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GALOISMODULE STRUCTURE OF AMBIGUOUS IDEALS
IN BIQUADRATIC EXTENSIONS

G. GRIFFITH ELDER

ABSTRACT.  Let N/K be a biquadratic extension of algebraic number fields, and
G = Ga(N/K). Under a wesk restriction on the ramification filtration associated
with each prime of K above 2, we explicitly describe the Z[G]-module structure of
each ambiguous ideal of N. We find under this restriction that in the representation
of each ambiguous ideal as a Z[G]-module, the exponent (or multiplicity) of each
indecomposable module is determined by the invariants of ramification, alone.

For a given group, G, define Sg to be the set of indecomposable Z[G]-modules,
M, such that there is an extension, N/K, for which G & Ga(N/K), and M is a
Z[G]-module summand of an ambiguous idea of N. Can Sg ever be infinite? In this
paper we answer this question of Chinburg in the affirmative.

1. Introduction. Suppose that K is a finite extension of the rational humbers, Q,
while N is some finite Galois extension of K. It is well-known that the ring of integers
of N, O, is afree module over the ring of rational integers, Z. Since the Galois group,
G = Gal(N/K), actson thering of integers; On may beviewed, canonically, asamodule
over the group ring, Z[G]. Isthering of integers, On, free over the group ring, Z[G]?

In 1932, E. Noether determined that in order for O tobefreeover Z[G], the extension,
N /K, must be at most tamely ramified [18]. In the 1970’s, a lot of work was done in
determining necessary and sufficient conditions for the ring of integers, Oy, to be free
over Z[G] when the extension N /K is tame. This culminated in M. J. Taylor’s proof of
Frohlich’s Conjecture. Frohlich's book is an excellent reference for this topic [9].

If the extension, N/K, is not tamely ramified but in fact has some wild ramification,
we can not expect Oy to be free over Z[G]. What can we expect? Thisis the question
that we seek to addressin this paper.

Any effort to addressthe question of Z[G]-module structure of Oy in wildly ramified
extensions must contend with two basic obstacles:

(1) TheKrull-Schmidt Theorem generally doesnot hold. Consequently, whileagiven
Z[G]-module will decompose into a direct sum of indecomposable Z[G]-modules, the
decomposition will not necessarily be unique.

(2) Thenumber of indecomposableZ[G]-modulesisusually infinite, for anice survey
see Dieterich [3].
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There are two ways that one may retrieve the Krull-Schmidt Theorem. On the one
hand, one might consider the anal ogous question for local number field extensions, N /K
(where the Krull-Schmidt Theorem does hold). Alternatively, one may restrict oneself
to those Galois groups, G, and their group rings, Z[G] for which the Krull-Schmidt
Theorem happensto hold.

In the work of Rzedowski-Caldéron, et al. [19] and previous work of the author with
Madan [6], the first approach was adopted. Based upon this work, in particular [8], it is
clear that explicit expressions for the Galois module structure of the ring of integersin
wildly ramified extensions of local fields can be quite complicated.

In this paper we adopt an alternate approach. We restrict our attention to the class
of biquadratic number field extensions, because the Krull-Schmidt Theorem holds for
Z[C, x Cy]-modules. Fortunately, not only doesthe Krull-Schmidt Theorem hold, but the
infinitely many inequivalent, indecomposable Z[C, x C;]-modules have been classified
by Nazarova[16] with complete proofsin [17].

The approach which we employ in this paper enables us to explicitly determine
the Z[G]-module structure of Oy (as well as any other ambiguous ideal) in terms of
indecomposable Z[ G]-modules which are indexed at the end of the paper. In particular,
we determine this structure for the wide class of biquadratic extensions N /K which arise
asthe composite of two arithmetically digjoint quadratic extensions, see Maus[14]. This
is enough, for us to answer a question posed by Chinburg.

QUESTION 1.1 (CHINBURG). For a given group, G, define S to be the set of in-
decomposable Z[G]-modules, M, such that there is an extension, N/K, for which
G ~ Gal(N/K), and M is a Z[G]-module summand of an ambiguous ideal of N.
Can Sg be infinite?

In this paper, we explicitly construct a family of extensions whose Galois module
structure of the ring of integers we determine. As a consequence, we are able to answer
this question in the affirmative. See Section 3.41.

Although weare ableto apply the methods of this paper to determinethe Z[G]-module
structure of O for awide class of biquadratic number fields, we are unableto apply the
methods of this paper to all biquadratic extensions. In Section 3.42 we examine thisin
greater detail. In Section 5 we show that our results are tight by providing a family of
extensions (not covered by our Theorems) to which our approach can not be applied.

1.1. Organization of Paper The paper it organized asfollows: Note that as some of the
proofs are rather technical, they have been collected in Section 3.43.
1. Introduction
1.1 Organization of the Paper
1.2 Related Topics
2. Reduction: from Global to Local
3. Quadratic and Biquadratic Local Extensions
3.1 Notation
3.2 Quadratic Extensions
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3.3 Partially Ramified Biquadratic Extensions
3.4 Fully Ramified Biquadratic Extensions
3.41 Results for Fully Ramified Biquadratic Extensions
Case 1: One Break in the Ramification Filtration
Chinburg's Question
Case 2: Two Breaksin the Ramification Filtration
3.42 Outline and Evaluation of the Method of Proof
3.43 Proofs for Fully Ramified Biquadratic Extensions
Preliminary Results
Case 1: One Break in the Ramification Filtration
Case 2-odd: Two Breaksin the Ramification Filtration, t odd
Case 2-even: Two Breaks in the Ramification Filtration, t = 2ey
4. Index of Modules
4.1 The Modules Expressed in Terms of Generators and Relations
4.2 Nazarova's Notation and the Indecomposability of the Modules
5. Examples
6. Conclusion
References

1.2. Related topics. We would be remiss, if we did not include a brief discussion of
other material related to the main topic of this paper. The main results of this paper are
local, and so in this section we are concerned with the question, “the Galois module
structure of the ring of integers in wildly ramified local extensions.” Let N/L be a
wildly ramified Galois extension of local number fields, with [L : Q] finite, Q, denoting
the field of p-adic numbers. Let G = Gal(N/L). Use subscripts to denote the field of
reference, so that O isthering of integers of L, while Oy isthering of integers of N.

Here are two approachesto this question:

(1) For K any subfield of L, one can ask for the Ok [G]-module structure of Oy.
In this paper we are interested in the the situation where K = Qp and p = 2. Actually,
although we are principally interested in the situation, K = Q»; our approach answers
the question for K = T, the maximal unramified extension of Q,, which by restriction
determines the answer to the question for al K’s unramified extension over Q,, and in
particular K = Q,. At the other extreme, Miyata [15] and Vostokov [22] have examined
thesituationwhen K = L. There, they find that when G isap-group (N /L fully ramified),
On is usually indecomposable as a ©, [G]-module. We find, on the other hand, that Oy
usually decomposes as a Zp[ G]-module.

(2) Another approach is motivated by the work of Leopoldt [12]. One may study the
structure of Oy asamodule over the associated order, {x € L[G] : xOn C On}. Martel
[13] has done this for biquadratic extensions of Q. Burns[2] has studied this question
more generally.
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2. Reduction: from global tolocal. LetN/K beabiquadratic extension of number
fields, with Galoisgroup, G = Gal(N/K) =~ C; x C,. Let Oy denotethering of integers
of N. An ambiguousideal, %, isafractional ideal of Oy with the property that o2 = U
for al o € G. In our examination of the Z[G]-module structure of ambiguous ideals,
we will require a result from representation theory: Namely, that the local structure
completely determines the global structure. To precisely state and prove this result, we
require adefinition:

DEFINITION 2.1. If N is a Z[G]-module, let % denote the tensor product, Z, @7 N.
The Z,[G] action on ¢ is defined by the following: For a8 € Z,[G] witha € Z,, 8 € G,
andb®zoz€ 75 @7 %, |etaﬁ b@za:ab@’zﬁoé.

THEOREM 2.2 (LOCAL-GLOBAL). Let %t and ¢ be Z[G]-modules, with G =~ C; x C,.
If N =~ M as Z,[G]-modules,  then N =~ I as Z[G]-modules.

PROOF. If N =~ M as Z,[G]-modules, then Yt and )¢ belong to the same genus, see
(5, p.642]. Let O = 1/4(c + )(y + )Z + 1 /40 — 1)(Y + 1)Z + 1/4(oc + 1)(Y — 1)Z +
1/4(c — 1)(y — 1)Z denote the maximal order of Q[G]. If furthermore, ON ~ OM
as O-modules (where O = O ®@z(g ) then % and ¢ belong to the same restricted
genus, see [11, p. 10]. Clearly, O ~ Z2 @ RP ® R @ R4 for some nonnegative
integers a, b, ¢, d (for explanation of Z[G]-module notanon see Section 4). Note that
OJ“ Za aRP@eRE@RY for the same nonnegative integers, a, b, ¢, d. Therefore,
if ¢ and Wt arein the same genus the nonnegativeintegersa, b, ¢, d are determined, so
that % and ¢ must lie in the same restricted genus. Because the ring, Z[G], has direct
sum cancellation [23, p. 458], there is only one isomorphism class per restricted genus
[23, p. 443). n

Asaconsequenceof thistheorem we turn our attention to examine the Z,[G]-module
structure of Z, @7 N.

Letpj,j=1..... g bethelist of distinct prime idealsof Ok which lie over 2. Suppose
that p; splitsinto g; distinct primeideals, B , in N, so that p; Oy = N 1330 j)- Clearly,
g = 1, 2 or 4. Reorganize the subscripts of the p;’s, so that we have:

forj=1,...,a g=1
forj=a+1l....b g=2oPBa)=Baj
forj=b+1,..., C =2, YBapy=VBuwj

forj=c+1..... d g=2 "vB¥aj=Ba)
forj=d+1,..., g g=4

for somea, b, ¢, dwith0 <a < b < ¢ < d < g. Adopt the convention that when g, = 4
B = Bej, YPaj = Bai, and Y0P = Ba)-

Let N j) be the completion of N at the prime, 3, let K; be the completion of K at
the prime, p;, and let U ;) be the embedding of 2 into Ng ;). If we identify (. j) with
the maximal ideal in N j), then 2 j) = i].B(I.j)I for somet € 7.

https://doi.org/10.4153/CJM-1998-050-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-050-4

BIQUADRATIC EXTENSIONS 1011

THEOREM 2.3. Adopting the notation above,

9 9
Zo@; N ~bd Z Z sl[(hj) as Z,-modules.
i=1i=1

PROOF. See, for instance, [10, Ch. I11]. ]

Note that for j = d+1,...,9, Uj = Z» as Z,-module while o215 = W),

YUy = Ugjy, and Yoy = Uayj- Therefore Wjy + Uej + Uej) + W) = G as
Z,[G]-modules, where G denotesthe group ring, Z,[G]. Similarly,

Wj + U = Zz[<"/>] ®@z A forj=a+1,..., b,
?l(l.j) + ?I(Z.j) [a~4 Zz[<0‘>] X7 S)/[(l.j) for ] =b+1,... ,C,
?/[(1’]‘) + ?/[(Z.j) o Zz[<0’>] ®z ?/[(1’]‘) for j =c+1,....d;

where the action of Z,[G] is the natural one: If ay'c¥ € Z5[G] for some a € Z, and

a®z B € Z[(7)] @z gy forj =a+1,..., b, or @« ®@; B € Z5[(0)] ®7 N, for
j=b+1 ..., d; define the action of Z5[G] by
a'a@; 03 forj=a+1,...,b,
aWIUk-a(Xzﬁ:{aUka@Z’YIB forj=b+1.....c
ac*la®; (Vo) forj=c+1,....d.

Finally, for each j with g; = 1, note that 2, j) is closed under the action of the group,
and thereforeisalready aZ,[ G]-module. Asaconseguence, we havethe following result:

THEOREM 2.4. Adopting the notation from above,

a b
Zr @7 W= ®) Ny ® Y (Zo[(M)] @7 Aqw)
i1 j

j=atl

c d
® .§1(Zz[<0>] @z Uwyp) @ .21(22[<U>] @z Aq,j)
j=b+ J=C+

[¢]
@ > G aszy[G]-modules.
j=d+1

Because of this theorem, we now turn our attention to the local question: What is
the Z,[G;]-module structure of % (1j), where G; is the Galois group, Gal (N /K;). In
other words, we need to know the Galois module structure of ideals in quadratic and
biquadratic extensionsof local number fields. This questionisaddressed in the remainder
of this paper.
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3. Quadratic and biquadratic local extensions.

3.1. Notation. Thereshould be no confusion, if we now let K refer to afinite extension
of the 2-adic numbers, Q-. L et ey denote the absolute ramification index, whilef denotes
the degree of inertia, then [K : Q] = eyf. Let N beafinite Galoisextension of K, call the
Galoisgroup of N over K, G = Gal(N/K). Use subscriptsto denote the field of reference
so that Oy refersto thering of integers of N, 33y denotesthe maximal ideal of Oy, 7y @
prime element in N and vy the normalized valuation of N, so that vy(mn) = 1. Let G_3,
Go, G1, G2 - - - denotethe ramification filtration of G [21, Chapter IV]. So G_1 = G while
Go istheinertia subgroup of G. A break (ramification) number of N /K will alwaysrefer
to alower break (ramification) number, so that b is a break number if G, # Gpep. Let T
denote the maximal unramified extension of Q, contained in K. Clearly, [T : @;] =f.
Let |x] denote the floor function (also called the greatest integer function), while [x]
denotesthe ceiling function (the least integer function). Clearly, | (x—1) /n] = [x/n]—1
for any positive integer n.

3.2. Quadratic extensions. When N/K is a quadratic extension, the Z,[G]-module
structure of PB4 is known. We reprove this result to introduce the approach which we
will employ in the proofs of our later results.

THEOREM 3.1. Let N/K bea quadratic extension of local number fields (ramified or
unramified), where [K : Q2] = eof, ey denoting the absolute ramification index. Let b be
the ramification number of N /K, let G = Gal(N/K) be generated by v, and let

a= | [(+0)/2]—[i/2] ifb# -1,
“lo ifb=—1.
Then
By Z¥ gRH ¢ E® ¥ as7,[G]-modules.

ProoF. If N/K is unramified, one may easily verify that each fractional ideal hasa
normal integral basis.

Note that b is even means that b = 2ey, see [24]. Consequently, (v + 1)/2 is an
idempotent element which takes 33}, into itself, yielding the desired result.

If bisodd, let o € N havevaluation, v(a) = b. Let o = gl sothat vn(am) = b+2m.
Becausevy ((“/ + 1)am) = 2b+2m, the elementsin the following two sets serveasabasis
for 3, over Or:

(3.1 {om. (Y +Dom : [(i—b)/2] <m<e—b+[i/2] -1},
{(v+ Do, 2am : [i/2] —b<m< [(i—b)/2] —1}.

From this basis the O1[G]-structure is apparent which determines the Z,[G]-module
structure.
For an alternative proof, see [19, Theorem 1]. ]
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REMARK 3.2. When we outline our approach in Section 3.42, we will refer back to
this proof as a prototype. Therefore, it is important to notice some things about the
argument we use in the case when b is odd.

Becausetheextension N /K iswildly ramified, the Galois action (namely, the action of
7 +1) shiftsthe valuation of og,. Thisisimportant becauseas mvaries, vy (am) represents
every odd integer, while vy ((7 + 1)am) represents every even integer. Together the
elements o, and (Y + 1)y, whose valuations lie betweeni and 2ep +i — 1 arelisted in
(3.1). Note that we successfully created (3.1) knowing only the following information
about the quadratic extension: the absol ute ramifi cation index, ey, the ramification number
of N/K, b, and the integer i which correspondsto 3}, and that the elements of (3.1)
satisfy the following two conditions:

1. The Galaisrelations among the members of (3.1) are very basic. In particular, the
Galois action on any member of (3.1) takes it to a rather simple linear combination of
membersin (3.1) where the coefficients come from Z».

2. The elements of (3.1) have valuations in one-to-one correspondence with the
integers {i,i +1,..., 2ep +i — 1}. Because N/T is a fully ramified extension, they
provide a basis for 3§, over Or.

Indeed, note that to determine the Z,[G]-module structure of an ideal we determined
the O1[G]-module structure. Thisis both the strength and the weakness of our approach.

3.3. Partially ramified biquadraticextensions. LetN /K beabiquadratic extension. Let
Gal(N/K) begenerated by o andy andlet L denotethefixedfield of o, N, whileM = N”.
Clearly, an extensioniseither fully ramified or itisnot. If N /K is not fully ramified, then
because unramified extensions are cyclic, there must be a unique unramified quadratic
extension of K containedin N. Without loss of generality, let it be L. TheextensionsN /L
and M /K are, therefore, fully ramified.

THEOREM 3.3. If the extension, N /K, is partially ramified then there must be two
breaks in the ramification filtration, and the first break number must beb; = —1. Let b,
denote the second lower ramification number, and assumethat (o) = Gg = - - - = Gp,. If
a=[(i+by)/2] —[i/2],then

B~ EXF o E¥ ¢ 6@ as7,[G]-modules.

ProoF. Because N/K is in this case the compositum of afully ramified quadratic
extension of K (namely M) and an unramified quadratic extension of K (namely L);
each fractional ideal of N, is the compositum of afractional ideal of Oy and the ring,
O By = OLWBY,. The ring of integers of an unramified quadratic extension has a
normal integral basis, so O = O[]« (for somea € ©y), and so Oy = Zo[V]er - B,
Therefore O = Z,[1] @z, By, where the action of Z,[G] is defined naturally. Clearly,
the lower ramification number of M /K is b,. Determining the Z,[o] structure of 3}, as
in Theorem 3.1, and comparing the structure of Z,[Y] @7 33}, with the modules listed in
Section 4, we derive our theorem. ]
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3.4. Fully ramified biquadratic extensions.

3.4.1. Results for fully ramified biquadratic extensions. Let N be a fully ramified
biquadratic extension of K. Let Gal(N/K) be generated by o and 7 and let L = N7,
M = N". As a result of ramification theory, there is either one or two breaks in the
ramification filtration of N /K.

CAsE 1: ONE BREAK IN THE RAMIFICATION FILTRATION. Suppose that there is only
one break in the ramification filtration of N/K. Let b denote the ramification number
associated this break. Then the ramification groups of N/K are: G = Gy = -+ = Gy,
and (1) = Gpg = ---, and it is easily seen that b is the ramification number of each
extension: L/K M/K, N/L, and N/M, [21, Chapter IV].

It is well known that the lower ramification number of a ramified extension, K/k,
of degree 2 is < 2e (where e is the absolute ramification index of k/Qp) and that the
ramification number is odd unlessit is equal to 2ey, see[24]. Since b is the ramification
number of L/K, b < 2ep. But b is also the ramification number of N/L. So since
b < 2ey < 4ey, b must be odd.

In every case, regardless of theideal, 3}, or the ramification number, b; we are able
to use the basic approach of the proof of Theorem 3.1 and capture the ideal, B, in a
short exact sequence:

THEOREM 3.4. Let N beany fully ramified biquadratic extension of K with [K : Q] =
eof, ey denoting the absolute ramification index. Assume that there is one break in the
ramification filtration of N /K. Let b denote the ramification number associated with this
break, and let ;= [(i +2b) /4] — [i /4], whileT = [(i — b)/4] — [(i — 3b)/4]. Thenthe
following short exact Z,[ G]-sequence exits.

0—@ZaR) GEE M Ll R, @R, @ E@ 0,

PrROOF. See Section 3.43. n

However it is only for a special class of ideals in a restricted class of extension
that we can use the approach of the proof of Theorem 3.1 to explicitly determine the
Galois module structure of the ideal. The underlying reasons for this are explained in
Section 3.42.

THEOREM 3.5 (CASE 1). Let N be any fully ramified biquadratic extension of K with
[K : Q2] = eof, g denoting the absolute ramification index. Assume that there is
one break in the ramification filtration of N/K. Let b denote the ramification number
associated with thisbreak. If b=1andi =0,1,2 mod 4, or b=3andi = 2 mod 4,

Then

B o COZIETD0 g DU g G-I jf 3p < 4ey,
~C'aD oM’ if3b> dey. asZ[G]-modules.

Notethat sinceb € {1, 3}; 3b > 4ey impliesb = 3 and gy = 2.
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PrROOF. See Section 3.43. n

CASE 2: TWO BREAKS IN THE RAMIFICATION FILTRATION. Supposethat there are two
breaks in the ramification filtration of N /K associated with the two lower ramification
numbers, by, b, whereb; < by. Itiswell knownthat b; = b, mod 2, see[21, Chapter V],
and because N /K is not cyclic, that b; < 2ep, see[21, Chapter |V, Exercise 3] or [24].
Therefore by = b, = 1 mod 2. Now without loss of generality assumethat (o) = Gp,,
so the ramification groups of N/K are: G = Gp = - - = Gp,, (0) = Gpy+1 = -+ = Gy,
and (1) = Gp,+1 = ---. If s denotes the ramification number of L /K while t denotes
the ramification number of M /K, it is necessarily the case that s < t, and that s = by
whilet = (b, +by) /2 (thisis aconsequenceof Herbrand’s Theorem, see[21, Chapter IV
Section 3]). It is easily seen that the ramification number of N/M is b; = s, while
ramification number of N /L ish, = 2t — s (thisis abasic property of lower ramification
numbers).

Each extension N /K may be constructed in the following manner. Begin with L /K
and M /K arithmetically disjoint, ramified quadratic extensions. This is to say that the
ramification numbers s and t of L /K and M /K respectively, are distinct. See Maus
[14]. Without loss of generality, let s < t. From this we may conclude that N = LM
is a fully ramified biquadratic extension of K which has two breaks in its ramification
filtration, associated with two lower ramification numbers, b, and b,, whereb; = swhile
b, =2t—s.

Sinces <t < 2ey, sisnecessarily odd. On the other hand, t may be odd or even:

Case 2-0dd. The casewhent is odd, (b; = b, mod 4),

Case 2-even. The casewhent = 2ey iseven, (b, # b, mod 4).
Although each case requires the same basic approach of the proof of Theorem 3.1, the
technical details are substantially different, and as a consequence, the results themselves
are also substantially different.

THEOREM 3.6 (CASE 2-0DD). Let N be any fully ramified biquadratic extension of K
where [K : Q2] = ef, ey denoting the absolute ramification index. Assumethat N is the
composite of two arithmetically digjoint quadratic extensions of K, denoted by L and
M. Let s < t < 2e denote the respective ramification numbers of L /K and M /K. Let
Gal(N/K) = (0,7), whereL isthe fixed field of (¢). Then

: A (TH2s [ 4257 4y s A (T2 _Ti=2tes] s
%lNng([l‘l =171 k(z))f@Hk(( 21T 1K)
GUal-T5= et g CUFI-TEDf @ DUEE=1-[2 if 2t +s < 4dey
M (E2=1-Th ) oy CUFI-T= )l @ D3 2DF if 2t +5> ey
as Z,[G]-modules, wherek is defined below.
Letr € {0.1,2, 3} suchthatr = —i —2 mod 4, thenk = [(s+r)/(2t — 29)|.
PrROOF. See Section 3.43. n

Based upon the result of Theorem 3.6, we answer Chinburg’s Question in the affir-
mative with Corollary 3.8.
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DEFINITION 3.7. Let SZ be the set of all indecomposable Z,[G]-modules, M, which
are realized as direct summands of ideals, 3}, in local number field extensions, N/K,
[K: Q2] < oo,withGa(N/K)~G.

COROLLARY 3.8. 8 |, isinfinite, and so Sc,«c, isinfinite.

PrROOF. This is a consequence of Theorem 3.6, Proposition 4.3 and the following
family of biquadratic extensions. For e = 2n + 1, let /2 be a root of X2 — 2 = 0.
ThenKe = Qg(\ﬁ) isafully ramified extension of Q, with absolute ramification index,
e = e Let o = 1 ++72, then the quadratic defect of « is 1. The quadratic defect of
B =1+(v2)%is3. Let Abearoot of X2 — «a = OwhileBisaroot of X2 — 3 = 0. Following
Wyman [24], Ke(A) /K isafully ramified quadratic extension with ramification number
2e—1,Ke(B)/K isafully ramified quadratic extension with ramification number 2e — 3.
Consequently, Ne = Kg(A, B)/Ke is a fully ramified biquadratic extension with break
numbers by = 2e — 3 and b, = 2e+ 1. As aresult of Theorem 3.6, one copy of Hy_1
appearsin the decomposition of Oy,.

Clearly, asthere is no constraint on n, the corollary is verified. ]

THEOREM 3.9 (CASE 2-EVEN). Let N be fully ramified biquadratic extension of K
where[K : Q5] = eyf, ey denoting the absolute ramification index. Assume that N is the
composite of two arithmetically disjoint quadratic extensionsof K, denoted by L and M.
Let s denote the ramification number of L /K, while 2ey is the ramification number of
M/K. Let Gal(N/K) = (c,7), and assumethat L is the fixed field of (o). Then

B (Z ® Qa)(("THH"ZTZW)f ® (|:\3W ® RAUW’)((HT?Z—‘f(FTZ—Df
f af ™ bf qcf 2 df
® Il?—l ©® I‘k—l ©® ‘]I ©® KI—1
as 7Z,[G]-modules, where a, b, ¢, d, k and | are defined below.

Letr € {0.1,2,3} suchthat r = —i mod 4, then let k' = [(s+r + 1)/ (4(2ep — 9)) |. If
[(i+s—2)/4]+K'(2ep—9) = 2ep+[(i+2s—2) /4] and [(i—s—2) /4] +(K'—1)(2ep—5)—1 =
[(i—2)/4],thenlet] = k = k'—1; otherwiseletk = k" andif [ (i —s—2) /4] +k(2ep—s) >
et [(i—2s—2)/4]or [(i+s—2)/4]| +k(ep—9) > e+ [(i —2)/4] letl =k—1,
otherwiselet | = k.

Forl=k—1
a= [ 7] - [ -0 v,
b= F+22—2w _ F+S4_ﬂ k=12 —9).
o[ [ k9

R R
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For | =k
e N
o= [ 2 -,
o[- [ g e,
o[ ][5 - e
PROOF. See Section 3.43. m

3.4.2. Outline and evaluation of the method. Our method is a generalization of the
method employed in arudimentary form to prove Theorem 3.1 (see Remark 3.2). In our
attempt to generalize the proof of Theorem 3.1, we will attempt to construct a set of
elements, {y; }, satisfying the following two conditions:

ConbITION 1. The members of the Galois group should take each element, g, to
some linear combination of 1;'s with coefficientsin Z.

CONDITION 2. It should be possible to index the elements by their valuation, so that

We will attempt to construct the set, {;}, satisfying Conditions 1 and 2, knowing
only the following information about the fully ramified biquadratic extension, N /K: The
absolute ramification index of K, e, the ramification filtration of the extension N /K, and
the integer i corresponding to the ideal, 13,

Generalizing the proof of Theorem 3.1, by achieving both conditions simultaneously
is difficult, especially while requiring so little information about the extension. Ideally,
infollowing the proof of Theorem 3.1 (where we found integers, vn(c) and vy ((7 + l)a)
to have have opposite parity, i.e. to be distinct modulo 2), we would like to find an
element o € N, with the analogous property, that the integers vn(a), wW((o + D)a),
w((r + Dar) and w((v + 1)(o + 1)) are al distinct modulo 4. If this were possible,
we could immediately construct a set {y;} satisfying both conditions; follow the proof
of Theorem 3.1 letting am = any, etc. The principal difficulty with which we must
contend is that this is not possible; because regardless of the choice of «, the integers
W ((o + D), w((r + D) and wn((v + 1)(0 + 1)ar) are always even.

Fortunately, we are able to circumvent this obstacle somewhat. Using some basic
results from ramification theory (namely Lemmas 3.12, 3.13 and 3.14), we can select
four elements o, (o + 1), p, (7 +1)(0 + 1) which havedistinct valuationsmodulo 4. We
can even make this selection with some control over the difference between (v + 1)« and
p (seeLemmas3.15, 3.17, 3.22). When there are two breaksin the ramification filtration,
we are able to exert complete control, hence Theorem 3.6 and Theorem 3.9. When there
is only one break in the ramification filtration, we are not. Asaresult, our resultsfor one
break are comparatively weak, Theorem 3.4 and Theorem 3.5.
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We should explain that our results for fully ramified biquadratic extensions with one
break number are weak, becauseit is not possible to generalize the proof of Theorem 3.1
for these extensions without knowing more information about the particular biquadratic
extension involved.

If based only upon &y, the ramification filtration and i we could generalize the proof of
Theorem 3.1, then for all extensionsN /K with absolute ramification index, ey, and one
break number b, it would necessarily bethe casethat 13}, ~ O1®7,M as O1[G]-modules
for some Z,[G]-module, M; the action of O+1[G] being defined naturally: If a € ©1 and
o € G, whileb® 3 € O1 ®z, M, thenar - b® 8 = ab® 03, see[5, Section 30B].

PropPosiTION 3.10. If {y;} is a subset of N which satisfies Conditions 1 and 2, then
By = O1 @7, M as Or[G]-modules for some Z,[G]-module, M.

PROOF. Suppose that we have a set of elements {y; }, satisfying Conditions 1 and 2.
If the y; satisfy the Condition 1, then for a given jo, each member of the Galois group
takes 1, to some linear combination of ;s with coefficientsin Z,. If this is possible,
then M = 3= Z5y; is closed under the action of the group, so that M is aZ,[G]-module. If

furthermore, Condition 2 is satisfied, and wefind that vi(y;) =j forj =i,...,4ep+i—1;
then thisset of y;’salso servesasabasisfor 3}, over O, sothat B, = > Oty = Or-M.
Therefore B\, = O @7, M as Or[G]-modules. .

In Section 5, we exhibit a family of fully ramified biquadratic extensions N, /Kj,
with one break in their ramification filtration (at b), along with ideals iLB‘Nh, such that
By, & O1 @7, M as O1[G]-modules for any Z>[G]-module, M. Thereby we show
that one can not generalize the proof of Theorem 3.1 in the case where N /K is fully
ramified with one break in its ramification filtration, except in the cases that we have
already successfully done so, namely whenb =1 and i # 3 mod 4, or whenb = 3 and
i =2mod4.

REMARK 3.11. If N/K is a fully ramified biquadratic extension with one break in
the ramification filtration, because of the discussion above we should expect that Galois
relationships among any basis for JS‘N over O to involve elements of Ot — Z,. Note
that N /K has only one break in the ramification filtration exactly when N?, N”, and N7y
are all generated by the square root of elements of K with the same quadratic defect. If
we havethree elements: o, 8 and o3 € K which all have the same quadratic defect, then
without loss of generality we can assumethat « — 1 = u- (3 — 1) for someu a unit in
1. So in the case where N /K is afully ramified biquadratic extension with one break
in the ramification filtration, it would seem that this unit, u, should play asignificant role
in the Galois relationships anong the members of any basisfor 33}, over Or.

3.4.3. Proofsfor fully ramified biquadratic extensions. In this section we collect the
technical proofs.

PRELIMINARY RESULTS. In this subsection we collect afew basic results from rami-
fication theory. Serre’s book is a good reference, [21].
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LEMMA 3.12. Letk bea finiteextensionof Q.. Let K /k bea cyclic ramified extension
of degree 2, with (o) = Gal(K /k). Let vk denote the normalized valuation of K, and b,
the ramification number of K /k. Then for a € K if vk (c) is odd, then vk ((oc — 1)(a)) =
Vi (o) + b

PROOF. Let 7 denoteaprime elementin K, sothat vi(r) = 1. Clearly, vk ((c — 1)7) =
1+Db. If @ € K has odd valuation, express o uniquely as « = m+ nmr, wherem,n € k.
Since vk (M) is even while vk (nm) = vk(n) + 1 is odd, we find that, since vk («) is odd,
Vi (@) = Vi(nm) < vi(m). Therefore, vk (0 —1)(m+nm)) = vk (n(c—1)m) = v (n)+1+b =
Vk (o) + b. "

LEMMA 3.13. Letk beafiniteextensionof Q.. Let K /k bea cyclic ramified extension
of degree 2, with (o) = Gal(K/K). Let v. vk denote the normalized valuations of k and
K, respectively. Let b denote the ramification number of K /k. Then for each 1 € k with
V() = n, thereexistsa p € K with vk (p) = 2n — b suchthat (o + 1)p = p.

PROOF. From [21, p. 83] we have R = R3.™°*D/2) which gives the resuit. .

LEMMA 3.14. Letk beafiniteextensionof Q.. Let K /k bea cyclic ramified extension
of degree 2, with (o) = Gal(K/k). Let vk denote the normalized valuation of K, and b,
the ramification number of K /k. Assumethat bis odd If 7 € K be an element with even
valuation, suchthat (o + 1) = O, then thereis an element o with vk (a) = vk(r) — b such
that (c — D)o = .

PROOF. Since H1((¢), K) = 0 thereis an element « such that (¢ — 1) = 7. Clearly
we may change o by an element of k without effecting the property that (o — 1) = 7.
So we may assume that vk («) is odd. Thiswith Lemma 3.12 proves the resullt. ]

CASE 1: ONE BREAK IN THE RAMIFICATION FILTRATION. Let b denotethe ramification
number of N /K.

LEMMA 3.15. Let ar beany element of N with vy(aum) = b+4m. Thenvy((o+1)am) =
2b + 4m, VN((’Y + D)o + 1)am) = 4b + 4m, and there are elements pm, 0 € N with
Vn(pm) = 3b+4m, vy(0r) = b+ 4msuch that py — (Y + Dam = (0 + 1)0m.

wn(am) =b+4m. w((o + Dam) = 2b+4m.
Wn(pm) =3b+4m. w((Y + 1)(o + Dam) = 4b+4m.

ProoF. Clearly, v((o + 1)am) = min{wn((o — L)am). Ww((2am) } = w((o — L)am),
since b < 4ep. Since vn(am) is odd, by Lemma 3.12, w((c — Dam) = 2b + 4m.
Similarly, v ((y + 1)arm) = 2b+4m. Since v ((o + 1)am) is odd, by Lemma 3.12,
wW((Y + 1)(0 + L)am) = 4b +4m.

By Lemma3.13, thereis an element, p;;, € N with wy(p;) = 3b+4m, and (o + 1)p;, =
(o +1)(v + D)am. Clearly, piy, — (¥ + D)am iskilled by (o + 1), so by Lemma 3.14 there s
an element 6, € N such that pj;, — (Y + Do = (0 — 1)6m and vy(0m) = b+ 4m.
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Now b < 2ey, therefore v (p},,) = 3b+4m < 4ey + b + 4m = vy(20). So if we let
Pm = pin+ 20m, then vy(pm) = 3b+4m, and pm — (¥ + Dorm = (0 + 1)0m. Note that pr, and
(v + 1)« differ by an elementin L. "

Since b is odd, {b+4m. 2b+4m.3b+4m.4b+4m} = {0. 1. 2, 3} where X denotes
the residue modulo 4. Therefore we may use am, (0 + 1)am, pm and (Y + 1)(c + Lo
to construct a basis for qsiN over Or. Clearly, 3b < 4ey or 3b > 4ep. If 3b < 4ey,
then the following sequenceisincreasing - - - < w(om) < vN((o + l)ocm) < Wn(pm) <
VN((“/ +1)(c+ 1)am) < WNQam) < W(2(o+)am) < W(2pm) < ---,whileif 3b > 4e,
then there is an alternative increasing sequence - - - < VN((U + 1)am) < Wipm) <
W(Ram) < W((7 + 1)(0 + Dam) < W (2(0 + Dam) < Wn(2pm) < Wn(dam) < ---.

Notethat for examplewhen3b < 4ey, if vi(am) < i < wW((o+1)am), thenvy(2am) <
dey+i < Wn(2(0+1) o). Based upon observationssuch asthis, we choosethose elements
whosevaluation, vy, liesintheset {i.i+1,....4e +i — 1}. They makeup an Ot-basis
for VY.

There are two casesto consider, either 3b < 4ey or 3b > 4ey. In either case, there are
four possible orderings to consider. First we consider the case, 3b < 4ey.

CAsE 1, 3b < 4ey.

(3.2)
ame (@ + Datm. pme (Y +1)(0 + Do, for [%’} <m<e+ m —b-1.
(3.3)
(@ + Dam, pme (Y +1)(0 + D)tm, 20m,  for [i _42b} <m< [%’} ~1
(3.4)
e (7 + 1) + Do, 20m: 2(0 + Do, for [i _43b} <m< [%ﬂ —1
(3.5)

(v + 1)(0 + Do, 20m, 2(0 + Lo, 2pm  for m —b<m< [%} —1

Weknow that viy((o+1)0m) = Wn((0+1)am ), whereof course (o +1)fm = pm— (Y +1)arm.

REMARK 3.16. Clearly 13§ = SB[M + X where X is spanned by the elements of type
a and p. Since we may alter any Ot-basis element of X by an elementin i]s[im, and still
have an Or-basisfor 33}, when the difference between p and (Y + 1)« liesin %Em, we
may replace p by (7 + 1)a.

Therefore in (3.2), because (o + 1)0m, € i).‘s,[i/zW , we replace pm with (Y + 1)am, While
in (3.3) and (3.5), because2(c + 1)6,, € 13['/2 so we replace 2pm, with 2(y + 1)am. Only
in(3.4)is(oc+1)0m ¢ 33['/2}, and so in this particular case, we leave pm, in our basis.
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Case 1, 3b < 4ep (REVISED).

(3.6)
oty (0 + L)am, (¥ + Dam, (v +1)(0 + Dam, for [%’} <m<e+ L'_J b1
3.7)
(0 + Dam. (v +Dam, (v +1)(o + Do, 20m.  for [i —42bw < [%ﬂ .
3.8)
pm. (Y +1)(0 + Do, 20m. 2(o + Lom,  for F _43bw <m< [%ﬂ —1
3.9)

O+ 1)(0 + Do, 2am. 2(0 + Dam. 20 + Dam,  for m —b<m< F_T

CASE 1, 3b > 4ep (ALREADY REVISED). In this other case, we have gone ahead and
replaced pm With (Y + 1)arm Whenever we can. In (3.10), (o + 1)6m € 13|/, so we have
replaced pm With (Y + 1)arm, whilein (3.12) and (3.13), 2(c + 1)6m € B|/?/, sowe have
replaced 2pm with 2(y + 1)am,. Only in (3.11), have we left pp, alone.

(3.10) (c+Dom, (v +Dom, 20m, (v + L)(o + D)o,
for [i_wa gmgaﬁ“ﬂ —b-—-1
(3.11) pmy 20m, (Y + 1)(o + Dom, 2(0 + D)o,
o[ 2] <= [ 2]
(3.12) 200m, (v + 1) (o + Dam. 2(o +L)am. 2(y + L)om,
NE R
(3.13) (v + L)(o + Dorm, 2(o + Do, 2(Y + Dorm, dorm,

i i—b
< < — —
forLJ b<m [4} e — 1.
Based upon the ©+-basis described in (3.6) through (3.13), we prove Theorem 3.4.

PROOF (THEOREM 3.4). Clearly 0 — Els[i/a — By — EBiN/iBEm — Oisa
short exact sequence. We need only determine the Z,[G]-module structure of the
i),‘s,[i/zW and i]siN/iBE/zw, and the structure of i),‘s,[i/zW is aready determined by Theo-
rem 3.1. The structure of 1}, / EBE/ 2l resullts from a careful examination of (3.6)—(3.13),
and an understanding of the Galois action upon the pm, which appear in the basis of
ipN/iBLm In each case (3.8) or (3 11), pm and 2, contribute as O1-basis elements of
P/ B [i/2] .Notethat (o + 1)pm = 0,and (¥ + D)pm = 0, while{o + 1)(2am + pm) = 0, and
(y — D(2om + pm) = 0. Therefore O1pmy isisomorphic to f copies of the Z,[G]-module,
R, while O1(2am + pm) isisomorphic to f copies of the Z,-module, R,. "
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However our stated aim is to determine the Z,[G]-module structure of B}, itself,
not to merely capture it in a short exact sequence. The py'sin (3.8) and (3.11) present
an essential obstruction which we are unable to overcome (see Section 3.4.2). But if
[(i—3b)/4] = [(i — 2b) /4], the cases (3.8) and (3.11) do not occur. And [ (i — 3b) /4] =
[(i —2b)/4],ifandonlyif b=1andi = 0,1,2mod 4, or b = 3and i = 2 mod 4.
Under these circumstances, we may say that for each mthe four elementslisted in (3.6),
(3.7), (3.9), (3.10), (3.12), (3.13) collectively give rise to O1[G]-summands of k. In
Section 4, we havelisted certain Z,[ G]-modules which appear in the course of this paper.
Clearly, each min (3.6) givesriseto f copies of the group ring, G.Eachmin (3.9) and
(3.12) giverisetof copiesof C; eachmin (3.7) and (3.10) providef copiesof | D, while
each min (3.13) contributesf copies of the maximal order, M ~Z &R, & R, & R,,.
Thisis collected in Theorem 3.5.

CASE 2: TWO BREAKS IN THE RAMIFICATION FILTRATION. Lets, 2t — s be the lower
ramification numbers of N /K. In particular, note that 2t — s is the ramification number
of N/L. In the following situation, we assumethat t is odd.

CASE 2-0DD.

LEMMA 3.17. Let oy be any element of N with vn(am) = 2t — s+ 4m. Then
W((o + Do) = 4t — 25+ 4m, w((y + 1)(o + Darm) = 4t +4m. If t is odd, then
there are elements pm, Om € N with vy(pm) = 2t + s+ 4m, () = s+ 4m such that

— (v +Dam = (0 + 1)0m.

Wn(am) =2t —s+4m,  w((o + Dam) = 4t — 25+ 4m,

W(om) = 2t+s+4m. w((y + 1)(o + Dam) = 4t +4m.

PROOF. Because 2t — s + 4m is odd, wn((c + 1)am) which is equal to
min{vn((c — 1)am). W(2am)} is equal to wn((c — Dam), since 2t — s < 4ey. By
Lemma3.12, v((0c — 1)am) = 4t — 25+ 4m. Therefore vy ((0 + 1)am) = 4t — 25+ 4m.
Similarly, v ((v + Dam) = W((Y — Dam) = 2t + 4m. Furthermore, since v ((o +
L)om) = 2t —s+2misodd, vi (Y + 1)(0 + D)am) = 2t + 2m, so that by Lemma 3.12,
W((Y + D)(o + Dam) = 4t +4m,

By Lemma 3.13,there is an element p;, € N with wy(pf,) = 2t + s+ 4m such that
(o +)(pf) = (v + 1)(o + L) am. Therefore pf, — (Y + Do iskilled by (o + 1), and so by
Lemma3.14 p;y, — (V + Dom = (0 — 1)0m, fOr some 6, € N wherevy(0m) = s+4m. Now
weusethefact that tisodd andsot < 2ep. Let pm = pp + 20m, then vn(pm) = Wn(pry) and
we have pm — (7 + D)am = (0 + 1)6q. Note that pr, and (Y + 1)« differ by an element in
L. [

Since sisodd, {2t — s. 4t — 25 2t + s, 4t} = {0. 1. 2, 3} where X denotes the residue
modulo 4. Conseguently, we may use om, (o + 1)orm, pm and (v + L)(o + D)oy, aswe did
in Case 1 to construct a basisfor 3§, over Or. Choose those elements whose valuation,
vy, liesintheset {i,i +1,.... deg +i— 1},
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Before we list the O+-basis for Oy, notice a complication which did not appear in
Case 1. If 3s < 2t, then Vy(pm) < Wn((0 + 1)am), while if 3s > 2t, then v(pm) >
wn(( + 1)am). Note 3s # 2t, since sis odd. (By contrast, in Case 1 it was always the
case that vn(pm) > Wn((o + 1)am).) Meanwhile, there is another condition, depending
on whether 2t + s < 4ey or 2t + s > 4ep. (This condition is reminiscent of the con-
dition 3b < 4ey or 3b > 4ey, from Case 1.) This condition affects the ordering of
the valuations of (v + 1)(o + L)am and 2oy, Taking these two conditions into account
we have the following four orderings of the valuations: If 3s < 2t and 2t + s < 4ey,
then the following sequence is increasing - - - < Wn(am) < Wn(pm) < Wn((o + Dam)
< W((Y + )0 + Dam) < Wn(2am) < Vn(2pm) < W (2(0 + Dam) < - -+ if 3s < 2t and
2t+s > 4ey, then the following sequenceisincreasing - - - < Vn(pm) < VN((O'+1)C(m) <
W(Ram) < W((Y + 1)(0 + Dam) < Wn(2om) < Wn(2(0 + Dam) < Wn(dam) < ---; if
3s > 2t and 2t + s < 4ey, then the following sequenceis increasing - - - < W(am) <
VN((U + 1)(Xm) < Wn(pm) < VN(O’ +1)(o + l)am) < W(2om) < VN(Z(U + l)am) <
WN(2pm) < ---; whileif 3s > 2t and 2t + s > 4ey, then the following sequence is
increasing -+ < W((o + Dam) < W(pm) < W(2am) < W((¥ + 1)(o + Dam) <
W(2(0 + Deam) < Wn(2pm) < Wn(4am) < ---. Now as we did in Case 1, we choose
those elementswhose valuation, vy, liesintheset {i,i +1,...,4e +i — 1}. They make
up an Or-basis for B,

CASE 2-0DD, 3s < 2t, 2t + s < 4ep.

(3.14)
s .
ame pme (@ + Dom. (7 +1)(o + Dam,  for [%ﬂ <m<e+ m —t-1
(3.15)
i—2t— i—2t+
o (0 + Dam. (v + 1)(o + L)am. 20, for [$} <m<[ 4t *l -1
(3.16)
i+2s i—2t—s
(0 + Dam, (v +1)(0 + Lom, 2am. 2pm,  for [T} —t<m< [ - } _1

(3.17)

i i+2s
(v + 1) + Lom, 20m. 2om: 2(0 + Lom,  for m —t<m< [T} i1

CASE 2-0DD, 3s < 2t, 2t +s > 4ep.

(3.18) pm, (0 +Dom, 20m, (v + D)o + 1)om,
HE S R
(3.19) (o +Dam. 2om, (v +1)(o + Dam, 2pm,
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(3.20) 200m, (Y +1) (0 + D)am, 20m, 2(c + 1)om,
i—2t+s i +2s
) R <m<|—| —t—
for[ 7 w eo_m_[4w t—1,
(3.22) (v + (o + Dam, 2pm, 2(0 + Dam, dam.
i i—2t+s
_l—_t<m<|——— | —en —
fOfM t—m—[ 4 W 1
CASE 2-0DD, 3s > 2t, 2t + s < 4ep.
(3.22)
(3.23)
i+2s i—2t+s
(@ + Dam, pme (7 +1)(0 + Datm. 20m: for[ }—tgmg[ }—1
4 4
(3.24)
i—2t—s i+2s
pm: (Y + D(o + Dam, 20m, 2(c + Doy, for [Tw <m< [ 2 W —t—1;

(3.25)
i i—2t—s
(v + D)0 + Do, 20m. 2(0 + Dam. 2om  for H —t<m< [71 —1
4 4
CASE 2-0DD, 3s > 2t, 2t + s > 4ep.
(3.26) (o + Dam. pm,» 20m. (v +1)(0 + Do,
i+2s i
Tl t<m< | —t—=
for{ 7 w t_m_aﬁhw t—1

(3.27) Pm, 2am, (7 +1)(o + Dam, 2(c + 1)om,
i—2t—s i+2s
—— " <m<|—/—|—-t—-1
for[ 2 W—m—[ H t=1L
i—2t+s i—2t—s
e <m<|—_"1_
for{ 7 w eo_m_{ 2 w 1
(3.29) (v + (o + Dam, 2(c +1)om, 2pm, 4o,
i i—2t+s
l_t<m<|——— | —_en—1"
forLJ t_m_[ 7 W e—1

CASE 2-0DD, REVISITED. Aswedidin Case 1, whenever we can using Remark 3.16,
wereplace pmwith (Y+1)am. Notethat because 3s < 2t, viy(am) < Vn((e+1)8m < vn(om),
therefore, in (3.30), (3.33), (3.34), (3.37), (3.38), wego ahead and replace pm, by (Y +1) .
Alsown((Y+1)(o+1)am) < wn(2(o+1)0m) sincet < 2ep, therefore, in (3.39), wereplace
20m by 2(Y +L)om. Finally, we split (3.15) into two cases, (3.31) and (3.32) depending on
whether or not (o +1)0m, € or ¢ 13['/21 In (3.31), wereplace pm by (v + 1)am. Similarly,
(3.18) isnow split into two cases, (3.35) and (3.36), wherein (3.35) we replace pn, with
(v + Danm.
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CASE 2-0DD, 3s < 2t, 2t + s < 4ep.

(3.30) am, (Y + Do, (0 +Dom, (¥ +1)(o + L)am.
for {ﬂw <m<eg+ Lﬂ —t-1
(3.31) (v + Do, (0 + Do, (v + 1) (o + D)o, 20,
i—2t i—2t+s
for [~ =] <m= || -1
(3.32) pms (0 + Lom, (v +1)(0 + L)am, 20m,

=25 e[ 2]

(3.33) (o +Dam, (v +1)(o+Dom, 20m. 2(Y + Lo,
for [—Hzﬂ —t<m< {;_2‘[_5} -1
4 - = 4 '

for “—J—tgmg[HTzﬂ—t—l

CASE 2-0DD, 3s < 2t, 2t + s > 4ep.

(3.39) (v + Dam, (0 + Dam, 20m, (Y +1)(0 + L)am,

for [%} §m§eo+“ﬂ—t—1

(3.36) pms (0 + Doam, 20m. (v + D)(o + D)o,

o225 <ms [ -

(3.37) (0 + Dom, 200m, (¥ +1)(o + Dorm, 2(7 + L)orm,

(3.38) 20, (Y + ) (0 + Dam, 2(Y + Do, 2(0 + D)o,

for [F?THSW—Q)<m§ [H—TZSW—I—L

(3.39) O+ 1)(0 + Dorm. 207 + L)om. 2(0 + L)om. dam.

3] -1<m< =2
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The only place where pn, still remains, is (3.32) and (3.36). In these cases note that
pm = (Y + L)am + (0 +1)0m Where vy () = s+4m = (2t —s)+4(m— (t—s)/2). Notethat
when we initially chose the o, we chose them based on their valuation alone. In fact
any element with the same valuation would do, so we make another stipulation. Once,
we have selected the o, for eachm, for [(i — 2t —s)/4] <m < [(i — 2t)/4] — 1, and
have determined the 6,’s, choose am for [(i +5) /4] —t <m < [(i +25)/4] —t—1,t0
be g/ 2- AS aconsequence, we can list the following Or-basisfor i]j‘N, from which
we determine the Z,[ G]-module structure immediately.

CASE 2-0DD, 3s < 2t, 2t + s < 4ey, (FINAL REVISION).

(3.40) am, (Y + Do, (0 +om, (¥ +1)(o + L)om.

for {ﬂw <m<eg+ LI—J —t-1
(3.41) (v +Dam, (0 +Dom, (v + D(o + Dam, 20m,
o2 <me 2207

(v + Dam + (o + Don, (0 +Dam, (v +1)(o + L)am, 20m,

(342 (v+1)(o+Dan, 20, 2(Y + Do, 2(0 + Doy,

for F_?tf_sw <m< [%w —lwheren=m—(t—s)/2

(3.43) (c+Dam, (v +1)(o+Dom, 2am. 2(Y + Lo,
o] zma 25
(3.44) (O + D)(o + Dam. 2am. 207 + L)om, 2(0 + Lo,

for m —t<m< [i%ﬂ—t—l

CASE 2-0DD, 3s < 2t, 2t + s > 4ey, (FINAL REVISION).
(3.45) (v + Dam, (0 +Dam, 20m, (v +1)(o + L)om,
i—2t i
— —l<m< | —t—
for[ 4 W—m—eﬁm t=1

(v +Dam+ (0 + Don, (0 +Dom, 20m, (Y + (0 + Do,

(346) 20n, (Y+1)(o + Dan, 2(Y + Doy, 2(0 + Dy,

for F_ZTt_SW <m< [%w —1wheren=m—(t—19)/2
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(3.47) (0 + Dam. 2am. (Y +1)(o + L)om, 2(7 + L)om.
for [;423} —t<m< [—I _%‘f—sw —1;
(3.48) 20tm, (Y +1)(0 + Dom, 207 + Do, 2(0 + L)am,

for[i_it+SW—eo<m§F+Tﬂ—t—l.

(3.49) (v + )(o + Dam, 2(Y + Do, 2(o + Do, dorm,
i i—2t+s
ot

4]t <me

Clearly, each min (3.40) yields f copies of the group ring, G. One may check that
each min (3.44) and (3.48) yields f copies of C: each min (3.41) and (3.45) yields f
copies of D; each min (3.42) and (3.46) yields f copies of Ho; each min (3.43) and
(3.47) yields f copies of E. @ E_ = H_;; while each min (3.49) yieldsf copies of the
maximal ideal, M ~ Z &R, @ R, @ R,,. All this s collected into Theorem 3.6.

REMARK 3.18. Notethat Theorem 3.6 is stated without respect to the condition 3s <
2t. Certainly, if k = 0O, then 3s < 2t, however if 3s < 2t thenk = 0or k = 1. To
be sure that the statement of the Theorem is consistent with the the basis expressed
in (3.60) through (3.69), above observe the following: If 3s < 2t while k = 1, then
[(i+2t—s)/4] —[(i+25)/4] = 0,50 H_; doesnot appear in B\,. Clearly, [(i —2)/4] —
[((i—2t—9) /4] —(t—9/2=0,% I:ll doesn't really appear in the statement of the
Theorem. While [(i+2t—s) /4] +(t—s)/2—[(i+25) /4] = [(i—2t) /4] —[(i—2t—9)/4].

CASE 2-0DD, 3s > 2t. Note that in this case, vw(am) < wn((o + D)fn <
wn((o + 1)am), and o in (3.50), (3.54), (3.58) based upon Remark 3.16, we have gone
ahead and replaced pmby (Y+1)arm. Alsovn ((Y+1)(0+1)am) < Vn(2(0+1)fm), therefore,
in(3.59), wehavereplaced 2pmby 2(Y+1)am. Now [(i—2t) /4] > [(i—2t—2(t—s)) /4] =
[(i +29)/4] —t, and if m > [(i — 2t)/4], then 2t + 4m > i and consequently,
(0 + D)o € zp[i/ 2l So we can break (3.23), (3.26) up into two parts depending on
whether or not (o + 1), < or ¢ B|'/?! yielding (3.51) and (3.52), and (3.55) and (3.56).

CASE 2-0DD, 3s > 2t, 2t + s < 4eyp.

(3.50) om, (0 +Dom, (Y + Dam, (v + L)(o + Lo,
for F_Zﬁj <m<e+ Hw —t—1
(3.52) (0 +Dom. (v +Dom, (v +1)(0 + Lo, 20,
for [I—th <m< [|—2t+sw 1
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(352) (o + Dom, pm, (¥ +1)(0 + Lom, 20m,
i+2s i—2t
T2 _t<em< |22
for [ | ~t=m< | =] -1
(3.53) pms (Y + (o + Dam, 20m, 2(c + Lo,

(3.54) v+ (o + Do, 20m, 2(0 + Dam, 2(Y + Do,
i i—2t—s
-t < < | — —
foth t_m_[ 1 W 1
CASE 2-0DD, 3s > 2t, 2t + s > 4ep.

(3.55) (0 + Dom, (V + Do, 200m, (Y + 1) (0 + D)o,

i— i
<m< —|—t—
for[ 4 W—m—eﬁM t-1
(3.56) (0 + Dam, pm, 2am, (v +1)(0 + Dorm,
i +2s i—2t
Tl —t<m< | — =
o[tz 2]
(3.57) Pms 20, (v +1)(0 + Dam, 2(c + L)am,
i—2t—s i+2s
— Tl <m<|—/|—-t—-1
for[ 2 w_m_[llw t—1,
(3.58) 20tm, (Y +1)(0 + Dam, 2(0 + D)am, 2(Y + D)o,
i—2t+s i—2t—s
—_ <m<|—"|_
o[ 5 -m <[5
i i—2t+s
for[ﬂ—tgmg[ W— —1;
Before we proceed, we need to collect certain observations:
LEMMA 3.19. Letr € {0. 1. 2. 3} withr = —i—2 mod 4, andletk = | (str) /(2t—29) .
Thenk istheleast integer suchthat [(i +2s)/4] —t—k(t—9)/2 < [(i — 2t — 5)/4].
PrROOF. Sincesisodd,r = —i —2= —i —2smod 4, soi +2s = 4n — r for some

integer n. The inequality reducesto —t — k(t — s)/2 < [(—3s—r — 2t)/4] — 1. This
is equivalent to —t — k(t —)/2 < [(—3s—r —2t—1)/4], or —t —k(t —5)/2 <
(—3s—r —2t—1)/4 whichisequivaentto k(t —s)/2 > (3s+r — 2t + 1) /4. Thisis
equivalenttok > (3s+r—2t+1)/(2t—2s),andalsotok > [(3s+r—2t+1)/(2t—2s)| =
[(Bs+r—2t)/(2t —29) | +1=[(s+r)/(2t — 29)]. "

LEMMA 3.20. Since s,t areodd, [(i — 2t — s)/4] — [(i — 2t)/4] + [(i + 29)/4] =
[(i+s)/4]. Therefore[(i—2t) /4] —[(i+25) /4] +t < eg—[(i—2t+s) /4] +[(i—2t—9)/4].
Also [(i — 2t) /4] — [(i +25)/4] < [(i — 2t —s) /4] +[i/4].
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PrOOF. Leti=4a+b,b=0,1,23;t=2c+1;s=4e+f,f =1or3. Theequality in
thelemmaistrueif andonly if [(b—2—f) /4] —[(b—2) /4] +[(b+2f) /4] = [(b+f)/4],
which one can easily verify is true, by checking all possibilities for f and b. The first
inequality in this lemmareducesto [(i + 2t +s)/4] — [(i +5)/4] < ep, which is easily
verified using t < 2ey. Replace i, t and s in the second inequality and it reduces to
[(b—2)/4] — [(b+2f)/4] —e < [(b— 2 — f)/4], which one can verify by checking
all possibilities for f and b. ]

As we did when 3s < 2t, we are going to choose the an, listed in (3.53), (3.54),
(3.57) and (3.58) again. First note that [(i — 2t)/4] — (t —9)/2 = [(i + 29)/4] —t.
Therefore if mis listed in (3.52) with [(i +25)/4] —t < m < [(i — 2t)/4] — 1, then
m—(t—9s)/2 < [(i +29)/4] —t— 1, and listed in (3.53). Let

f(mi)=m—i(t—-9)/2

Begin with an mlisted in (3.52) or (3.56), redefine ajm 1) to be Om. Now of(m 1) is listed
in (3.53) or (3.57) respectively. Solongasm—i(t—s)/2 > [(i — 2t —s) /4], recursively
define o mj+1) = Ormiy- Definek asin Lemma 3.19, then depending on m, the last o (m,
to beredefinedis either ot (mi+1) OF A mk+2). [N either casethe last element to be redefined
is listed in (3.54) or (3.58) respectively, because as one can check using Lemma 3.20,
the number of m's in (3.52) and (3.56) are respectively fewer than the number of m's
in (3.54) and (3.58). Then, as one may verify, the following elements do constitute a
Dr-basisfor P,

CASE 2-0DD, 3s > 2t, 2t + s < 4ep, (FINAL REVISION).

(3.60) am, (@ +Dam, (Y +Lam, (v +1)(0 + Lom,
i—2t+s
for [

i
<m< —|—-t—1
|<meaeff]-to
(3.62) (+Dom, (v +Dom, (¥ + 1) (o + Do, 20m,
i—2t i—2t+s
<m< -
for[ 4 W—m—[ 4 W 1
(0 +Dam, (v+Dam+ (0 +Dagmy. (Y +D(o + Dam, 20m.
(v + Doy + (0 + Darma).
(v + (0 + Datymy). 20m1). 2(0 + Datymy).

(3.62)
(Y + Dot sy + (0 + 1)t mis2)-
(V+ (o + 1)‘1’f(m,k+1)- 205f(rnk+1)- 2(c + 1)05f(m.k+1)-
(v + D(o + Dotgmus2), 206mis2)s 20 + Dtgmur2), 20 + 1)t mis2)-
o2 (52 <52
(0 +Dam, (v+Dam+ (0 +Darmy. (¥ +1D(o + Dam, 20m.
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(v + Dagmy) + (0 + Darm2).

(v + D(o + Dagmay. 20tmy), 2(0 + Dtmay-

(3.63)
(v + Dt + (@ + Dogmps1)-
(v + (0 + Datymuy» 20tmyy- 2(0 + Drmp)-
(v + D)(0 + Datsmur1), 20 muer)s 20 + Dotmperys 207 + 1)t mks1)
o 2]t [T )
(3.64) (v + D)(o + Do, 20m, 2(0 + Lam, 2(Y + L)orm,

i i+s
=t < < || —t—
forLJ t_m_[4w t—1
CASE 2-0DD, 3s > 2t, 2t + S > 4ep, (FINAL REVISION).

(3.65) (0 + Dam, (v +Doam, 2am, (v + L)(o + Lo,

for [%w §m§e0+HJ—t—1

(0 +Dam, (v+Dam+ (0 +Darmy. 2am, (¥ +1)(o + Dom.
(v + Doy + (0 + Darma).
20tm1), (v +1)(0 + Darmay, 2(0 + Darmy),

(3.66)
(Y + Dot sy + (0 + 1)t mis2)-
20t mi+1). (V + D)0+ Dogmpsy. 2(0 + 1)t mpea)-
20¢(mk+2)s (Y + (0 + D)otmu+2), 2(0 + Dmk+2)s 207 + Datmke2)-

o[22 <[]

(0 +Dam, (v+Dam+ (0 +Darmy. 2am, (¥ +1)(o + Dom.
(v + Dogmy + (0 + Darma).
20tm1), (V +1)(0 + Darmay, 2(0 + Darmy),

(3.67)
(Y + Dogmy + (0 + Drmpray-
20t myy. (v + 1)(0 + Darmyy. 20 + Darmy)-
20t mu+1). (Y + D) (0 + Darmuryy. 2(0 + Dagmurzys 200 + D pmueay-
i+2s i—2t—s t—s

for{ Z W t—m—{ Z %k( 2 ) !
(3.68) et (7 +1)(0 + D, 20 + Dt 20 + Lot
[i —2t+ Sw

for —eoémé[i%ﬂ—t—l
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(3.69) (v + 1) (o + Dom, 2(0 + Dyam, 2(Y + Dom, dorm,

4] -t<ms =207

—e—1
Clearly, each min (3.60) yields f copies of the group ring, G. One may check that
each min (3.64) and (3.68) yields f copies of C; eachm in (3.61) and (3.65) yields f
copiesof D; eachmin (3.63) and (3.67) yields f copiesof Hy_1; eachmin (3.62) and
(3.66) yieldsf copiesof Hy; while eachmin (3.69) yieldsf copiesof the maximal ideal,
Mx~Za F\SU &) F\3W &) F@M. All thisis consistent with the statement of Theorem 3.6.

CASE 2-EVEN. Sincet, the ramification number of M /K, is 2ey, M = K(y/7), where
/m isasquareroot of aprime element of K. Since s the ramification number of L /K is
odd; L = K(,/u), where ,/u isasquareroot of unit, u € K, with quadratic defect, 2ep — s
[24].

REMARK 3.21. Becauset = 2gp iseven, if we attempt to repeat the process which we
used successfully in the proof of Lemma 3.17, we would find that vn(p;y,) = 2t +s+4m =
dey + s = WN(20m). This makes the valuation of py, = pji, + 26y, difficult to determine,
preventing us from simply replacing p;, by pm @ we did in the proof of Lemma 3.17.
But thisis not the only obstacle which prevents us from handling the two casessimilarly.
In Lemma 3.17, because t is odd, vn(am) # Wn(Om), while, vn(om) = wn(6m) mod 4.
Therefore, 6, could be considered to be another o, for some other n # m. However, if
t is even, then vn(om) Z vn(fm) mod 4, and so we may not consider 6, as another o,.
Thesetwo differences prevent us from handling Case 2-odd and Case 2-even in the same
way.

Fortunately, we may handle the case when t is even, with the following lemma.

LEMMA 3.22. Let 7y, be any element of K with vk (rm) = m. Then there exist elements
am and pm suchthat (o — Dam = (Y — 1)pm = /U /7 - Tm. Furthermore, 2(Y + Doy =
(c+ 1)+ Dam, 2(c + Vpm=(c + (Y + D)pm, (Y — D) pm = (0 + VDom — 204m, and

Wn(om) =2+s+4m—4ey,  Wn(pm) =2+4m—s
W((0 +1)pm) =2— 25+4ep+4m. W ((y + Do) = 2+ 25+ 4m — dep.

PrOOF. Since ¢ fixes L while v fixes M we see that ¢ + 1 and ¥ + 1 both Kill
VU- /7 Tm € N, where clearly vy (y/U - /7 - Tm) = 2+4m. Therefore, by Lemma3.14,
there are elements o, pm € N with the desired properties. The other statements are
consequencesof (¢ — L)am = (Y — 1)pm = /U /T - Tm. "

Now {2+s,2+25.2 —s, 2} = {0. 1. 2. 3} where X denotes the residue modulo 4. We
may therefore use am, (Y + 1)arm, pm and (o + 1)am to construct a basis for 3}, over Or.
If 3s < 4ey, then the following sequenceisincreasing - - - < Wn(om) < vN((v + 1)am) <
W(pm) < W((o + Dam) < W(2am) < W + Dam) < W(2pm) < -+, while if
3s > 4ey, thenthefollowing alternative sequenceisincreasing - - - < Wn(am) < Vn(pm) <
W ((r+Dam) < W ((e+Dam) < Wn(2am) < Wn(2pm) < Wn(2(y+1)am) < ---. Choose
those elementswhose valuation, vy, liesintheset {i.i +1..... dey +i — 1}
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CASE 2-EVEN, 3s < 4gy.  Thefollowing elements comprise an Ot-basis of 13‘,\1.

(3.70) om, (Y + Dam. pme (0 + Do
et 52 <mzae[5]
(371) (7+1)am« Pms (U+1)05m-, 205m
i—25s—2 i—s—2
_ < < —
e [22] <mee[572) 2
(3.72) oms (0 + Dom, 200m, 207 + Dom
i+s—2 i—2s—2
<m< — = |-
for[ Z W—m—eﬂ Z W 1
i—2 i+s—2
Tl <m< —
for[ 4 W—m—[ 4 W 1
CASE 2-EVEN, 3s > 4ey.
1
(374) E(U"'l)am-, m, Pm; (ry+1)am
i—2 i—2s—2
<m< " T =
fore"% 4 W—m—%@*[ 4 W 1
(3.75) am: pm: (Y + Dom, (0 + Lam
i—s— i—2
e[S <meas 2] 1
(3.76) pms (7 + Dam, (0 + Do, 20m
for[HZ_ngmge(ﬁP_Z_ZW—l
i—2s—2 i+s—2
" "l<m< —
s[5 cme 572

REVISION OF THE BASIS. It is sometimes the case that pm (2om) appearsin our Ot-
basis of 3}, while ((o +1)/2) pm € BY (0 + 1)pm € BY). Based upon Remark 3.16,
when this happens we may replace pm by Sm = pm — ((0 + 1)/2)pm (20m by 26m =
2pm — (0 + D)pm) and still have a basis. As one may easily check, (o + 1)8m = 0 and
(Y= 1)Bm =y — ) pm = (0 + D)om — 200m. Since the Galois action on B, is more easily
described than the Galois action on pm, we replace pr, by 3m whenever possible.

CASE 2-EVEN, 3s < 4ey. |In this case, because 4ey > 3s one may easily check that,
sincem> ey + [(i —s— 2)/4],VN(((0+ 1)/2)pm) > i+ (4eg — 3s) > i, for each py in
(3.70). Therefore we replace each pp, in (3.70) by 3m. One can also easily see that each
2pm in (3.73) may be replaced by 23,,. However in (3.71) and (3.72) we do not always

have vy (( (c+1)/ 2) pm) > i. Consequently, for clarity’s sake, we now break

CASE 2-EVEN, 3s < 4ey. Into three cases depending upon whether s < ey, s= ey or
s> e.
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CASE2,s< €. Inthiscase, sincem> ep+[(i —2s—2)/4], VN<((U+ 1)/2),0m> >
i +4(ep — S) > i, we may replace every pn, in (3.71) by a 8. However not every pp in
(3.72) may be replaced, and so we separate (3.72) into two cases depending on whether
or not VN(((O' + 1)/2)pm) >,

The following elements comprise an O1-basis of 13}:

(3.78) am, (Y +L)am, Bm, (0 + Lom
et =572 <z [
(3.79) (v + Dam, Bm, (0 + Lom, 2am
i—2s—2 i—s—2
" Tl<<m< _
foreo+[ 7 w_m eo+[ w 1
for[|+23—2w <m<eo+[|—2:—2w 1
(3.82) pm, (0 +Dam, 2am, 2(Y + L)am
i+s—2 i+25—2
<m<|— | —
for[ z W—m—[ z W !
(3.82) (o + Dom, 20tm, 2(Y + Lo, 28m
i—2 i+s—2
Tl <m< —
for[ 7 w <m< [ W 1

Now for each m from [(i + s— 2)/4] + (e —S) up to e + [(i — 25 — 2)/4]
recursively redefine the 7,'s employed in Lemma 3.22. Once rr, has been defined,
defing Tims(e,—g 10 be 1/2(((0 + 1) + pm) /(@0 + D + 1)am)) - 7. Note that

Vk (1/2(((o+1)(“/ +Dpm) / ((e+D(v+ 1)am))) = g— s. Thenwe may assumewithout

loss of generality that dme(e,—g = 1/2(((0 + (v + Dpm) /(0 + DO + 1)ocm)) - otm.
Therefore (o + 1)pm = 2(Y + 1)Om(ey—9)-

Then for each min (3.80) we can replace the four elements: 3, (0 + L)am, 20m,
2(v + D)oy by (0 + D)am, V(o + D)ot and B, (0 + L)om — 2am. We can also replace the
four elementsin (3.81): pm, (0 + Lo, 200m, 2(7 + L)orm; by (0 + D)arm, Y(o + D)oy and
pm, (0 + Dam — 2am. For [(i+s—2) /4] <m < [(i +2s—2)/4] — 1, we group the four
elements: (o + 1)me(ey—s), Y(0 + L)otmi(ey—g), pmy (0 + LDom — 2am, together. This leaves
the elements (o + L)am, V(o + D)am for [(i+s—2) /4] <m < [(i+s—2)/4] + (e —9),
and Bm, (0 + L)am — 2am for [(i+2s—2) /4] <m< e+ [(i — 25— 2) /4] — 1. All this
is collected in the revised basis:

CASE 2, s < & (REVISED). The following elements comprise an Or-basis of Bk

(3.83) am, (Y +L)am, Bm, (0 + Lom
2 msen 2]

foreo+[
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(3.84) (v + Dam, Bm, (0 + Lom, 2am
i—2s—2 i—s—2
= "l<m< _
e 152 sm< [ 52) -1
for [|+23—2w gmgeoﬂ' —25—2} 1
(386) (U + 1)am+(aj_s), ’Y(O' + l)arm-(aj_s), Pms (U + 1)(Xm — 20(m.
i+s—2 i+2s—2
<m<|— —| —
for || =m< | =5 —] -1
(3.87) (o +D)am, Y(o + Do,
i+s—2 i+s—2
for[ 7 WSmg[ ) LL(GO_S)_

o[ <ms 12

One may easily check at this point that each min (3.83) yields f copies of B, eachm
in (3.84) yieldsf copiesof Z & R, @ E_, each min (3.85) yieldsf copiesof E_, each
min (3.86) yieldsf copiesof A, eachmin (3.87) yields f copiesof E., whileeachmin
(3.88) yields f copies of E. o R, @ R,. This has been collected into the statement of
Theorem 3.9.

REMARK 3.23. Note that the condition 8eg > 5s is not equivalent to k' = 1. If
8ey > 5s, nor is the natural condition 3s < 4ey identical with the condition stated in
Theorem 3.9 for | = m— 1. Thiscomplication is similar to the complication dealt with in
Remark 3.18. As one may check, when a discrepancy arises the exponents given in the
theorem for the modules involved are zero, while the modules do not actually appear in
our description here. For instance, when 8ey > 5sand k/ = 2, then a = b = 0 while I,
Lo, are listed with zero occurrence.

CASE 2-EVEN, S = &. If however, s = g, then we may not replace any pn, in
(3.72) by a 8m, while all py'sin (3.71) may be replaced. We are therefore principally
concerned with the Z,[G]-structure arising from the four elements listed in (3.71). As
inthe case s < g, foreschmin [(i+s—2)/4] < m < e+ [(i—2s—2)/4] —
1, let 7, = 1/2(((o + 1) + Dpm) /(0 + Dy + 1)am)) - 7m. Then define o/, =

1 /2(<(U+ DO+ Lpm) /(0 + D)0+ 1)am)) - am. Therefore (o + 1)pm = 2(7 + 1)acl,. Now
replace (o + 1)o and 2(y + L)am with (o + 1)of, and 2(y + 1)«f,,. By Remark 3.16, we
may replace 2oy, with (o + 1)am — 2am. Observe that we now have copiesof (o + 1)of,,
Y(o + 1)y, pmy (0 + L)om — 2am in (3.71) which giveriseto A’s. Otherwise everything
elseisthe same aswhen s < &y, and the theorem results.

CASE 2-EVEN, 3ey < 3s < 4ey. Inthis case, we may not replace any p, in (3.72) by
a Am, While certain p’s in (3.71) may be replaced. We separate (3.71) into two cases.
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The following elements comprise an O1-basis of 13}:

(3.89) am, (Y +1)am, Bm, (0 + Lom
e [5 <mee 2] 1
(3.90) O+ Doam, Bm, (0 +LDom, 20m
w52 <z 152
i—2s—2 i+2s—2
s [22) <ms 22
(3.92) oms (0 + Dom, 200m, 207 + Dom
i+s—2 i—2s—2
<m< A
for[ Z W—m—eﬂ Z W 1
i—2 i+s—2
— l<m< _
for [ 7 w <m< [ w 1

In this case, we begin by assuming that the am, pm have been defined for e +
[(—2s—2)/4] <m< [(i+2s—2)/4] — 1. Thenaswhen s < ey, define 7m—(s—e,) =

1/2(((0 +)(v + Dpm) / ((0 + 1)y + 1)am)) - Tm. Then we may assume without loss of

generality that s, = 1/2(((0 +1)(Y + Dpm) / (0 + DO + 1)ocm)) - otm. Therefore
(0 +1D)pm=2(Y + 1)Om—(s-ey)-

Because 3s < 4ey, [(i +s— 2)/4] — (s— &) > [(i — 2)/4], and so the following
elements comprise an Ot-basis of i]siN:

(3.94) am, (Y +L)am, Bm, (0 + Lom
i—s—2 i—2
<m< — 2=
o[ 5 mae [52] -1
(3.95) (v + Dam, Bm, (0 + Lom, 2am
i+2s—2 i—s—2
= Tl<m< _
o5 cmzae 232
(3.96) (v + Dam. (@ + Dam,
i—2s—2 i+2s—2
= "l<m< _
foren+| 4 [sm<] ) [-1
(3.97) (0 + Dam—(s-ay)> 2(Y + 1)otm—(s-ey): pm, (0 + L)am — 20m
its—2 i+25s—2
<m<|——| —
o522 22]
(3.98) (0 + Dam. 20y + o
for[i_—ﬂ<m<[i+s_ﬂ—(s— )—1
2 SM= €
i—2 i+s—2
_ Tl<m< _
[ 52 <meft 252
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One may easily check that each min (3.94) yields f copies of B, while each min
(3.95) yieldsf copiesof Z &R, & E_, eachmin (3.96) yieldsf copiesof Z & R,,, each
min (3.97) yields f copies of A, eachmin (3.98) yields f copies of E., whileeachm
in (3.99) yields f copies of FQW, <) F\SUN,. Because of Remark 3.23, this is consistent with
Theorem 3.9.

CASE 2-EVEN, 3s > 4e. In this case, one may easily check that for each 2oy, in
(3.77), W((o +1)pm) > i, therefore we replace 2pm by 28m. Onealso easily seesthat we
may replace every pmin (3.74) by a 3, and that we may not replace any pn, in (3.76).
Not every pm in (3.75) may be replaced. Therefore we separate (3.75) into two cases
depending on whether or not vy (((a +1)/2) pm) >i.

The following elements comprise an Ot-basis of 1}:

1
(3.100) E(U +Dom, am, Bms (Y + Do
i—2 i—2s—2
— | <M< - | =
fore"% 4 W—m—zeoﬂ 4 W 1
i+2s—2 i—2
2l em< _
o [B ] g1
(3.102) oms pms (Y + Dam. (0 + Do
i—s—2 i+2s—2
<m<|—2—°%| -
fore"% Z W [ 4 W 1
(3.103) pms (Y + Dam, (0 + L)am, 2om
i+s—2 i—s—2
for[ 4 nggeﬁ[ 4 1_1
(3.109) (v + Do, (0 +LDom, 20tm, 26m
i—2s—2 i+s—2
e Al em< _
e [-27]me 17572

CASE 2-EVEN, 6s > 8ey > 5s. Inthiscase, ey + [(i —s—2)/4] +(2ep —S) > e +
[ — 2)/4], and [(i +s— 2)/4] + (2ep — 5 > [(i + 2s — 2)/4], while
[(i+25s—2)/4] + (260 — 5) = 2ep + [( — 25— 2)/4]. We now redefine the elements
amand B, for [(i+s—2)/4] +(2ep—9) < m< 2e+ [(i — 25— 2)/4] — 1. Given
any m such that [(i +s—2)/4] < m < [(i +2s— 2)/4] — 1, define Tmze—9 =
(((‘7 +1(v + 1)ﬂm)/((0 +1)(v + 1)0(m)) Tm, SO that (o + 1)pm = (¥ + L)otme(2e,-9)-

As a consequencewe have the following Or-basis for 33},

1/2(c + 1)otme(2ey—g)» Cm(2e9—9)+ Brr2er—g): (V + 1)otme(2ey—s)
where (o + 1)pm = ( + 1) otme(2e)—9)-

-2 {i+25—2w_1

foreo+F_ wémé

(3.106) pms (Y + Dam, (0 + Dam, 20m,
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1/2(0 + 1)mr(2ey-9)» Umr@ar-9> Bmr(2er—9: (V + 1)ome2a,-9)
where (o + 1)pm = (¥ + L)omr(2e—9)-
i—2 i—s—2
forep+ | —=|-@o-9<m<e+| |-12
(3.107) pm, (Y + Dam, (0 + 1)om. 20m
Om2er-9)> Omeer—9s (Y + Dotme2ey—9), (0 + L)otme(2e)—9)
where (o + 1)pm = (Y + 1) otme(2ey—9)

i+s—2 i—2
for[ Z W§m§eo+[TW—(Zeo—s)—l
i+2s—2 i+s—2
for[TWSmg[ W+(Zeo—s)—1
et [ <m< 5

One may easily check that each min (3.105) yields f copies of W ¢ RA'y @ |:\3m,
while each min (3.106) yields f copies of A @M, eachmin (3.107) yieldsf copies of
Y @ Z @R, eachmin (3.108) yields f copiesof B, while each min (3.109) yields f
copiesof M . Because of Remark 3.23, thisis consistent with Theorem 3.9.

CASE 2-EVEN, 55 > 8gy. Because.asweobservedearlier, [(i+2s—2) /4] +(2ep—s) =
2ep + [(i — 25— 2) /4], the numbers of m'sin (3.101) and (3.100) is exactly 2ey — s.
Because 2e; — s can be quite small, even as small as 2ep — s = 1, we may have to
recursively define the,'smany times fromm = [(i +s— 2) /4] till weend upin (3.101)
or (3.100). There is one complication: Although the number of m'sin (3.100), (3.101)
and (3.103) are approximately the same, they are not the same. The number of m'sin
(3.103) can belessthan the number of m'sin (3.100) by one, the same, or more than the
number of m'sin (3.100) by one.

LEMMA 3.24. Let k be the smallest integer such that [(i + s — 2)/4] +
k(2ep — ) > [(i +2s— 2)/4], then if r € {0.1.2.3} so that r = —i mod 4, we
havek = [(s+r +1)/4(2ey — 9)].

PrROOF. Since sis odd, —i = —(i + 2s — 2) mod 4. And so this lemma is easily
verified, asin Lemma 3.19. ]

Beginning with m = [(i + s— 2) /4] redefine 7ms(2e,—s) t0 be
(@ + D0+ Dpm) /(@ + DO + atm) ) - 7m
so that (0 + 1)pm = (V + 1)ame—g. Continue until al the am's and pm's for

[(i+s—2)/4] + (2ep — 5) > 2ep + [ (i — 25— 2) /4] have been redefined. Based upon
Lemma 3.24 and the preceding comments, one may verify the statement of Theorem 3.9.
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4. Index of modules. In this section we provide explicit descriptions in terms for
generators and relations of the Z[G]-modules that appear in this paper.

In Nazarova's Classification, [16], the Z[G]-modules are represented as pairs of
matrices. Note that the proofs for the results of [16] are explained in greater detail in
[17]. In Section 4.2 we translate our notation to verify the indecomposability of the our
modules.

4.1. The modules expressed in terms of generators and relations. For each Z[G]-
module, I, let N denote the Z,[G]-module, Z, ®; N. The Z,[G] action on %N is the
natural one, explicitly stated in Definition 2.1. For practical purposes, each Z[G]-module
becomes a 7Z,[G]-module when you replace each occurrence of a Z in our description
with aZ,.

In each description of the representation as a module, the action of o € G isgiven by
multiplication by x, whiley € G acts viamultiplication by y.

First we introduce notation for the four modules whose rank over Z is one.

__ I[x¥] __ I[xY]
(x—1y—1) 7 (x—1y+1)’
_ Zxy] R.=_ ¥

Tx+ly—1) 7 (x+Ly+1)

Clearly, Z isthe modulewith trivial group action, while for instance both o and Y act on
R, viamultiplication by —1. Noticethat Z &R, ® R, ® R,y = M, the maximal order

of Z[G].
Next we introduce two modules whose rank over Z is two.
E, - XV . E_= xy
-1y —1) x+1y?—1)

Notice that both of these modules are free over Z[7], while ¢ actstrivially upon E. and
through multiplication by —1on E_.

REMARK 4.1. Since ¢ actstrivialy upon Z, R, and E., these Z[G]-modules may be
considered Z[(7)]-modules, which explains the notation in Theorem 3.1.

One module of rank 4 over Z distinguishesitself by being the group ring:
__ IIxY]
-1y —1)

Besidesthe group ring, we require four other modules of rank 4 over Z, two of these are
elements of infinite families, the other two are listed here:

~ 7[G].

Z[xV] Z[xV] Z[xV]
(—1y2-1) ® (x—Ly-1) ® (x—Ly+1)

((x+1,1,1))

Z[xy] Z[xy] Z[xy]
(x¥—1y-1) ® (x—1y+1) ® (x—1,y2—-1)

((x+1,0,y+1),(0.x+1,y—1))

C
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Finally to complete the list of indecomposable Z[G]-modules which we require, we
construct five different infinite families of Z[G]-modules: {H;}, {1}, {J;}, {K;}, {L;}.

REMARK 4.2. In the next section, we show that the H; decompose. Because these
modules arise naturally in the proof of Theorem 3.6, they are included along with these
other families of indecomposable modules.

THE INFINITE FAMILY OF H;’s. We construct the H;’sj > 1, where the Z-rank of H;
is4j + 8. To define H;, weintroduce Q(H ); and its submodule, A(H );. Each H; isthen
defined to be the quotient of Q(H ); by A(H );. Let

. ZIx.yl Z[x. Y] Z[X.y]
Q(H)J_(<x2—1fy2—1> (x—1y2—-1) <X—1~y2_1>)c
. j ( Z[x.Y] Z[x, Y]
E\(-1y?—1) " (®-1y*—1)
VANSY Z[x. Y] )b
x—Ly-1) (x—Ly+1))"

Z[x.Y] Z[x.Y] Z[x.Y]
+(WL—LW—1V%W—1J—1fBw—1y+m)b

Let A(H ); be the submodule of Q(H ); generated by the following elements:

(x+1,0,y+1)c+(0,0,1, 1)y, (y—1.0,0)c+(0,0,0,1)b.,
(0,x+1,y—1)c+(0.0,1, 1), (0,y+1,0)c+(0,0,1,0)0b, and
(x+1,0,1,0)b +(0,0,1,1)b_1, (y—1,0,0,0)b +(0,0,0, L)bi_1,
(0O,x+21,0,1)b +(0.0,1, Db_;, (0,y+1.0,0)b +(0,0,1,0)bj_1,

foreachi =j,j —1,j—2....,3,2, and

(x+1,0,1,0)by + (0,1, )by, (y—1,0,0,0)b; + (0,0, 1)by,

(O,x+1,0,1)b; + (0,1, Dby, (0,y+1,0,0)b; + (0, 1, 0)bg,

and finally (x + 1, 1, 1)by.

Then, we define

_QH)
H‘Amﬁ'

Consistent with this definition is the next module which has Z-rank eight.

Z7[xy] Z7[xy] 2[x 2[xy] 2[xy] 2[x
b = P10 P iy T © ey w © eyt Y ety-1 © ey
0=

((x+1,0.y+1,0,1,1),(y—1.0,0,0,0.1),(0.x+1,y—1,0.1.1),(0.y—1,0,0,1,0),(0,0,0.x+1,1,1))

Finally to simplify the statementsin our theorems, defineH_1 =E, ¢ E_.
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THE INFINITE FAMILY OF lj's. We construct the I;’sj > 1, where the Z-rank of |; is
4j +4. Let

j Z[x. ] Z[X. Y] Z[x.Y] Z[x.y] .
€ )

Q(I)’:; -1y =1) " (®¥-1y—-1)  (x—1ly-1) " (x—1ly+1

Let A(l); be the submodule of Q(I); generated by the following elements:

(X+1~, 0_1'_1)bi (y+17 0',_11 0)h~ (O.y— 17 0_1)h
(O,x+1,1,1)b +(0,0,1,0)b_;, foreachi=j,j—1.j—2,...,3,2,1, and
(x+1,0,—1,—1)by, (y+1,0,—1,0)b0,(0.x+1,1,1)by, (0O.y—1,0,—1)ho,

Then, we define
oy
Ay
Consistent with this formulation is the rank 4 module,

2[x.yl 2[x.yl 2[x.yl 2[x.yl
iy © iy—1 Y iy © Lyl

<(X + 1 0', 1 _1)7 (O~ x+1,1, _1)7 (y -1 0. Of 1) (O~ y+ 11 O)>

Io’%’B:

The next three families are extensions of |;.

THE INFINITE FAMILY OF J;’s. We construct the Jj's, j > 1, where the Z-rank of Jj is
4 +2. Let

. Z[x.y] Z[x.y] Z[x.y] Z[x.y] _
Q“]’J"Z(<x2—1.y2—1> Ly —1)  x—Ly-1) <x—1,y+1>)b'

- (soiyog )

Let A(J); be the submodule of Q(J); generated by the following elements:

(x+1,0,—1,—1b. (y+21,0,—1,0k, (0.y—1,0,—1)b,
(0,x+1,1,1)b +(0.0,1,0)b_1, foreachi=j,j—21,j—2,...,3,2, and
(x+1,0,—1, —Dby, (y+1,0,—1,0)by, (O,y—1,0,—1)by,
(0,x+1,1, )by + (y + L)bp.
Then, we define
AJ)
Consistent with this definition is the rank 6 module,

Jj

2] 2[x)] 2[x)] 2[x)] 2]
JiaW = (P—1y?-1) D P—1y?-1) ® (x—1y-1) ® (x—1y+1) D (x—1y?-1)
1= ((x+1,0,1,—1,y+1),(0.x+1,1,—1,0),(y—1,0.0,1,0),(0,y+1,1,0,0))

aswell asthe rank 2 module, Jo >~ E..
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THE INFINITE FAMILY OF K|'s. We construct the Kj’sj > 1, where the Z-rank of K;
is4j +6. Let

) 7[x.y] j Z[x.y] Z[x.y]
Q(K); = (m)“?(uz—w— 0¥ e Ly —1)

Z[x.y] Z[x.y] ),
x—1y—-1) ~ (x—1Ly+1)) "

S

Let A(K); be the submodule of Q(K ); generated by the following elements:

(x+1)c+(0.0,1,0) and
(x+1,0,-1,-1b. (y+1,0,—1,0b, (Oy—1,0 —1)b.
(0.x+1,1,1)b +(0,0,1,0)b_4, foreachi=j,j—1,j—2,....3,2,1, and
(x+1,0,—1, —Dby, (y+1,0,—1,0)bp, (0,x+1,1 )by, (O,y— 1,0 —1)by,
Q(K);
AK)
Consistent with this definition is the following rank 6 module:

Kj=

Z[xy] Z[xy] Z[xy] Z[xy] Z[x)]
Y = (x¥*—1y*—1) S (x*—1y?—1) ® (x—1y>—1) ® (x=1y-1) ® (x=1y+1)

((x+1,0.0,1,0),(0,x+1,0,1,—1),(0,0.x+1,1,—1),(0,y—1,0,0,1),(0,0,y+1,1,0))

Ko

12

aswell astherank 2 module, K_; ~ E_.

THE INFINITE FAMILY OF Lj’s. We construct the Lj’sj > 1, where the Z-rank of L;

is4j +4. Let
o) :(<x2—1%y2—1>)c+(<x—1-xyg— 1>)bo

. i ( Z[x. Y] Z[x.y]
ElL-1y?—-1) " (—-1y*—1)
Z[x. Y] Z[x.y] )b
(x—Ly-1) " (x—Ly+1))"

Let A(L); be the submodule of Q(L); generated by the following elements:

(x+1)c+(0.0,1,0)by and
(x+1,0,—-1,—-1b, (y+1,0,—1,0b, (0,y—1,0 -1,
(0,x+1,1,1)b +(0.0,1,0)b_1, foreachi=j,j—21,j—2,...,3,2, and
(x+1,0,—1,—1)b;, (y+1,0,—1,0)b;, (O,y—1,0,—1)by,
(0, x+1,1, )by + (y + L)by,
Then, we define
_ QL)
ALY

L

https://doi.org/10.4153/CJM-1998-050-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-050-4

1042 G. GRIFFITH ELDER

Consistent with this formulation is the following rank 4 module;

Uyl o 2]
Ly 1 Y Ly 1)

(x+1,y+1))

Lo%A:

4.2. Nazarova's notation and the indecomposability of the modules. To be consistent
with the notation in Nazarova's paper [16], we describe each infinite family of modules
in terms of amatrix for the action of v, and another matrix for the action of 0.

For each module, Nazarova [16] supplementsthe kernel of oy — v to obtain a basis
for the entire module. Then the matrices representing the action of v and oy have the

form:
y = /All A12> oy = /All B2 )
\ 0 Az \ 0 -Ax
Using what isknown about representations of the cyclic group of order two, Nazarova
decomposes Ay and Ay, into indecomposable boxes. Let | denote the identity matrix
and E be a matrix with copies of the regular representation of Z[Y] along the diagonal.
One may easily verify that the matrices have the following form.

11 00| O |A5|A6
0|—1|0 A24 A25
. - | SO TE[Au[As[
“loloTof 1 0
o000 0
\o[oo[[0 E
I{0]|0 B]_4 B]_e
0/—1[0][ 0 By
o = | 9O JE[Bss 0
| o[oof—I 0
0[O0 0] 0 0
\o[ofo[ol0[=E

In what followswe provide atranslation into Nazarova's Classification. Let M denote
asguare matrix with oneson the diagonal and just abovethe diagonal, zeroeseverywhere
else. Let N denote a matrix with two rows and zeroes everywhere except for the first
column which contains ones. L et N* be the transpose of N.

Each module I; j > 1 whichis given in Section 4.1 correspondsto a pair of matrices
with By =M and Bos = Ais = Aoy = | rankj + 1, and where Ass, Aos As1, Az Bis, Bos
Ba1, Bsz do not appear. Each module J; j > 1 corresponds to a pair of matrices with
B = M and Bos = Ais = Ay = Irankj, Bs:1 = N, B, = Az1 = Ap =0, and where
Ase, Ass Big, Bas do not appear. Each module Kj j = 1 correspondsto apair of matrices
with By =M and Bos = Ais = Ay = | rankj +1, Big = Nt, Bos = Aig = A = 0, and
where Az, Az B3, B3y do not appear. Each module Lj j > 1 correspondsto a pair of
matrices with By =M and Bos = Ais = Ay = | rankj, B = Nt, Bos = Aig = Ay = 0,
and Bz1 =N,Bsz = Az = Axp = 0.
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The Ij arelisted in [16, p. 1306 middle of page], and in [17, p. 1310, Lemma 1] as
J* for n = + 1. TheJ;, Kj, L are listed near the bottom of the page in [16, p. 1307],
and respectively as J*'(e) for n = j, J*'(f) forn = j + 1, J*(e.f) for n = j, in [17, p. 1312,
Corollary]. They are al proven to be indecomposablein [17, Section 5]. One may check
following [17, p. 1316, Lemma 5] that the H; decompose. We include an brief proof for
the benefit of the reader.

PROPOSITION 4.3. The modules H; decomposein the following manner,

L@l if j iseven,

N2 342 @ Ky if]isodd.

ProoF. Take the basis for Hy given in (3.66) and replace it with the following two
sets:

(c+Dam, O +D(o+am
OV =)0+ Doygmy + 2(0 + Dogma. (Y +1D)(0 + Darma),
4.1) (v = Dogmy + (0 +Dtimz, O+ Doam+ (0 — Dagmy
(v = (o + Dagma) + 2(0 + Dagmay. (V +1)(0 + Dorma.
(V= Dogma + (0 + Darmay, OV +Dogma) + (0 — Darmya)

and

OV =D+ Dam+ 20+ Dagmy. (O +1)(0 +Dogmy-
(v = Dam+ (0 + Darmy, (0 —L)am
(4.2 OV = D(0 + Dogma) + 2(0 + Dogmz, (Y + D)(0 + Darma),
(V= Dogma + (0 + Darmaz, O+ Dogmay + (0 — Darmya)
(O = Do+ Dogma) + 20 + Darms), (Y +1)(0 + Darms),
(v = Datmay + (0 + Datsms), (0 + Dagma) + (0 — Darma

Note that in each set thei inthef(m, i) isincremented by 2 each time. How each set ends
depends upon whether k is even or odd. Hence the result. ]

5. Examples. Inthissectionwe providethefamily of biquadratic extensionsalluded
to in Section 3.4.2. The existence of fully ramified bicyclic extensions, N /K, with the
property that 33}, is not expressible as O ®@z,06) M as O1[G]-modules for any Z,[G]-
module M , wasfirst observed in a paper of Burns and Bley for p = 3 [1, Section 6].

Let N = Q(i,v/12) and Gal(N/Qp) = (0,7 | 0* = 72 = 1,707 = ¢°), where
o(v/12) = iv/12, ¢ fixes i, and v is complex conjugation. One may check that = =
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1/2(v/3 +iv/12 + 1) is a prime element in N. We used the computer package Pari to
find this element. (The package was written by C. Batut, D. Bernardi, H. Cohen and
M. Olivier, see[4].)

Let K = Qp(v/—3) = Q2(G). Then one may easily verify that N/K is afully ramified
biquadratic extension with one break in its ramification filtration. The lower ramification
number associated with this break is b = 1. Also note that in thiscase, eg = 1, f = 2,
T =K, and G = Ga(N/K) = (62, 07).

We are interested in determining the Z,[G]-module structure of 33, as this is not
covered by Theorem 3.5. We begin by selecting a basis for 33 over Or. Clearly,
N (1/2(v/3+iv/12+1)(1+y/3)) = 3,un(2) = 4, W(v/3+iv/12+1) = 5,w(2(1++/3)) = 6.

So
1/2(v3+iv12+ 1)1 +/3),2,v/3+iv12+1,2(1 +/3))
isan Or-basis for 133. We may alter this basisto get:
Wi = 2,Wp = 2v/3, W = iv/12+ (V3 + 1), wy = 1/2(iv/12)(1 + v/3) + /3

Clearly, the Galois action upon this basisis:

101 0 10 &8 =8
, 011 1 0 —1 =2/=8 —3-¢=3
“looaol Moo 3w
00 0 —1 00,2\3{,—3,\2,—3

Now if we make the following change of basis W), = wy, W, = —(1 + v/—3)/2ws,
Wy =ws — (1—v/—3)wa/2, W) =wy — (1 — v/—3)ws/2, wefind that

10 1 G 10 10
2 |01-1-1f  j0-101
00-10 00 —-10]"
000 -1 00 01

If it were possible to express this O1[G]-representation using matrices with Z,-coeffi-
cients, then it would be the case that this representation is isomorphic to

101 ¢ 1010
2 01-1-1/  10-101
00-10 00 -10
000 -1 00 01

In other words, the Frobenius element acts upon the pair of matrices associated with
the action of ¢? and o, taking them to an Ot[G]-isomorphic pair. Let vy, Vo, Va, V4
denote the basis of the first representation while wy, w,, ws, w, denote the basis of the
second representation. Since v, isthe basis element killed by (¢ — 1) and (o7 — 1), any
isomorphism between these two modules must send v; to wy. Similarly v, must be sent
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to w,. Certainly v3 must be sent to ws + aw; + bws,, from this one easily seesthat v3 must
be sent to ws. Finally, v4 must be sent to w, +aw; + bw, +cws. By comparing oy (vs) with
oY (Wy +aw; +bw, +cws), we seethat b = ¢ = 0. By comparing 0?(v4) with o?(ws +awy),
we find that a must be (¢ — ¢s) /2 which is not an integer. So these two modules are not
isomorphic over O1[G].

We now generalizethis example. Let b be any odd positive integer. Let N and K beas
before, andlet Ny, = N(v/2) while Ky, = K(v/2), thensince Q,(v/2) / @, istame, Np /K isa
fully ramified biquadratic extension with one break in itsramification filtration. Thelower
ramification number associatedwith thisbreak isb. Clearly vy, (1 /2(V/3+iV/12+1)) =
Vi (1 +/3) = 2b, Wy, (1/2(v/3 +iv/12 + 1)(1 + +/3)) = 3b, while w,(v'2) = 4j. By
choosing elements with valuation, vy, equal toi,i + 1,i +2,...4b+i — 1 wewill have
abasisfor 3, over O1. So

1 1/2(+/3+iv12+1) 1++/3
Z(\/ZJ)( 4] IJ + D 2{4]+b IJ DT2L4]+§[§F‘J
‘0 1/2(\/§+|\/12+1)(1+f))
2L 4j+3b—| IJ

From this explicit description, we determine that

b+| “

Bh, & (O F 114 @ (%N)b* - @ (1)
@(13 )(2b+|“

as O1[G]-modules.

Clearly the only time that 333 does not appear iswhen [ 27 — [2] = 0, which only
happenswhenb = 3,i =2mod 4 orwhenb=1andi =0, 1,2 mod 4.

6. Conclusion. This research began in an attempt to determine the Zp[Gal(N/K)]-
module structure of the ring of integers of N, afully ramified bicyclic extension of K, a
finite extension of Q,, thefield of p-adic numbers. The goal was to generalize the results
of [7] by determining the structure without restriction on the ramification filtration.

Because of the complexities involved with the infinite families of modules and the
problems presented by the computer generated examples of Burnsand Bley [1] (aswell
asthe examplesof Section 5), it seemed prudent to restrict to biquadratic extensionsand
concentrate on acomplete analysis. Fortunately, this restriction allowed usto present our
resultsin global terms.

We mention the following questions concerning ambiguous ideals in biquadratic
extensionswhich may be addressed based upon theexplicit descriptionsin Theorems3.5,
3.6and 3.9:

1. Cohomology of ambiguousideals.

2. Galois isomorphisms among ambiguousideals.

3. Duality relationships among the modulesin an ambiguousideal.
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We note that the original question, the Z,[G]-module structure of the ring of integers
in fully ramified bicyclic extensions, remains an open and very interesting question. Is
it reasonable to expect that a resolution of this original question will result in structure
theorems anal ogous to those in this paper, however with significantly more complicated
expression?

Finally, as mentioned in Remark 3.11, a structure theorem for the ring of integers
in local, fully ramified biquadratic extension with only one break in its ramification
filtration will require more than just a knowledge of the ramification invariants of the
extension. It remains an interesting and open problem to determine the nature of this
additional, necessary information and the sort of structure of thering of integersthat will
result as a conseguence.

REFERENCES

1. W. Bley and D. Burns, Uber Arithmetische Assoziierte Ordnungen. J. Number Theory (2) 58(1996),
361-387.
2. D.Burns, Factorisability and wildly ramified Galois extensions. Ann. Inst. Fourier (Grenoble) 41(1991),
393-430.
3. E. Dieterich, Representation types of group rings over complete discrete valuation rings. In: Integral rep-
resentations and applications, Olberwolfach, 1980, Lecture Notes in Math., Springer, Berlin, New York,
1981, 369-389.
4. H. Cohen, Acoursein computational algebraic number theory. Springer-Verlag. Graduate Textsin Math.
138, Berlin, Heidelberg, 1993.
5. C.W. Curtisand |. Reiner, Methods of Representation Theory. Wiley, New York 1981.
6. G.G. Elder and M. L. Madan, Galois module structure of integers in wildly ramified cyclic extensions.
J. Number Theory (2) 47(1994), 138-174.
, Galois module structure of integersin wildly ramified C, x C, extensions. Canad. J. Math. (4)
49(1997), 722—-735.
8. G. G. Elder, Galois module structure of integersin wildly ramified cyclic extensions of degree p2. Ann.
Inst. Fourier (Grenoble) (3) 45(1995), 625-647; errataibid. (2) 48(1998), 609-610.
9. A. Frohlich, Galois Module Sructure of Algebraic Integers. In: Ergebnisse der Mathematik und ihrer

Grenzgebiete 3, Folge, Bd. 1, Springer-Verlag, Berlin, Heidelberg, New York, 1983.

10. A. Frohlich and M. J. Taylor, Algebraic Number Theory. Camb. Stu. Adv. Math. 27, Cambridge Univ.
Press, 1991.

11. H. Jakobinski, Genera and Decompositions of Lattices over Orders. Acta. Math. 121(1968), 1-29.

12. H. W. Leopoldt, Uber die Hauptordnung der ganzen Elemente eines abelschen Zahlkorpers. J. Reine
Angew. Math. 201(1959), 119-149.

13. B.Martel, Sur I'anneau des entiers d’ une extension biquadratique d' un corps 2-adique. C. R. Acad. Sci.
Paris 278(1974), 117-120.

14. E. Maus, Arithmetisch digunkte Korper. J. Reine Angew. Math. 226(1967), 184—-203.

15. Y. Miyata, On the module structure of a p-extension over a p-adic number field. Nagoya Math. J.
77(1980), 13-23.

16. L.A.Nazarova, Integral representations of Klein's four-group. Soviet Math. Dokl. 2(1961), 1304-1307;
English Trandation.

17. , Representation of a Tetrad, Math. USSR-1zv. (6) 1(1967), 1305-1321; English Trandation.

18. E. Noether, Normalbasis bei Korpern ohne hohere Veraweigung. J. Reine Angew. Math. 167(1932),
147-152.

19. M. Rzedowski-Calderon, G. D. Villa-Salvador and M. L. Madan, Galois module structure of rings of
integers. Math. Z. 204(1990), 401-424.

20. S. Sen, On automorphisms of local fields. Ann. of Math. (2) 90(1969), 33-46.

21. JP Serre, Local fields. Graduate Texts in Math. 67, Springer-Verlag, Berlin, Heidelberg, New York,
1979.

22. S. V. Vostokov, Ideals of an abelian p-extension of alocal field as Galois modules. Zap. Nauchn. Sem.

https://doi.org/10.4153/CJM-1998-050-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-050-4

BIQUADRATIC EXTENSIONS 1047

Leningrad. Otdel. Mat. Inst. Akad. Nauk SSSR 57(1976), 64-84.

23. R.Wiegand, Cancellation over Commutative Rings of Dimension Oneand Two. J. Algebra. (2) 88(1984),
438-459.

24. B. Wyman, WIdly ramified gamma extensions. Amer. J. Math. 91(1969), 135-152.

Department of Mathematics
University of Nebraska at Omaha
Omaha, Nebraska 68132
U.SA.
e-mail: elder @unomaha.edu

https://doi.org/10.4153/CJM-1998-050-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-050-4

