
3

C∗-algebras of discrete groups

Group representations are one of the main sources of examples of C∗-algebras.
The universal representation of a group G gives rise to the full or maximal
C∗-algebra C∗(G), while the left regular representation leads to the reduced
C∗-algebra C∗λ(G). In this chapter we review some of their main properties
when G is a discrete group.

3.1 Full (=Maximal) group C∗-algebras

We first recall some classical notation from noncommutative Abstract Har-
monic Analysis on an arbitrary discrete group G.

We denote by e (and sometimes by eG) the unit element. Let π :G →
B(H) be a unitary representation of G. We denote by C∗π (G) the C∗-algebra
generated by the range of π .

Equivalently, C∗π (G) is the closed linear span of π(G).
In particular, this applies to the so-called universal representation of G, a

notion that we now recall. Let (πj )j∈I be a family of unitary representations
of G, say

πj :G→ B(Hj )

in which every equivalence class of a cyclic unitary representation ofG has an
equivalent copy. Now one can define the “universal” representation UG :G→
B(H) of G by setting

UG = ⊕j∈I πj on H = ⊕j∈IHj .
Then the associated C∗-algebra C∗UG(G) is simply denoted by C∗(G) and is
called the “full” (or the “maximal”) C∗-algebra of the group G, to distinguish
it from the “reduced” one that is described in the sequel. Note that

C∗(G) = span{UG(t) | t ∈ G}.
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64 C∗-algebras of discrete groups

Let π be any unitary representation of G. By a classical argument, π is
unitarily equivalent to a direct sum of cyclic representations, hence for any
finitely supported function x :G→ C we have∥∥∥∑ x(t)π(t)

∥∥∥ ≤ ∥∥∥∑ x(t)UG(t)

∥∥∥ . (3.1)

In particular, if π is the trivial representation∣∣∣∑ x(t)

∣∣∣ ≤ ∥∥∥∑ x(t)UG(t)

∥∥∥ . (3.2)

Equivalently (3.1) means∥∥∥∑ x(t)UG(t)

∥∥∥
B(H)

= sup

{∥∥∥∑ x(t)π(t)

∥∥∥
B(Hπ )

}
where the supremum runs over all possible unitary representations π :G →
B(Hπ) on an arbitrary Hilbert spaceHπ . More generally, for any Hilbert space
K and any finitely supported function x :G→ B(K) we have∥∥∥∑ x(t)⊗ UG(t)

∥∥∥
B(K⊗2H)

= sup

{∥∥∥∑ x(t)⊗ π(t)
∥∥∥
B(K⊗2Hπ)

}
where the sup is the same as before.

There is an equivalent description in terms of the group algebra C[G], the
elements of which are simply the formal linear combinations of the elements
of G, equipped with the obvious natural ∗-algebra structure. One equips C[G]
with the norm (actually a C∗-norm)∑

t∈G x(t)t �→ sup
{∥∥∥∑ x(t)π(t)

∥∥∥}
where the supremum runs over all possible unitary representations π of G.
One can then define C∗(G) as the completion of C[G] with respect to the
latter norm.

These formulae show that the norm of C∗(G) is the largest possible C∗-
norm on C[G]. Whence the term “maximal” C∗-algebra of G.

Remark 3.1 (A recapitulation) By (3.1) there is a 1−1 correspondence
between the unitary representations π :G→ B(H) and the ∗-homomorphisms
ψ :C∗(G)→B(H). More precisely, for any π there is a unique ψ :C∗(G)→
B(H) such that ∀g ∈ G ψ(UG(g)) = π(g), or if we view G as a subset of
C[G] ⊂ C∗(G) (which means we identify g and UG(g)), we have

∀g ∈ G π(g) = ψ(g).
Remark 3.2 (c.b. and c.p. maps on C∗(G)) A linear map u :C∗(G)→ B(K)

is c.b. if and only if there exists a unitary group representation π :G→ B(Hπ)

and operators V,W :K → Hπ such that
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3.1 Full (=Maximal) group C∗-algebras 65

∀t ∈ G u(UG(t)) = W ∗π(t)V .

Moreover, we have ‖u‖cb = inf{‖W‖‖V ‖} and the infimum is attained.
Indeed, in view of the preceding remark this follows immediately from
Theorem 1.50. The c.p. case is characterized similarly but with V = W . When
K = C and hence B(K) = C, this gives us a description of the dual of C∗(G),
as well as a characterization of states on C∗(G).

The next result (in which we illustrate the preceding remark in the case of
multipliers) is classical, and fairly easy to check.

Proposition 3.3 (Multipliers on C∗(G)) Let ϕ : G → C. Consider the
associated linear operator Mϕ (a so-called multiplier, see §3.4) defined on
span{UG(t) | t ∈ G} by Mϕ

(∑
x(t)UG(t)

) = ∑
x(t)ϕ(t)UG(t). Then Mϕ

extends to a bounded operator on C∗(G) if and only if there are a unitary
representation π :G→ B(Hπ) and ξ,η in Hπ such that

∀ t ∈ G ϕ(t) = 〈η,π(t)ξ 〉. (3.3)

Moreover we have for the resulting bounded operator (still denoted byMϕ)

‖Mϕ‖ = ‖Mϕ‖cb = inf{‖ξ‖‖η‖} (3.4)

where the infimum (which is attained) runs over all possible π , ξ , η for which
this holds. Lastly, if Mϕ is positive (3.3) holds with ξ = η, and then Mϕ is
completely positive on C∗(G).

Proof If ‖Mϕ :C∗(G) → C∗(G)‖ ≤ 1, let f (x) = ∑
t∈G ϕ(t)x(t). Then by

(3.2) f ∈ C∗(G)∗ with ‖f ‖ ≤ 1. Note f (UG(t)) = ϕ(t). By Remark 1.54
there are π , ξ , and η with ‖ξ‖‖η‖ ≤ ‖f ‖ ≤ 1 such that (3.3) holds. If Mϕ
(and hence f ) is positive we find this with ξ = η. For the converse, since
(like any unitary group representation) the mapping UG(t) �→ UG(t) ⊗ π(t)
extends to a continuous ∗-homomorphism σ : C∗(G) → B(H ⊗2 Hπ), we
have Mϕ(·) = V ∗2 σ(·)V1, with V1h = h ⊗ ξ and V2h = h ⊗ η (h ∈ H) from
which we deduce by (1.30) ‖Mϕ‖cb ≤ ‖ξ‖‖η‖. If ξ = η then V1 = V2 and
henceMϕ is c.p. on C∗(G).

Remark 3.4 By Remark 3.2 and (3.4) the space of bounded multipliers on
C∗(G) can be identified isometrically with C∗(G)∗. If fϕ is the linear form on
C∗(G) taking UG(t) to ϕ(t) (t ∈ G) we have

‖Mϕ‖ = ‖fϕ‖C∗(G)∗ .
Proposition 3.5 Let G be a discrete group and let � ⊂ G be a subgroup.
Then the correspondence U�(t) → UG(t), (t ∈ �) extends to an isometric
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66 C∗-algebras of discrete groups

(C∗-algebraic) embedding J of C∗(�) into C∗(G). Moreover, there is a
completely contractive and completely positive projection P from C∗(G) onto
the range of this embedding, defined by P(UG(t)) = UG(t) for any t ∈ � and
P(UG(t)) = 0 otherwise.

Proof By the universal property ofC∗(�) the unitary representation � ⊃ γ �→
UG(γ ) extends to a ∗-homomorphism J :C∗(�) → C∗(G) with ‖J‖ = 1.
Let ϕ = 1� . The projection P described in Proposition 3.5 coincides with
the multiplier Mϕ acting on C∗(G). Thus, by Proposition 3.3 it suffices to
show that there is a unitary representation π :G → B(Hπ) of G and a unit
vector ξ ∈ Hπ such that ϕ(t) = 〈ξ,π(t)ξ 〉. Let G = ⋃

s∈G/� s� be the
disjoint partition of G into left cosets. For any t ∈ G the mapping s� �→ ts�
defines a permutation σ(t) of the setG/�, and t �→ σ(t) is a homomorphism.
Let Hπ = �2(G/�) and let π :G → B(Hπ) be the unitary representation
defined on the unit vector basis by π(t)(δs) = δσ(t)(s) for any s ∈ G/�. Let
[[�]] ∈ G/� denote the coset � (i.e. s� for s = 1G) and let ξ = δ[[�]]. Then
it is immediate that ϕ(t) = 〈ξ,π(t)ξ 〉 for any t ∈ G.

Remark 3.6 Let G be a discrete group and let E ⊂ C∗(G) be any separable
subspace. We claim that there is a countable subgroup � ⊂ G such that
with the notation of Proposition 3.5 we have E ⊂ J (C∗(�)). Indeed, since
C∗(G) ⊂ span[UG(t) | t ∈ G] for any fixed x ∈ C∗(G) there is clearly a
countable subgroup �x ⊂ G and an analogous Jx such that x ⊂ Jx(C∗(�x)).
Arguing like this for each x in a dense countable sequence in E and taking the
group generated by all the resulting �x’s gives us the claim.

By Proposition 3.5 this shows that there is a separable C∗-subalgebra C ⊂
C∗(G) with E ⊂ C for which there is a c.p. projection P :C∗(G)→ C.

Remark 3.7 Let G be any discrete group, let A = C∗(G). Then Ā � A.
Indeed, since for any unitary representation π on G, the complex conjugate
π̄ (as in Remark 2.14) is also a unitary representation, the correspondence
π �→ π̄ is a bijection on the set of unitary representations, from which the C-
linear isomorphism � :C∗(G) → C∗(G) follows immediately. Denoting by
UG the universal representation of G, this isomorphism takes UG(t) to UG(t).
Note that Ā � A is in general not true (see [60]).

3.2 Full C∗-algebras for free groups

In this section, we start by comparing the C∗-algebras of free groups of differ-
ent cardinals. Our goal is to make clear that we can restrict to C = C∗(F∞)
(or if we wish to C∗(F2)) for the various properties of interest to us in the

https://doi.org/10.1017/9781108782081.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108782081.004


3.2 Full C∗-algebras for free groups 67

sequel. Then we describe the operator space structure of the span of the free
generators in C∗(F) when F is any free group. The following simple lemma
will be often invoked when we wish to replace C∗(F) by C∗(F∞).

Lemma 3.8 Let F be a free group with generators (gi)i∈I . Let E ⊂ C∗(F) be
any separable subspace. Then the inclusion E ⊂ C∗(F) admits an extension
TE :C∗(F)→ C∗(F) that can be factorized as

TE :C∗(F) w−→C∗(F∞) v−→C∗(F)
where v,w are contractive c.p. maps.

For any C∗-algebra D and any x ∈ D ⊗ E we have

‖x‖D⊗maxC∗(F) = ‖(IdD ⊗ w)(x)‖D⊗maxC∗(F∞). (3.5)

In particular, E ⊂ C∗(F) is completely isometric to w(E) ⊂ C∗(F∞).
Proof For any x ∈ C∗(F) there is clearly a countable subgroup �x ⊂ F such
that

x ∈ span[UF(t) | t ∈ �x].

By the separability of E, we can find a countable subgroup � such that
E ⊂ span[UF(t) | t ∈ �]. Since any element of t ∈ � can be written using
only finitely many “letters” in {gi | i ∈ I }, we may assume that � is the
free subgroup generated by (gi)i∈I ′ for some countable subset I ′ ⊂ I . Then,
identifying span[UF(t) | t ∈ �] with C∗(�), Proposition 3.5 yields a mapping
T = JP :C∗(F) → C∗(F) with the required factorization through C∗(�) =
C∗(FI ′) that is the identity when restricted to E. If I ′ is infinite the proof is
complete: since C∗(FI ′) = C∗(F∞) we may take TE = T .

Otherwise, we note that FI ′ ⊂F∞ as a subgroup and hence by Propo-

sition 3.5 again we have a factorization of the same type C∗(FI ′)
J ′−→

C∗(F∞)
P ′−→C∗(FI ′) from which it is easy to conclude.

Note

‖x‖D⊗maxC∗(F) = ‖(IdD ⊗ TE)(x)‖D⊗maxC∗(F) = ‖(IdD ⊗ vw)(x)‖D⊗maxC∗(F).

By Corollary 4.18 since v,w are c.p. contractions we have

‖x‖D⊗maxC∗(F) ≤ ‖(IdD ⊗ w)(x)‖D⊗maxC∗(F∞) and

‖(IdD ⊗ w)(x)‖D⊗maxC∗(F∞) ≤ ‖x‖D⊗maxC∗(F),

from which (3.5) follows.

Let F be a free group with generators (gi)i∈I . We start with a basic property
of the span of the free generators in C∗(F).
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68 C∗-algebras of discrete groups

Lemma 3.9 Let F be a free group with generators (gi)i∈I . Let Ui = UF(gi) ∈
C∗(F). Let E = span[(Ui)i∈I,1] ⊂ C∗(F) and EI = span[(Ui)i∈I ] ⊂ C∗(F).
Then for any linear map u :E→ B(H) and any v :EI → B(H) we have

‖u‖cb = ‖u‖ = max{supi∈I ‖u(Ui)‖,‖u(1)‖} and

‖v‖cb = ‖v‖ = max{supi∈I ‖v(Ui)‖}.
(3.6)

Proof It clearly suffices to show that max{supi∈I ‖u(Ui)‖,‖u(1)‖}≤ 1 implies
‖u‖cb ≤ 1. When u(1) = 1 and all u(Ui) are unitaries this is easy:
indeed there is a (unique) group representation σ : F → B(H) such that
σ(gi) = u(Ui) and the associated linear extension uσ :C∗(F) → B(H) is a
∗-homomorphism automatically satisfying ‖uσ‖cb = 1, and hence ‖u‖cb = 1.
This same argument works if we merely assume that u(1) is unitary. Indeed,
we may replace u by x �→ u(1)−1u, which takes us back to the previous easy
case. Since the general case is easy to reduce to that of a finite set, we assume
that I is finite. Then the Russo–Dye Theorem A.18 shows us that any u such
that max{supi∈I ‖u(Ui)‖,‖u(1)‖} ≤ 1 lies in the closed convex hull of u’s
for which u(1) and all the u(Ui)s are unitaries, and hence ‖u‖cb ≤ 1 in that
case also.

The first part of the next result is based on the classical observation that
a unitary representation π : F → B(H) is entirely determined by its values
ui = π(gi) on the generators, and if we let π run over all possible unitary
representations, then we obtain all possible families (ui) of unitary operators.
The second part is also well known.

Lemma 3.10 Let A ⊂ B(H) be a C∗-algebra. Let F be a free group with
generators (gi)i∈I . Let Ui = UF(gi) ∈ C∗(F). Let (xi)i∈I be a family in A
with only finitely many nonzero terms. Consider the linear map T : �∞(I )→ A

defined by T ((αi)i∈I ) =
∑
i∈I αixi . Then we have∥∥∥∑

i∈I Ui ⊗ xi
∥∥∥
C∗(F)⊗minA

= ‖T ‖cb = sup
{∥∥∥∑ ui ⊗ xi

∥∥∥
min

}
(3.7)

where the sup runs over all possible Hilbert spaces K and all families (ui) of
unitaries onK . Actually, the latter supremum remains the same if we restrict it
to finite-dimensional Hilbert spacesK . Moreover, in the case whenA = B(H)
with dim(H) = ∞, we have∥∥∥∑

i∈I Ui ⊗ xi
∥∥∥
C∗(F)⊗minB(H)

= inf

{∥∥∥∑ yiy
∗
i

∥∥∥1/2 ∥∥∥∑ z∗i zi
∥∥∥1/2

}
(3.8)

where the infimum, which runs over all possible factorizations xi = yizi with
yi,zi in B(H), is actually attained.

Moreover, all this remains true if we enlarge the family (Ui)i∈I by including
the unit element of C∗(F).
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3.2 Full C∗-algebras for free groups 69

Proof It is easy to check going back to the definitions that on one hand∥∥∥∑Ui ⊗ xi
∥∥∥

min
= sup

{∥∥∥∑ ui ⊗ xi
∥∥∥

min

}
,

where the sup runs over all possible families of unitaries (ui), and on the other
hand that

‖T ‖cb = sup
{∥∥∥∑ ti ⊗ xi

∥∥∥
min

}
,

where the sup runs over all possible families of contractions (ti). By the Russo–
Dye Theorem A.18, any contraction is a norm limit of convex combinations
of unitaries, so (3.7) follows by convexity. Actually, the preceding sup
obviously remains unchanged if we let it run only over all possible families
of contractions (ti) on a finite-dimensional Hilbert space. Thus it remains
unchanged when restricted to families of finite-dimensional unitaries (ui).

Now assume ‖T ‖cb = 1. By the factorization of c.b. maps we can write
T (α) = V ∗π(α)W where π : �∞(I ) → B(Ĥ ) is a representation and where
V,W are inB(H,Ĥ )with ‖V ‖ ‖W‖ = ‖T ‖cb. Since we assume dim(H) = ∞
and may assume I finite (because i �→ xi is finitely supported), by Remark
1.51 we may as well take Ĥ = H . Let (ei)i∈I be the canonical basis of �∞(I ),
we set

yi = V ∗π(ei) and zi = π(ei)W .

It is then easy to check
∥∥∑ yiy

∗
i

∥∥1/2 ∥∥∑ z∗i zi
∥∥1/2 ≤ ‖V ‖ ‖W‖ = ‖T ‖cb.

Thus we obtain one direction of (3.8). The converse follows from (2.2) (easy
consequence of Cauchy–Schwarz) applied to ai = Ui ⊗ yi and bi = 1 ⊗ zi .
Finally, the last assertion follows from the forthcoming Remark 3.12.

Remark 3.11 (Russo–Dye) The Russo–Dye Theorem A.18 shows that the sup
of any continuous convex function on the unit ball of a unital C∗-algebra
coincides with its sup over all its unitary elements.

Remark 3.12 Let {0} be a singleton disjoint from the set I and let İ = {0} ∪ I .
Then for any finitely supported family {xj | j ∈ İ } in B(H) (H arbitrary) we
have ∥∥∥I ⊗ x0 +

∑
i∈I Ui ⊗ xi

∥∥∥
min
= sup

{∥∥∥∑
j∈İ uj ⊗ xj

∥∥∥
min

}
(3.9)

where the supremum runs over all possible families (uj )j∈İ of unitaries.
Indeed, since∥∥∥∑

j∈İ uj ⊗ xj
∥∥∥

min
=

∥∥∥I ⊗ x0 +
∑

i∈I u
−1
0 ui ⊗ xi

∥∥∥
min
,
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70 C∗-algebras of discrete groups

the right-hand side of (3.9) is the same as the supremum of∥∥∥I ⊗ x0 +
∑

i∈I ui ⊗ xi
∥∥∥

min
(3.10)

over all possible families of unitaries (ui)i∈I . Therefore (recalling U(gi)=Ui)
we find∥∥∥I ⊗ x0 +

∑
i∈I Ui ⊗ xi

∥∥∥
min
= sup

{∥∥∥I ⊗ x0

+
∑

i∈I ui ⊗ xi
∥∥∥

min

∣∣∣ ui unitary
}
,

where the sup runs over all Hilbert spaces H and all families (ui) of unitaries
in B(H).

Moreover, by the same argument we used for Lemma 3.10, we can restrict
to finite-dimensional H’s:∥∥∥I ⊗ x0 +

∑
i∈I Ui ⊗ xi

∥∥∥
min
= supn≥1

{∥∥∥I ⊗ x0

+
∑

i∈I ui ⊗ xi
∥∥∥

min

∣∣∣ ui n× n unitaries
}

(3.11)

so that the supremum on the right-hand side is restricted to families of finite-
dimensional unitaries. Indeed, by Russo–Dye (Remark 3.11) the suprema of
(3.10) taken over ui’s in the unit ball of B(H) and over unitary ui’s are the
same. Replacing ui by PEui |E with E ⊂ H, dim(E) < ∞ shows that the
supremum of (3.10) is the same if we restrict it to ui’s in the unit ball of
B(E) with dim(E) < ∞. Then, invoking Russo–Dye (Remark 3.11) again,
we obtain (3.11).

Remark 3.13 Using (3.11) when I is a singleton and the fact that a single
unitary generates a commutative unital C∗-algebra, it is easy to check that
‖T ‖ = ‖T ‖cb for any T : �2∞ → B(H).

Remark 3.14 (�1(I ) as operator space) In the particular case A = C, (3.7)
becomes ∥∥∥∑

i∈I Uixi
∥∥∥
C∗(F)

=
∑

i∈I |xi |, (3.12)

which shows that EI = span[Ui,i ∈ I ] � �1(I ) isometrically.
Note that (3.8) generalizes the classical fact that B�1 = B�2B�2 for the

pointwise product.
More generally, Lemma 3.9 shows that the dual operator space E∗I can

be identified with the von Neumann algebra �∞(I ) equipped with its natural
operator space structure as a C∗-algebra, i.e. the one such that we have
Mn(�∞(I )) = �∞(I ;Mn) isometrically for all n. Lemma 3.10 describes the
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3.3 Reduced group C∗-algebras: Fell’s absorption principle 71

dual operator space of the operator space (actually a C∗-subalgebra) c0(I ) ⊂
�∞(I ) that is the closed span of the canonical basis in �∞(I ). We obtain
c0(I )

∗ = EI completely isometrically, which is the operator space analogue of
the isometric identity c0(I )∗ = �1(I ). Indeed, together with Lemma 3.9, (3.7)
tells us that CB(c0(I ),Mn) = Mn(EI ) isometrically for all n.

3.3 Reduced group C∗-algebras: Fell’s absorption principle

We denote by C∗λ(G) (resp. C∗ρ(G)) the so-called reduced C∗-algebra gener-
ated in B(�2(G)) by λG (resp. ρG). Equivalently,C∗λ(G) = span{λG(t)| t ∈G}
and C∗ρ(G) = span{ρG(t) | t ∈ G}. Note that λG(t) and ρG(s) commute for
all t,s in G.

We denote λG and ρG simply by λ and ρ (and UG by U ) when there is no
ambiguity.

The following very useful result is known as Fell’s “absorption principle.”

Proposition 3.15 For any unitary representation π :G→ B(H), we have

λG ⊗ π � λG ⊗ I (unitary equivalence).

Here I stands for the trivial representation of G in B(H) (i.e. I (t) = IdH
∀t ∈ G). In particular, for any finitely supported functions a :G → C and
b :G→ B(�2), we have∥∥∥∑ a(t)λG(t)⊗ π(t)

∥∥∥
C∗λ(G)⊗minB(H)

=
∥∥∥∑ a(t)λG(t)

∥∥∥ , (3.13)∥∥∥∑b(t)⊗λG(t)⊗π(t)
∥∥∥
B(�2)⊗minC

∗
λ(G)⊗minB(H)

=
∥∥∥∑b(t)⊗λG(t)

∥∥∥
B(�2)⊗minC

∗
λ(G)

.

Proof Note that λG ⊗ π acts on the Hilbert space K = �2(G) ⊗2 H �
�2(G;H). Let V :K → K be the unitary operator taking x = (x(t))t∈G to
(π(t−1)x(t))t∈G. A simple calculation shows that

V −1(λG(t)⊗ IdH )V = λG(t)⊗ π(t).

We will often use the following immediate consequence:

Corollary 3.16 For any unitary representation π :G→ B(H), the linear map

σπ : span[λG(G)] → B(�2(G)⊗2 H) defined by

σπ(λG(g)) = λG(t)⊗ π(t) (∀t ∈ G)
extends to a (contractive) ∗-homomorphism from C∗λ(G) to B(�2(G)⊗2 H).
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72 C∗-algebras of discrete groups

Remark 3.17 Let F be a free group with free generators (gj ). Then for any
finitely supported sequence of scalars (aj ), for any H and for any family (uj )
of unitary operators in B(H) we have∥∥∥∑ ajλ(gj )⊗ uj

∥∥∥
min
=

∥∥∥∑ ajλ(gj )

∥∥∥ .

Indeed, this follows from (3.13) applied to the function a defined by a(gj ) =
aj and = 0 elsewhere, and to the unique unitary representation π of F such
that π(gj ) = uj .
Proposition 3.18 Let G be a discrete group and let � ⊂ G be a subgroup.
Then the correspondence λ�(t) → λG(t), (t ∈ �) extends to an isometric
(C∗-algebraic) embedding Jλ : C∗λ(�) → C∗λ(G). Moreover there is a
completely contractive and completely positive projection Pλ from C∗λ(G) onto
the range of this embedding, taking λG(t) to 0 for any t �∈ �.

Proof LetQ = G/� and letG = ⋃
q∈Q

�gq be the partition ofG into (disjoint)

right cosets. For convenience, let us denote by 1 the equivalence class of the
unit element of G. Since G � � ×Q, we have an identification

�2(G) � �2(�)⊗2 �2(Q)

such that

∀ t ∈ � λG(t) = λ�(t)⊗ I .

This shows of course that Jλ is an isometric embedding. Moreover, we have a
natural (linear) isometric embedding V : �2(�) → �2(G) (note that the range
of V coincides with �2(�) ⊗ δ1 in the preceding identification), such that
λ�(t) = V ∗λG(t)V for all t ∈ �. Let u(x) = V ∗xV . Clearly for any t ∈ G
we have u(λG(t)) = λ�(t) if t ∈ � and u(λG(t)) = 0 if t /∈ �. Therefore
Pλ = Jλu is the announced completely positive and completely contractive
projection from C∗λ(G) onto JλC∗λ(�).

As an immediate application, we state for further use the following particu-
lar case:

Corollary 3.19 (The diagonal subgroup in G × G) Let � = {(g,g) | g ∈
G} ⊂ G×G be the diagonal subgroup. There are:

– a complete isometry J� :C∗λ(G)→ C∗λ(G)⊗min C
∗
λ(G) such that

J�(λG(t)) = λG(t)⊗ λG(t), and

– a c.p. mapQ� :C∗λ(G)⊗min C
∗
λ(G)→ C∗λ(G) with ‖Q�‖ = 1 such that

Q�(λG(t)⊗ λG(s)) = 0 whenever s �= t andQ�(λG(t)⊗ λG(t)) = λG(t).
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Proof We apply Proposition 3.18 to the subgroup� and we use the identifica-
tion

C∗λ(G)⊗min C
∗
λ(G) � C∗λ(G×G)

which follows easily from the definition of both sides (see §4.3 for more such
identifications).

The projection Pλ in the preceding proposition is an example of mapping
associated to a “multiplier.”

3.4 Multipliers

Let ϕ :G → C be a (bounded) function and let π be a unitary represen-
tation of G. Let Mϕ be the linear mapping defined on the linear span of
{π(t) | t ∈ G} by

∀t ∈ G Mϕ(π(t)) = ϕ(t)π(t).

As anticipated in Proposition 3.3, we say that ϕ is a bounded (resp. c.b. rresp.
c.p.) multiplier on C∗π (G) if Mϕ extends to a bounded (resp. c.b. rresp. c.p.)
linear map on C∗π (G).

We will be mainly interested in the cases when π = λG or π = UG.
In the commutative case (or when G is amenable) the bounded or c.b.

multipliers of C∗λ(G) coincide with the linear combinations of positive definite
functions, and the latter, as we explain next, are the c.p. multipliers. However,
in general the situation is more complicated. The next statement characterizes
the c.b. case. We may even include B(H)-valued multipliers.

Theorem 3.20 ([35, 136]) Let G be a discrete group, H a Hilbert space. The
following properties of a function ϕ :G→ B(H) are equivalent:

(i) The linear mapping defined on span[λ(t) | t ∈ G] by

Mϕ(λ(t)) = λ(t)⊗ ϕ(t)

extends to a c.b. map
Mϕ :C∗λ(G)→ C∗λ(G)⊗min B(H) ⊂ B(�2(G)⊗2 H) with ‖Mϕ‖cb ≤ 1.

(ii) There is a Hilbert space Ĥ and bounded functions x :G→ B(H,Ĥ )

and y :G→ B(H,Ĥ ) with supt∈G ‖x(t)‖ ≤ 1 and sups∈G ‖y(s)‖ ≤ 1
such that

ϕ(s−1t) = y(s)∗x(t). ∀ s,t ∈ G
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Proof Assume (i). Then by Theorem 1.50 there are a Hilbert space Ĥ , a
representation π : C∗λ(G) → B(Ĥ ) and operators Vj : �2(G) ⊗2 H → Ĥ

(j = 1,2) with ‖V1‖‖V2‖ ≤ 1 such that

∀ θ ∈ G λ(θ)⊗ ϕ(θ) = Mϕ(λ(θ)) = V ∗2 π(λ(θ))V1. (3.14)

We will use this for θ = s−1t , in which case we have 〈δs−1,λ(θ)δt−1〉 = 1. We
define x(t) ∈ B(H,Ĥ ) and y(s) ∈ B(H,Ĥ ) by x(t)h = π(λ(t)) V1(δt−1 ⊗ h)
and y(s)k = π(λ(s))V2(δs−1 ⊗ k). Note that when θ = s−1t

〈δs−1 ⊗ k,(λ(θ)⊗ ϕ(θ))(δt−1 ⊗ h)〉 = 〈k,ϕ(s−1t)h〉,
and hence (3.14) implies

〈k,ϕ(s−1t)h〉 = 〈k,y(s)∗x(t)h〉,
and we obtain (ii).

Conversely assume (ii). Define π :C∗λ(G) → B(�2(G) ⊗2 Ĥ ) by π(x) =
x ⊗ IdĤ . Let

Vj : �2(G)⊗2 H → �2(G)⊗2 Ĥ

be defined by V1(δt ⊗ h) = δt ⊗ x(t)h and V2(δs ⊗ k) = δs ⊗ y(s)k. Note
that ‖V1‖ = supt∈G ‖x(t)‖ ≤ 1 and ‖V2‖ = sups∈G ‖y(s)‖ ≤ 1. Then for any
θ,t,s,h,k we have

〈δs ⊗ k,V ∗2 π(λ(θ))V1(δt ⊗ h)〉 = 〈δs,λ(θ)δt 〉〈k,y(s)∗x(t)h〉
= 〈δs ⊗ k,(λ(θ)⊗ ϕ(θ))(δt ⊗ h)〉,

equivalently V ∗2 π(λ(θ))V1 = Mϕ(λ(θ)), so the converse part of Theorem 1.50
yields (ii)⇒ (i).

In the particular case C = B(H) the preceding result yields:

Corollary 3.21 (Characterization of c.b. multipliers on C∗λ(G)) Consider a
complex-valued function ϕ :G→ C. Then ‖Mϕ :C∗λ(G)→ C∗λ(G)‖cb ≤ 1 if
and only if there are Hilbert space valued functions x,y with supt ‖x(t)‖ ≤ 1
and sups ‖y(s)‖ ≤ 1 such that

ϕ(s−1t) = 〈y(s),x(t)〉. ∀ s,t ∈ G
Remark 3.22 (On positive definiteness) A function ϕ :G → C is called
positive definite if for any n and any t1, . . . ,tn ∈ G the n×n-matrix [ϕ(t−1

i tj )]
is positive (semi)definite, i.e. we have

∀x ∈ Cn
∑
xixjϕ(t

−1
i tj ) ≥ 0.
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Equivalently

∀x ∈ C[G]
∑
x(s)x(t)ϕ(s−1t) ≥ 0.

Using the scalar product defined by the latter condition, we find, after passing
to the quotient and completing in the usual way, a Hilbert space Hϕ and a
mapping C[G] → Hϕ denoted by x �→ ẋ with dense range (so that ‖ẋ‖2

Hϕ
=∑

x(s)x(t)ϕ(s−1t) for all x ∈ C[G]) and a unitary representation πϕ of G
extending left translation on C[G]. Let δe ∈ C[G] denote the indicator function
of the unit element of G. We have

〈δ̇e,πϕ(g)δ̇e〉Hϕ = 〈δ̇e,δ̇g〉Hϕ = ϕ(g). (3.15)

Thus ϕ is a (diagonal) matrix coefficient of π .
Conversely, any ϕ of the form ϕ(g) = 〈ξ,π(g)ξ 〉 (with π unitary and ξ ∈

Hπ ) is positive definite.

Proposition 3.23 Let ϕ :G→ C. The following are equivalent:

(i) ϕ is a c.p. multiplier of C∗λ(G).
(ii) ϕ is positive definite.

Moreover, in that case we have ‖Mϕ‖ = ‖Mϕ‖cb = ϕ(e) where e is the unit
of G.

Proof Assume (i). Let t1, . . . ,tn ∈ G. Consider the matrix a defined by
aij = λG(ti)−1λG(tj ). Clearly a ∈ Mn(C∗λ(G))+. Then (IdMn ⊗ Mϕ)(a) =
[ϕ(t−1

i tj )aij] ∈ Mn(C
∗
λ(G))+. Therefore, for any x1, . . . ,xn ∈ �2(G) we

have
∑
ϕ(t−1
i tj )〈xi,aijxj 〉 ≥ 0. Choosing xj = λj δt−1

j
(λj ∈ C) we find

〈xi,aijxj 〉 = λiλj for all i,j , and we conclude that ϕ is positive definite.
Assume (ii). By (3.15) we have for any g ∈ G

Mϕ(λG(g)) = ϕ(g)λG(g) = V ∗([λG ⊗ πϕ](g))V

where V : �2(G)→ �2(G)⊗2 Hϕ is defined by V (h) = h⊗ δ̇e. By Corollary
3.16 we haveMϕ(·) = V ∗(σπ (·))V , and henceMϕ is c.p. onC∗λ(G). Moreover
Mϕ(1) = ϕ(e)1, so ‖Mϕ(1)‖ = ϕ(e).
Remark 3.24 The reader can easily check that the preceding statement remains
valid for B(H)-valued functions, in analogy with Theorem 3.20, for the natural
extension of positive definiteness, defined by requesting that [ϕ(t−1

i tj )] ∈
Mn(B(H))+ for all n. Such functions are sometimes called completely positive
definite.

In the preceding construction, we associated a linear mapping Mϕ to a
function ϕ. We now go conversely. We will associate to a c.b. mapping a
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multiplier. In other words, we will describe a linear projection from the set
of c.b. maps to the subspace formed by those associated to multipliers.

Proposition 3.25 (Haagerup) Let u :C∗λ(G) → C∗λ(G) be a c.b. map. Then
the function ϕu defined by (recall e is the unit of G)

ϕu(t) = 〈δt,u(λG(t))δe〉
is a c.b. multiplier on C∗λ(G) with ‖Mϕu‖cb ≤ ‖u‖cb. If u is c.p. then the
multiplier is also c.p.

If u has finite rank then ϕu ∈ �2(G).
Moreover, if u = Mϕ then ϕu = ϕ.

Proof We have

‖IdC∗λ(G) ⊗ u :C∗λ(G)⊗min C
∗
λ(G)→ C∗λ(G)⊗min C

∗
λ(G)‖ ≤ ‖u‖cb.

It is easy to see that C∗λ(G) ⊗min C
∗
λ(G) can be identified with C∗λ(G × G).

With this identification, we have, for the mappings J�,Q� in Corollary 3.19,
for any t ∈ G

ϕu(t)λG(t) = Q�[IdC∗λ(G) ⊗ u]J�(λG(t)).

In other words, Mϕu = Q�[IdC∗λ(G) ⊗ u]J�. All the assertions are now evi-
dent. We just note that if u has rank 1, say u(x) = f (x)y with f ∈ C∗λ(G)∗
and y ∈ C∗λ(G), then ϕu(t) = f (λG(t))y(t), and t �→ f (λG(t)) is bounded
while y(t) = 〈δt,yδe〉 is in �2(G); this shows ϕu ∈ �2(G).

Remark 3.26 With the notation of the next section we have

ϕu(t) = τG(λG(t)∗u(λG(t))),
while with that of §11.2 it becomes ϕu(t) = 〈λG(t),u(λG(t))〉L2(τG).

The preceding two statements combined show that if u is decomposable as
a linear combination of c.p. maps onC∗λ(G) (as in Chapter 6) then ϕu is a linear
combination of positive definite functions. In particular:

Corollary 3.27 Let ϕ :G→ C. The associated mappingMϕ is decomposable
on C∗λ(G) if and only if ϕ is a linear combination of positive definite functions.

We will now complete the description started in Proposition 3.3 of multipli-
ers on the full algebra C∗(G). In this case the picture is simpler.

Proposition 3.28 Let ϕ :G→ C. The following are equivalent:

(i) ϕ is a bounded multiplier on C∗(G).
(ii) ϕ is a linear combination of positive definite functions.

(iii) ϕ is c.b. multiplier on C∗(G).

Moreover, ϕ is positive definite if and only ifMϕ is c.p. on C∗(G).
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Proof We already know (i)⇔ (iii) from Proposition 3.3. Assume (i). Then by
Proposition 3.3 ϕ satisfies (3.3) for some π,η,ξ . By the polarization formula,
we can rewrite ϕ as a linear combination of four functions of the form t �→
〈ξ,π(t)ξ 〉 with η = ξ . But the latter are clearly positive definite. This shows
(i) ⇒ (ii). Assume ϕ positive definite. By (3.15) and by the case ξ = η in
Proposition 3.3Mϕ is c.p. and hence a fortiori c.b. Now (ii)⇒ (iii) is clear.

3.5 Group von Neumann Algebra

We denote by MG ⊂ B(�2(G)) the von Neumann algebra generated by λG.
This means thatMG = λG(G)′′. EquivalentlyMG is the weak* closure of the
linear span of λG(G), and also the weak* closure of Cλ(G). See §A.16 for
some background on von Neumann algebras (in particular on the bicommutant
Theorem A.46).

Let f ∈ �2(G). Note that a priori, the operator of left convolution by f ,
Tf : x �→ f ∗ x is only bounded from �2(G) to �∞(G). An operator T ∈
B(�2(G)) belongs to MG if and only if there is a (uniquely determined by
f = Tf (δe)) function f ∈ �2(G) such that x �→ f ∗ x defines a bounded
operator on �2(G) such that T = Tf .

We have

M ′
G = λG(G)′ = ρG(G)′′ and ρG(G)

′ = MG.

Let � ⊂ G be a subgroup. Since the embedding Jλ :C∗λ(�) → C∗λ(G) in
Proposition 3.18 is clearly bicontinuous with respect to the weak* topologies
of B(�2(�)) and of B(�2(G)), it extends to an embedding

M� ⊂ MG,
with which we may identifyM� to a von Neumann subalgebra ofMG.

Let {δt | t ∈G} denote the canonical basis of �2(G). There is a distinguished
tracial state τG defined onMG by

τG(T ) = 〈δe,T (δe)〉.
Of course this makes sense on the whole of B(�2(G)), but it is tracial only if
we restrict toMG:

∀S,T ∈ MG τG(TS) = τG(ST).

Clearly τG is “normal” (meaning continuous for the weak* topology of
B(�2(G)) ) and faithful (meaning τG(T ∗T ) = 0 ⇒ T = 0) and τG(1) = 1.
Thus (MG,τG) is the basic example of a “tracial (or noncommutative)

https://doi.org/10.1017/9781108782081.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108782081.004


78 C∗-algebras of discrete groups

probability space” that we will consider in Chapter 12 when we discuss the
Connes embedding problem.

Remark 3.29 Let ϕ be as in Corollary 3.21. Let �(s,t) = ϕ(s−1t). Then
the Schur multiplier u� :B(�2(G)) → B(�2(G)) associated to � according
to (iii) in Theorem 1.57 is completely contractive on B(�2(G)) if and only if
ϕ satisfies the equivalent conditions in Corollary 3.21. Moreover, the latter
Schur multiplier is weak* continuous, meaning continuous from B(�2(G))

to B(�2(G)) when both spaces are equipped with the weak* topology.
Therefore, if we restrict to MG we obtain a weak* continuous (also called
normal) complete contraction from MG to MG that extends the multiplier
Mϕ : C∗λ(G) → C∗λ(G). We will call the resulting maps weak* continuous
multipliers onMG.

A similar argument, based on Proposition 3.23, shows that ϕ is positive
definite if and only ifMϕ extends to a weak* continuous c.p. multiplier onMG.

Lastly, the conclusion of Proposition 3.25 holds with the same proof for any
c.b. map u :MG→ MG. The resulting multiplierMϕu is weak* continuous on
MG, with ‖Mϕu‖cb ≤ ‖u‖cb. Moreover, if u is c.p. onMG, so isMϕu .

3.6 Amenable groups

We review some basic facts on amenability.
A discrete group G is called amenable if it admits an invariant mean, i.e. a

functional ϕ in �∞(G)∗+ with ϕ(1) = 1 such that ϕ(δt ∗ f ) = ϕ(f ) for any f
in �∞(G) and any t in G.

Theorem 3.30 The following are equivalent:

(i) G is amenable.
(i)’ There is a net (hi) in the unit sphere of �2(G) that is approximately

translation invariant, i.e. such that ‖λG(t)hi − hi‖2 → 0 for any t ∈ G.
(ii) C∗(G) = C∗λ(G).

(iii) For any finitely supported function f :G→ C we have∣∣∑ f (t)
∣∣ ≤ ∥∥∑ f (t)λG(t)

∥∥.
(iii)’ For any finite subset E ⊂ G, we have |E| = ∥∥∑

t∈E λG(t)
∥∥ .

(iv) There is a generating subset S ⊂ G with e ∈ S such that, for any finite
subset E ⊂ S, we have |E| = ∥∥∑

t∈E λG(t)
∥∥ .

(v) MG is injective.

Proof Assume (i). Let ϕ be the invariant mean. Note that ϕ is in the unit ball
of �1(G)

∗∗+ . Therefore, there is a net (ϕi) in the unit ball of �1(G)+ tending in
the sense of σ(�1(G)

∗∗,�1(G)
∗) to ϕ. Let 1 be the constant function equal to 1
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on G. Since ϕi(1) → 1, we may assume after renormalization that ϕi(1) =
‖ϕi‖�1(G) = 1. Fix t ∈ G. Since δt ∗ ϕ = ϕ, we have δt ∗ ϕi − ϕi → 0 when
i →∞. But since δt ∗ ϕi − ϕi lies in �1(G) this means that limi→∞(δt ∗ ϕi −
ϕi) = 0 for the weak topology of �1(G). By (Mazur’s) Theorem A.9, passing to
convex combinations of elements of a subnet (here we leave some details to the
reader, see Remark A.10) we may assume that limi→∞ ‖δt ∗ ϕi − ϕi‖�1(G) =
0. A priori, this was obtained for each fixed t , but, by suitably refining the
argument (here again we skip some details), we can obtain the same for each
finite subset T ⊂ G. Let hi = √ϕi . We claim that ‖δt ∗ hi − hi‖2 → 0 for
any t ∈ T . This claim clearly implies (i)’. To check the claim, using |x1/2 −
y1/2| ≤ |x − y|1/2 for any x,y ∈ R+, we observe that |δt ∗ hi(s) − hi(s)| ≤
|δt ∗ϕi(s)−ϕi(s)|1/2 and hence ‖δt ∗hi−hi‖2 → 0 for any t ∈ T . This shows
(i)⇒ (i)’.

Assume (i)’. Let x = ∑
x(t)λG(t) ∈ span[λG(t) | t ∈ G]. Let π :G →

B(H) be any unitary representation. By the absorption principle (3.13)
‖∑ x(t)λG(t)‖ = ‖∑ x(t)π(t) ⊗ λG(t)‖. We claim that ‖∑ x(t)π(t) ⊗
λG(t)‖ ≥ ‖

∑
x(t)π(t)‖. Indeed, let fi be the state on B(�2(G)) defined by

fi(T ) = 〈hi,T hi〉. Then we have clearly∥∥∥[Id ⊗ fi]
(∑

x(t)π(t)⊗ λG(t)
)∥∥∥ ≤ ∥∥∥∑ x(t)π(t)⊗ λG(t)

∥∥∥
but

[Id ⊗ fi]
(∑

x(t)π(t)⊗ λG(t)
)
=

∑
x(t)π(t)fi(λG(t))→

∑
x(t)π(t),

where at the last step we use fi(λG(t)) = 〈hi,δt ∗ hi〉 → 1. This implies the
claim and hence

∥∥∑ x(t)λG(t)
∥∥ ≥ ∥∥∑ x(t)π(t)

∥∥. Taking the sup over the
πs we obtain (by “maximality” of UG)

∥∥∑ x(t)λG(t)
∥∥ = ∥∥∑ x(t)UG(t)

∥∥.
This shows (i)’⇒ (ii).

Assume (ii). Then (iii) holds by (3.2), and (iii)⇒ (iii)’⇒ (iv) are trivial.
Assume (iv). We will show (i)’. FixE as in (iv). LetME = |E|−1∑

t∈EλG(t)
so that ‖ME‖ = 1. There is a net (xi) in the unit sphere of �2(G) such that
‖ME(xi)‖ → 1. By the uniform convexity of �2(G) (see §A.3), this implies
δt ∗ xi − xi → 0 in �2(G) for any t ∈ E. Rearranging the net (here again we
leave the details to the reader) we find a net (hi) in the unit sphere of �2(G)

such that the same holds for any t ∈ S, and since S generates G, still the same
for any t ∈ G. This shows (iv)⇒ (i)’.

Assume (i)’. We will show (i). Let ϕ ∈ �∞(G)∗ be defined by

∀x ∈ �∞(G) ϕ(x) = limU
∑
x(t)|hi(t)|2,

where U is an ultrafilter refining the net (see Remark A.6). LetDx ∈ B(�2(G))

be the diagonal operator associated to x. Note that ϕ(x) = limU 〈hi,Dxhi〉,
and also
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λG(t)DxλG(t)
−1 = Dδt∗x . (3.16)

Therefore

ϕ(δt ∗ x) = limU 〈hi,Dδt∗xhi〉 = limU 〈λG(t)hi,DxλG(t)hi〉
= limU 〈hi,Dxhi〉 = ϕ(x).

Thus ϕ is an invariant mean, so (i) holds. This proves the equivalence of
(i)–(iv), (i)’, and (iii)’. It remains to show that (i) and (v) are equivalent.

Assume (i). We will show that there is a c.p. projection P :B(�2(G)) →
MG with ‖P ‖ = 1. Let T ∈ B(�2(G)). We define �T :G → B(�2(G))

by �T (g) = ρG(g)TρG(g)
−1. We will define P(T ) as the “integral” with

respect to ϕ of the function �T , but some care is needed since ϕ is not really
a measure on G. Let [T (s,t)] be the “matrix” associated to T defined by
T (s,t) = 〈δs,T δt 〉 (s,t ∈ G). Observe that g �→ �T (g)(s,t) is in �∞(G).
Then we set

P(T )(s,t) = ϕ(�T (·)(s,t)).
This defines a matrix and it is easy to see that the associated linear operator on
span[δt | t ∈ G] extends to a bounded one (still denoted by P(T )) on �2(G)

such that ‖P(T )‖ ≤ ‖T ‖. We have �T (g)(s,t) = T (sg,tg) and hence, by the
left invariance of ϕ, P(T )(s,t) = P(T )(st−1,e). This shows that P(T ) acts
on �2(G) as a left convolution bounded operator, in other words P(T ) ∈ MG.
Moreover, if T ∈ MG then T commutes with ρG so we have P(T ) = T .
This proves that P :B(�2(G)) → MG is a contractive projection. A simple
verification left to the reader shows that it is c.p. (but this is automatic by
Tomiyama’s Theorem 1.45). This shows (i)⇒ (v).

Assume (v). Let P : B(�2(G)) → MG be a projection with ‖P ‖ = 1.
Invoking Theorem 1.45 again, we know that P is a c.p. conditional expectation.
We define

∀x ∈ �∞(G) ϕ(x) = τG(P (Dx)) = 〈δe,P (Dx)δe〉.
Clearly ϕ ∈ �∞(G)∗+, ϕ(1) = 1 and by (3.16), (1.28) and the trace property
of τG

∀t ∈ G ϕ(δt ∗ x) = τG[P(λG(t)DxλG(t)
−1)] = τG[λG(t)P (Dx)λG(t)

−1]

= τG[P(Dx)] = ϕ(x).
Thus ϕ is an invariant mean on G. This shows (v)⇒ (i).

Remark 3.31 If the generating set S is finite, the condition (iv) obviously
reduces (by the triangle inequality) to

|S| =
∥∥∥∑

t∈S λG(t)
∥∥∥ .
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Remark 3.32 The net (hi) in (i)’ is sometimes called asymptotically left
invariant. By density (and after renormalization) when it exists, it can always
be found in the group algebra C[G].

Remark 3.33 (On Følner sequences) It is well known (see e.g. [194]) that for
any amenable discrete group G the net (hi) appearing in (i)’ in Theorem 3.30
can be chosen of the form hi = 1Bi |Bi |−1/2 for some family (Bi) of finite
subsets of G. For (hi) of the latter form, (i)’ boils down to the assertion that
the symmetric differences (tBi)�Bi satisfy

∀t ∈ G |tBi�Bi ||Bi |−1 → 0.

A net of finite subsets (Bi) satisfying this is called a Følner net, and a
Følner sequence when the index set is N. Thus a (resp. countable) group G
is amenable if and only if it admits a Følner net (resp. sequence). For instance,
for G = Zd (1 ≤ d <∞), the sequence Bn = [−n,n]d is a Følner sequence.

This gives us the following special property of the reduced C∗-algebra,
called the CPAP in the sequel (see Definition 4.8):

Lemma 3.34 If G is amenable, there is a net of finite rank maps ui ∈
CP(C∗λ(G),C

∗
λ(G)) (resp. ui ∈ CP(C∗(G),C∗(G))) with ‖ui‖ = 1 that tends

pointwise to the identity on C∗λ(G) (resp. C∗(G)). Moreover, in both cases the
ui’s are multiplier operators.

Proof By Remark 3.32, there is a net (hi) in C[G] in the unit sphere of �2(G)

such that ‖λG(t)hi − hi‖2 → 0 for any t in G. Let h∗i (t) = hi(t−1) (t ∈ G).
A simple verification show that ϕi = h∗i ∗ hi is a positive definite function on
G such that ϕi(e) = ‖hi‖2

2 = 1. Moreover, ϕi is finitely supported and tends
pointwise to the constant function 1 on G. Let ui be the associated multiplier
operator on C∗λ(G) (resp. C∗(G)). Its rank being equal to the cardinality of
the support of ϕi is finite. By Proposition 3.23 (resp. Proposition 3.28), ui is
c.p. and since ui(1) = ϕi(e)1 = 1, we have ‖ui‖ = 1 by (1.20). For any
x = ∑

x(t)λG(t) (resp. x = ∑
x(t)UG(t)) with x finitely supported, ui(x)

obviously tends to x in the norm of C∗λ(G) (resp. C∗(G)). Since such finite
sums are dense in C∗λ(G) (resp. C∗(G)) and supi ‖ui‖ <∞, we conclude that
ui(x)→ x for any x ∈ C∗λ(G) (resp. C∗(G)).

Remark 3.35 (Examples of amenable groups) All commutative groups are
amenable. If G is commutative (and discrete), its dual Ĝ is defined as
the group formed of all homomorphisms γ : G → T, which is compact
for the pointwise convergence topology. For any finitely supported function
f :G→ C we define its “Fourier transform” by f̂ (γ ) =∑

f (g)γ (g). (This is
the usual convention but we could remove the bar from γ (g) if we wished). As
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is entirely classical f �→ f̂ extends to an isometric isomorphism from �2(G) to
L2(Ĝ,m), where m is the normalized Haar measure on Ĝ, and convolution of
two functions on G is transformed into the pointwise product of their Fourier
transforms. Using the latter fact one shows that the correspondence f �→ f̂

extends to an isometric isomorphism from C∗λ(G) to the C∗-algebra C(Ĝ) of
all continuous functions on Ĝ. Thus in the commutative case we have

C∗(G) = C∗λ(G) � C(Ĝ). (3.17)

All finitely generated groups of polynomial growth are amenable. The
growth is defined using the length. If G is generated by a symmetric set S
the smallest number of elements of S needed to write an element g ∈ G (as a
word in letters in S) is denoted by �S(g). The growth function is the function
�(R) = |{g ∈ G | �S(g) ≤ R}. The group G is called of polynomial growth
if �(R) grows less than a power of R when R →∞. For instance G = Zn is
of polynomial growth (but Fn is not whenever n ≥ 2).

Remark 3.36 By Kesten’s famous work on the spectral radius of random walks
on the free group Fn with n generators, the set S1 ⊂ Fn formed of the 2n
elements of length 1 (i.e. these are either generators or their inverses), satisfies∥∥∥∑

s∈S1
λFn(s)

∥∥∥ = 2
√

2n− 1. (3.18)

Kesten also observed that it is not difficult to deduce from this that for any
group G and any symmetric subset S ⊂ G with |S| = k we have∥∥∥∑

s∈S λG(s)
∥∥∥ ≥ 2

√
k − 1.

Akemann and Ostrand [2] proved that any S ⊂ S1 in Fn with |S| = k satisfies∥∥∥∑
s∈S λFn(s)

∥∥∥ = 2
√
k − 1. (3.19)

In particular ∥∥∥∑n

j=1
λFn(gj )

∥∥∥ = 2
√
n− 1. (3.20)

The subsets S of a discrete group for which (3.19) holds have been character-
ized by Franz Lehner in [166], as the translates of the union of a free set and
the unit.

Let S ⊂ Fn be the set formed of the unit and the n free generators, so that
|S| = n+ 1. Then a variant of what precedes is that for G = Fn∥∥∥∑

s∈S λG(s)
∥∥∥ = 2

√
n. (3.21)

When n ≥ 2, this is< n+ 1, and hence (iii) or (iv) in Theorem 3.30 fails. This
shows that Fn is not amenable for n ≥ 2.
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Since amenability passes to subgroups (by Proposition 3.18 and (i)⇔
(iv) in Theorem 3.30), any group containing a copy of F2 as a subgroup is
nonamenable. The converse, whether nonamenable groups must contain F2,
remained a major open question for a long time but was disproved by A.
Olshanskii, see [126] for details. See Monod’s [178] for what seems to be
currently the simplest construction of nonamenable groups not containing F2

as a subgroup.

3.7 Operator space spanned by the free generators in C∗λ(Fn)

The next statement gives us a description up to complete isomorphism of the
span of the generators in C∗λ(Fn) (and also implicitly in C∗λ(F∞)). See [168]
for a more precise (completely isometric) description.

Theorem 3.37 Let (gj )1≤j≤n be the generators in Fn(n ≥ 1). Then for any
Hilbert space H and any aj ∈ B(H)(1 ≤ j ≤ n) we have

max

{∥∥∥∑ a∗j aj
∥∥∥1/2

,

∥∥∥∑ aja
∗
j

∥∥∥1/2
}
≤
∥∥∥∑ aj ⊗ λFn(gj )

∥∥∥
min

≤
∥∥∥∑ a∗j aj

∥∥∥1/2 +
∥∥∥∑ aja

∗
j

∥∥∥1/2
.

(3.22)

In particular for any αj ∈ C we have

(∑
|αj |2

)1/2 ≤
∥∥∥∑αjλFn(gj )

∥∥∥ ≤ 2
(∑

|αj |2
)1/2

.

Proof We will first prove the upper bound in (3.22). LetC+i ⊂ Fn (resp. C−i ⊂
Fn) be the subset formed by all the reduced words which start with gi (resp.
g−1
i ). Note: except for the empty word e, every element of G can be written

as a reduced word in the generators admitting a well-defined “first” and “last”
letter (where we read from left to right). Let P+i (resp. P−i ) be the orthogonal
projection on �2(Fn) with range span[δt | t ∈ C+i ] (resp. span[(δt | t ∈ C−i ]).
The 2n projections {P+i ,P−i | 1 ≤ i ≤ n} are mutually orthogonal. Then it is
easy to check that

λFn(gj ) = λFn(gj )P−j + λFn(gj )(1− P−j )
= λFn(gj )P−j + P+j λFn(gj )(1− P−j )
= λFn(gj )P−j + P+j λFn(gj )

https://doi.org/10.1017/9781108782081.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108782081.004


84 C∗-algebras of discrete groups

so that setting λFn(gj ) = xj + yj with xj = λFn(gj )P−j and yj = P+j λFn(gj )
we find∥∥∥∑ x∗j xj

∥∥∥ = ∥∥∥∑P−j
∥∥∥ ≤ 1 and

∥∥∥∑ yjy
∗
j

∥∥∥ = ∥∥∥∑P+j
∥∥∥ ≤ 1.

Therefore for any finite sequence (aj ) in B(H) we have by (1.11) (note aj ⊗
xj = (aj ⊗ 1)(1⊗ xj ) and similarly for aj ⊗ yj )∥∥∥∑ aj ⊗ λFn(gj )

∥∥∥ ≤ ∥∥∥∑ aj ⊗ xj
∥∥∥+ ∥∥∥∑ aj ⊗ yj

∥∥∥
≤
∥∥∥∑ aja

∗
j

∥∥∥1/2 +
∥∥∥∑ a∗j aj

∥∥∥1/2
.

The inverse inequality follows from a more general one valid for any discrete
group G: for any finitely supported function a :G→ B(H) we have

max

{∥∥∥∑ a(t)∗a(t)
∥∥∥1/2

,

∥∥∥∑ a(t)a(t)∗
∥∥∥1/2

}
≤
∥∥∥∑ a(t)⊗ λG(t)

∥∥∥
min

.

(3.23)

To check this, let T =∑
a(t)⊗ λG(t). For any h in BH we have T (h⊗ δe) =∑

a(t)h⊗ δt so that ‖T (h⊗ δe)‖ =
(∑

t ‖a(t)h‖2
)1/2

and hence∥∥∥∑ a(t)∗a(t)
∥∥∥1/2 = sup

h∈BH

(∑
‖a(t)h‖2

)1/2 ≤ ‖T ‖.

Similarly since T ∗ =∑
a(t−1)∗ ⊗ λG(t) we find∥∥∥∑ a(t)a(t)∗

∥∥∥1/2 ≤ ‖T ∗‖ = ‖T ‖
and we obtain (3.23). In the case G = Fn, (3.23) implies the left-hand side of
(3.22). The second inequality follows by taking aj = αj1.

Corollary 3.38 For any n,N ≥ 1 and any unitaries a ∈ Un, x1, . . . ,xn ∈ UN

we have ∥∥∥∑n

i,j=1
aijxi ⊗ λFn(gj )

∥∥∥ ≤ 2
√
n.

Proof Let aj =
∑
i aijxi . Since a is unitary a simple verification (using

(A.13)) shows that we have
∥∥∑ a∗j aj

∥∥1/2 ≤ ∥∥∑ x∗j xj
∥∥1/2 = √

n and∥∥∑ aja
∗
j

∥∥1/2 ≤ ∥∥∑ xjx
∗
j

∥∥1/2 = √n.

3.8 Free products of groups

Let (Gi)i∈I be a family of groups. The free product G = ∗i∈IGi is a group
containing each Gi as a subgroup and possessing the following universal
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property that characterizes it: for any group G′ and any family of homomor-
phisms fi :Gi → G′, there is a unique homomorphism f :G→ G′ extending
each fi .

When I = {1,2} we denote G1 ∗G2 the free product ∗i∈IGi .
When I = {1, . . . ,n} and G1 = · · · = Gn = Z it is easy to see that

G = ∗i∈IGi can be identified with Fn.
More generally, any free group F that is generated by a family of free

elements (gi)i∈I can be identified with the free product ∗i∈IGi relative to
Gi = Z for all i ∈ I . We denote that group by FI .

It is well known that any group G is a quotient of some free group.
Indeed, if G is generated by a family (ti)i∈I , let f :FI → G be the (unique)
homomorphism such that f (gi) = ti for all i ∈ I . Then f is onto G. Thus
G � FI / ker(f ). The analogous fact for C∗-algebras is the next statement.

Proposition 3.39 Any unital C∗-algebra A is a quotient of C∗(FI ) for some
set I . If A is separable (resp. is generated by n unitaries) then we can take
I = N (resp. I = {1, . . . ,n}).
Proof Let G be the unitary group of A. Let f : FI → G be a surjective
homomorphism. Let π : C∗(FI ) → A be the associated ∗-homomorphism,
as in Remark 3.1. By the Russo–Dye Theorem A.18, the range of π is dense in
A, but since it is closed (see §A.14), π must be surjective. Thus A is a quotient
of C∗(FI ). If A is generated as a C∗-algebra by a family of unitaries (ui)i∈I ,
we can replaceG in the preceding argument by the group generated by (ui)i∈I .
This settles the remaining assertions.

Remark 3.40 As we saw in Remark 3.36, F2 = Z ∗ Z is not amenable. More
generally it can be shown that Zn∗Zm is not amenable if n ≥ 2 andm ≥ 3, and
in fact contains a subgroup isomorphic to F∞. The group Z2 ∗ Z2 is a slightly
surprising exception, it is amenable because it happens to have polynomial
growth (an exercise left to the reader).

3.9 Notes and remarks

The main results of this section are by now well known, and sometimes for
general locally compact groups (for instance Proposition 3.5 is proved in
greater generality in [225]), but we choose to focus on the discrete ones.
Section 3.2 on free groups is just a reformulation of operator space duality
illustrated on the pair (�1,�∞). Lemmas 3.9 and 3.10 are elementary facts from
operator space theory (see [80, 208]). The classical reference that exploited
C∗-algebra theory in noncommutative harmonic analysis is Eymard’s thesis
[85]. The name of Fell is attached to the notions of weak containment
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and weak equivalence of group representations, which apparently led him
to the principle enunciated in Theorem 3.15. Concerning multipliers, those
considered in Theorem 3.20 are sometimes called Herz–Schur multipliers (in
honor of Carl Herz). The characterization in Theorem 3.20 and its Corollary
is due to Jolissaint [136], but the simple proof we give is due to Bożejko and
Fendler [35]. Our treatment is inspired by Haagerup’s unpublished (but widely
circulated) notes on multipliers, where in particular he proves Proposition
3.25. There are many known characterizations of amenability, the main one
going back to Kesten, with variants due to Hulanicki and many authors. We
refer the reader to [194] (or [199]) for details and references. Theorem 3.37
appears in [118]. In [168] Lehner gives an exact computation of the norm of∑
aj ⊗ λFn(gj ) when the coefficients aj are matricial or equivalently when

dim(H) <∞.
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