n}^{(k)}=C_{n}^{(k)}-C_{n-1}^{(k)}$.
2. Summability $[C ; k, p]$. That $[C ; 1, p]$ implies $[C ; 1, p-\delta], 0 \leqslant \delta<p$, is well known, and Theorem 1 below is merely a formal extension of this result.

Theorem 1. A series which is summable $[C ; k, p]$ is also summable $[C ; k, p-\delta]$ for every δ such that $0 \leqslant \delta<p$.

By Hölder's inequality

$$
\sum_{\nu=0}^{n}\left|C_{\nu}^{(k-1)}-s\right|^{p-\delta} \leqslant\left\{\sum_{\nu=0}^{n}\left|C_{\nu}^{(k-1)}-s\right|^{p}\right\}^{(p-\delta) / p}\left\{\sum_{\nu=0}^{n} 1\right\}^{1 / \mu}
$$

* B. Kuttner, Journal London Math. Soc., 21 (1946), 118-122.
where $\frac{1}{\lambda}+\frac{1}{\mu}=1$ and $\lambda=p /(p-\delta)$. Thus

$$
\sum_{\nu=0}^{n}\left|C_{\nu}^{(k-1)}-s\right|^{p-\delta}=o\left\{n^{(p-\delta) / p}\right\} . O\left(n^{1 / \mu}\right)=o(n)
$$

It has been shown by Winn* that $[C ; k, 1]$ implies $(C ; k)$, whence, by Theorem 1 , it follows that, for $p \geqslant 1,[C ; k, p]$ implies $(C ; k)$. This result is not true \dagger when $p<1$. The consistency theorem for Cesàro summability shows that $[C ; 1,1]$ implies $(C ; 1+\delta)$, for $\delta \geqslant 0$. On the other hand, Kuttner \ddagger has shown that $[C ; 1, p]$ implies $\left(C ; \frac{1}{p}+\delta\right)$, for $\delta>0$, and that δ cannot be replaced by zero. For $[C ; k, p]$ we have the following theorem.

Theorem 2. If $k p>1, p>1$, and if Σa_{n} is summable $[C ; k, p]$ then Σa_{n} is summable $\left(C ; k+\frac{1}{p}+\delta-1\right)$, for any positive δ.

We may suppose, without loss of generality that the sum of the series Σa_{n} is zero. If $\lambda>0$ we have

$$
\begin{aligned}
C_{\nu}^{(k+\lambda-1)}=\frac{A_{\nu}^{(k+\lambda-1)}}{E_{\nu}^{(k+\lambda-1)}} & =\frac{1}{E_{\nu}^{(k+\lambda-1)}} \sum_{\mu=0}^{\nu} E_{\nu-\mu}^{(\lambda-1)} A_{\mu}^{(k-1)} \\
& =\frac{1}{E_{\nu}^{(k+\lambda-1)}} \sum_{\mu=0}^{\nu} E_{\nu-\mu}^{(\lambda-1)} E_{\mu}^{(k-1)} C_{\mu}^{(k-1)}
\end{aligned}
$$

By Hölder's inequality,

$$
\left|C_{\nu}^{(k+\lambda-1)}\right| \leqslant \frac{1}{E_{\nu}^{(k+\lambda-1)}}\left\{\sum_{\mu=0}^{\nu}\left|C_{\mu}^{(k-1)}\right|^{p}\right\}^{1 / p}\left[\sum_{\mu=0}^{\nu}\left\{E_{\nu-\mu}^{(\lambda-1)} E_{\mu}^{(k-1)}\right\}^{p}\right]^{1 / p^{\prime}}
$$

where $\frac{1}{p}+\frac{1}{p^{\prime}}=1, p>1$. Thus

$$
\begin{aligned}
C_{v}^{(k+\lambda-1)} & =o\left[\nu^{\frac{1}{p}+1-k-\lambda}\left\{\sum_{\mu=0}^{\nu}(\nu-\mu+1)^{p^{\prime}(\lambda-1)}(\mu+1)^{p^{\prime}(k-1)}\right\}^{1 / p^{\prime}}\right] \\
& =o\left\{\nu^{\frac{1}{p}+1-k-\lambda} \nu^{\lambda+k-2+\frac{1}{p^{\prime}}}\right\}
\end{aligned}
$$

if $p^{\prime}(\lambda-1)>-1, p^{\prime}(k-1)>-1$. Hence if $\lambda>1-\frac{1}{p^{\prime}}=\frac{1}{p}, k>\frac{1}{p}, p>1$, we have

$$
C_{\nu}^{(k+\lambda-1)}=o(1),
$$

which proves the theorem.
We now obtain necessary and sufficient conditions for strong summability.
Theorem 3. Necessary and sufficient conditions for a series to be summable $[C ; k, p], p \geqslant 1$ are that it be summable $(C ; k)$ and that

$$
\sum_{\nu=0}^{n} \nu^{p}\left|C_{\nu}^{(k)}-C_{\nu-1}^{(k)}\right|^{p}=o(n)
$$

Suppose that the sum of the given series is zero.

* C. E. Winn, Math. Zeitschrift, 37 (1933), 481-492.
$\dagger \mathrm{It}$ has been shown that, given any T-matrix, there is a series summable $[C ; 1, p], p<1$, but not summable (T). See B. Kuttner, loc. cit.
\ddagger B. Kuttner, loc. cit.

If the series is summable $[C ; k, p], p \geqslant 1$, it is summable (C, k). From relation (3) and Minkowski's inequality, we have, if $p>1$,

$$
\left[\sum_{\nu=0}^{n} \nu^{p}\left|C_{\nu}^{(k)}-C_{v-1}^{(k)}\right|^{p}\right]^{1 / p} \leqslant\left[k^{p} \sum_{\nu=0}^{n}\left|C_{\nu}^{(k)}\right|^{p}\right]^{1 / p}+\left[k^{p} \sum_{v=0}^{n}\left|C_{\nu}^{(k-1)}\right|^{p}\right]^{1 / p} .
$$

By hypothesis, the second term on the right is $o\left(n^{1 / p}\right)$. Also $C_{r}^{(k)}=o(1)$, since the series is summable $(C ; k)$ to the sum zero. Thus the first term on the right is also $o\left(n^{1 / p}\right)$. Hence, when $p>1$,

$$
\sum_{\nu=0}^{n} \nu^{p}\left|C_{\nu}^{(k)}-C_{\nu-1}^{(k)}\right|^{p}=o(n)
$$

If $p=1$,

$$
\sum_{\nu=0}^{n} \nu\left|C_{\nu}^{(k)}-C_{\nu-1}^{(k)}\right| \leqslant k \sum_{\nu=0}^{n}\left|C_{\nu}^{(k)}\right|+k \sum_{\nu=0}^{n}\left|C_{\nu}^{(k-1)}\right|=o(n)
$$

The two conditions are therefore necessary. To prove sufficiency write (3) in the form

$$
k C_{n}^{(k-1)}=k C_{n}^{(k)}+n\left\{C_{n}^{(k)}-C_{n-1}^{(k)}\right\}
$$

When $p>1$, Minkowski's inequality gives

$$
\left\{\sum_{\nu=0}^{n}\left|k C_{\nu}^{(k-1)}\right|^{p}\right\}^{1 / p} \leqslant\left\{\sum_{\nu=0}^{n}\left|k C_{\nu}^{(k)}\right|^{p}\right\}^{1 / p}+\left[\sum_{\nu=0}^{n} \nu^{p}\left|C_{\nu}^{(k)}-C_{\nu-1}^{(k)}\right|^{p}\right]^{1 / p} .
$$

The second term is $o\left(n^{1 / p}\right)$ by hypothesis, and so also is the first, since $C_{\nu}^{(k)}=o(1)$. When $p=1$, the proof, as in the case of necessity, is obvious.

This theorem at once suggests a definition corresponding to summability $[C ; 0, p]$. The series Σa_{n} may be said to be strongly convergent with index p, if it is convergent and if $\sum_{\nu=0}^{n} \nu^{p}\left|a_{\nu}\right|^{p}=o(n)$. Strong convergence with index unity may conveniently be called strong convergence. Examples of strongly convergent series are easy to construct. All convergent series whose n-th terms are $o\left(\frac{l}{n}\right)$ are clearly strongly convergent. It will be noted that the condition $\sum_{\nu=0}^{n} \nu\left|a_{\nu}\right|=o(n)$ does not itself imply convergence, since it is satisfied in the case $a_{\nu}=(\nu \log \nu)^{-1}, \nu \geqslant 2$. It is obvious that absolute convergence implies strong convergence.

We shall now show that strong convergence with index $p, p \geqslant 1$, implies summability $[C ; k, p]$ for any positive k. This is included in a wider consistency theorem (Theorem 4 below), which is based on certain lemmas. The first of these is very general in scope.

Lemma 1. If * $p>1, f(x) \geqslant 0, K(x, y) \geqslant 0$ and $K(x, y)$ is homogeneous of degree - 1 , and if

$$
\int_{0}^{\infty} K(x, 1) x^{-1 / p} d x=\lambda,
$$

then

$$
\int_{0}^{\infty} d y\left\{\int_{0}^{\infty} K(x, y) f(x) d x\right\}^{p} \leqslant \lambda^{p} \int_{0}^{\infty}\{f(x)\}^{p} d x
$$

Lemma 2. If $f(x) \geqslant 0, f(x)=0$ for $x>n$, if $k \geqslant 0, \delta>0, p>1$, then

$$
\int_{0}^{n} d y\left\{\int_{0}^{y} \frac{(y-x)^{\delta-1} x^{k}}{y^{k+\delta}} f(x) d x\right\}^{p} \leqslant K \int_{0}^{n}\{f(x)\}^{\nu} d x,
$$

where K is independent of n.

* See Hardy, Littlewood and Pólya, Inequalities (Cambridge University Press, 1934), 229.

In Lemma 1, take

$$
\begin{array}{rlrl}
K(x, y) & =\frac{(y-x)^{\delta-1} x^{k}}{y^{k+\delta}}, & (x \leqslant y), \\
& =0, & & (x>y) .
\end{array}
$$

Then $K(x, y)$ is homogeneous of degree -1 , and

$$
\int_{0}^{\infty} K(x, 1) x^{-1 / p} d x=\int_{0}^{1}(1-x)^{\delta-1} x^{k-1 / p} d x=\frac{\Gamma(\delta) \Gamma\left(k+1-\frac{1}{p}\right)}{\Gamma\left(k+1+\delta-\frac{1}{p}\right)}=\lambda
$$

say. Thus

$$
\begin{aligned}
\int_{0}^{\infty} d y\left\{\int_{0}^{y} \frac{(y-x)^{\delta-1} x^{k}}{y^{k+\delta}} f(x) d x\right\}^{p} & \leqslant \lambda^{p} \int_{0}^{\infty}\{f(x)\}^{p} d x \\
& =\lambda^{p} \int_{0}^{n}\{f(x)\}^{p} d x
\end{aligned}
$$

from which the result follows.
Lemma 3. If $\alpha_{\mu} \geqslant 0, k \geqslant 0,0<\delta<1, p>1$,

$$
\sum_{\nu=0}^{n-1}\left\{_{\mu=0}^{\nu-1} \frac{(\nu+1-\mu)^{\delta-1} \mu^{k}}{(\nu+1)^{k+\delta}} \alpha_{\mu}\right\}^{p} \leqslant K \sum_{\mu=0}^{n} \alpha_{\mu}^{p}
$$

where K is independent of N.
In Lemma 2 let

$$
f(x)=\alpha_{\mu}, \mu \leqslant x<\mu+1, \mu=0,1, \ldots n-1 .
$$

Then

$$
\int_{0}^{n}\{f(x)\}^{p} d x=\sum_{\mu=0}^{n-1} \int_{\mu}^{\mu+1}\{f(x)\}^{p} d x \leqslant \sum_{\mu=0}^{n} \alpha_{\mu}^{p}
$$

and

$$
\begin{aligned}
\int_{0}^{n} d y\left\{\int_{0}^{y} \frac{(y-x)^{\delta-1} x^{k}}{y^{k+\delta}} f(x) d x\right\}^{p} & =\sum_{\nu=0}^{n-1} \int_{\nu}^{\nu+1} d y\left\{\int_{0}^{y} \frac{(y-x)^{\delta-1} x^{k}}{y^{k+\delta}} f(x) d x\right\}^{\nu} \\
& \geqslant \sum_{\nu=0}^{n-1} \frac{1}{(\nu+1)^{p(k+\delta)}}\left\{\int_{0}^{\nu}(\nu+1-x)^{\delta-1} x^{k} f(x) d x\right\}^{p} \\
& =\sum_{\nu=0}^{n-1} \frac{1}{(\nu+1)^{p(k+\delta)}}\left\{\sum_{\mu=0}^{\nu-1} \alpha_{\mu} \int_{\mu}^{\mu+1}(\nu+1-x)^{\delta-1} x d x\right\}^{p} \\
& \geqslant \sum_{\nu=0}^{n-1}\left\{\sum_{\mu=0}^{\nu-1} \frac{(\nu+1-\mu)^{\delta-1} \mu^{k}}{(\nu+1)^{k+\delta}} \alpha_{\mu}\right\}^{p} .
\end{aligned}
$$

Lemma 4. If * $\alpha_{\nu} \geqslant 0, \sum_{\nu=0}^{n} \alpha_{\nu}=o(n)$ then, for $\lambda>-1$,

$$
\cdot \sum_{\nu=0}^{n} \nu^{\lambda} \alpha_{\nu}=o\left(n^{\lambda+1}\right)
$$

The main consistency theorem may be stated as follows:
Theorem 4. If Σa_{n} is summable $[C ; k, p], k \geqslant 0, p \geqslant 1$, then it is summable $[C ; k+\delta, q]$ for any $\delta>0$ and any $q \leqslant p$.

The case $k>0, p=1$ has been proved by Winn.*
By Theorem 1 it is sufficient to show that the hypothesis implies summability $[C ; k+\delta, p]$, and there is no loss in generality in assuming that $0<\delta<1$.

By hypothesis and Theorem 3 the series is summable ($C ; k$) and therefore summable $(C ; k+\delta)$. Hence to prove the theorem it is sufficient to show that

$$
\begin{gathered}
\sum_{\nu=0}^{n}\left\{\nu\left|a_{\nu}^{(k+\delta)}\right|\right\}^{p}=o(n) . \\
\quad \text { * C. E. Winn, loc. cit. }
\end{gathered}
$$

When $k=0, p=1$ we have, from (4),

$$
\begin{aligned}
\sum_{\nu=0}^{n} \nu\left|a_{\nu}^{(\delta)}\right| & \leqslant \sum_{\nu=0}^{n} \frac{1}{E_{\nu}^{(\delta)}} \sum_{\mu=0}^{\nu} E_{\nu-\mu}^{(\delta-1)} \mu\left|a_{\mu}\right| \\
& =\sum_{\mu=0}^{n} \mu\left|a_{\mu}\right| \sum_{\nu=\mu}^{n} \frac{\left.E_{\nu}^{(\delta-\mu}\right)}{E_{v}^{(\delta)}} \\
& =O\left\{\sum_{\mu=0}^{n} \mu^{1-\delta}\left|a_{\mu}\right|_{\nu=\mu}^{n} E_{\nu-\mu}^{(\delta-1)}\right\} \\
& =O\left\{n^{\delta} \sum_{\mu=0}^{n} \mu^{1-\delta}\left|a_{\mu}\right|\right\}=o(n),
\end{aligned}
$$

by Lemma 4.
Assuming now that $k \geqslant 0, p>1$ we have, from (4),

$$
\nu E_{\nu}^{(k+\delta)}\left|a_{\nu}^{(k+\delta)}\right| \leqslant \sum_{\mu=0}^{\nu-1} E_{\nu-\mu}^{(\delta-1)} E_{\mu}^{(k)} \mu\left|a_{\mu}^{(k)}\right|+E_{\nu}^{(k)} \nu\left|a_{\nu}^{(k)}\right|
$$

and, since

$$
(a+b)^{p} \leqslant 2^{p}\left(a^{p}+b^{p}\right), a \geqslant 0, b \geqslant 0, \text { we have }
$$

$$
\begin{gathered}
\left\{\nu\left|a_{\nu}^{(k+\delta)}\right|\right\}^{p} \leqslant 2^{p}\left\{\frac{1}{E_{\nu}^{(k+\delta)}} \sum_{\mu=0}^{\nu-1} E_{\nu-\mu}^{(\delta-1)} E_{\mu}^{(k)} \mu\left|a_{\mu}^{(k)}\right|\right\}^{p}+2^{p}\left\{\frac{\left.E_{\nu}^{(k)} \nu\left|a_{\nu}^{(k)}\right|\right\}^{p}}{E_{\nu}^{(k+\delta)}}\right\}^{p} \\
{ }_{\nu=0}^{n-1}\left\{\nu\left|a_{\nu}^{(k+\delta)}\right|\right\}^{p}=O\left[\sum_{\nu=0}^{n-1}\left\{\sum_{\mu=0}^{\nu-1} \sum_{\nu=1}^{(\nu+1-\mu)^{\delta-1} \mu^{k}}(\nu+)^{k+\delta} \mu\left|a_{\mu}^{(k)}\right|\right\}^{p}\right]+O\left[{ }_{\nu=0}^{n-1}\left\{\nu\left|a_{\nu}^{(k)}\right|\right\}^{p}\right]
\end{gathered}
$$

Thus
The second term is $o(n)$ and, by Lemma 3, the first is

$$
O\left[\sum_{\nu=0}^{n}\left\{\nu\left|a_{\nu}^{(k)}\right|\right\}^{p}\right]=o(n)
$$

The theorem is therefore proved.
3. Relationship between $|C ; k|$ and $[C ; k, p]$. It is easy to see that $|C ; k|$ implies [$C ; k, \mathrm{I}$] and therefore, by Theorem 1, that it implies [$C ; k, p]$ for $0<p \leqslant 1$. Any series which is summable $|C ; k|$ is summable ($C ; k$), and, if it is also to be summable $[C ; k, p]$, for $p>1$, we must have, by Theorem 3,

$$
\sum_{\nu=0}^{n} \nu^{p}\left|a_{\nu}^{(k)}\right|^{p}=o(n) .
$$

Write $\alpha_{\nu}=\left|a_{\nu}^{(k)}\right|$. Now it is possible to find a convergent series of positive terms $\Sigma \alpha_{\nu}$ which is such that, for $p>1$,

$$
\sum_{\nu=0}^{n}\left(\nu \alpha_{\nu}\right)^{p} \neq o(n) .
$$

For example, if

$$
\begin{aligned}
\alpha_{\nu} & =e^{-\mu} \text {, when } \nu \text { is of the form }\left[e^{e^{\mu}}\right], \\
& =0, \text { all other } \nu,
\end{aligned}
$$

it is not difficult to show that, for any $\eta>0$,

$$
\frac{1}{n} \sum_{\nu=0}^{n}\left(\nu \alpha_{\nu}\right)^{1+\eta} \rightarrow \infty,
$$

as $n \rightarrow \infty$ through values of the form $\left[e^{e^{m}}\right]$. It follows that, when $p>1,|C ; k|$ does not imply $[C ; k, p]$.
University of the Witwatersrand Johannesburg

