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A SIMPLE PROOF OF AN EXPANSION OF AN
ETA-QUOTIENT AS A LAMBERT SERIES

SHAUN COOPER

We give a simple proof of the identity

*— l - o "
9/r.

The proof uses only a few well-known properties of the cubic theta functions a(q),
b(q) and c(q). We show this identity implies the interesting definite integral

s: 11 (1 _ qn)6

1. INTRODUCTION

The purpose of this article is to give a direct proof of the following identity.

THEOREM 1 . 1 . Let q be a complex number satisfying \q\ < 1. Then

ft (1"q3")10
l_ l ( 1 _ 9 n ) 3 ( 1 _ g 9n)3

nqn

The summation is over all positive integers n excluding multiples of 9.

This result was discovered using symbolic computation by Borwein and Garvan [4],
and it was used to produce a ninth order iteration that converges to 1/TT. The proof of
Theorem 1.1 in [4] appeals to two entries in Ramanujan's Notebook [16, Chapter 20 Entry
l(iv) and Chapter 21 Entry 7(i)]. The proofs of these entries in Berndt's excellent book
[1] take several pages, and appeal to several earlier results in Ramanujan's Notebook.

Two proofs of Theorem 1.1 were given by Berndt, Chan, Liu and Yesilyurt [3].
The first is essentially the same as the one in [4]. The second proof in [3] uses less
sophisticated machinery, but is more than three pages long, and depends on another
entry in Ramanujan's Notebook [16, Chapter 20 Entry l(v)].
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Another proof of Theorem 1.1 of a completely different nature was obtained by

Farkas and Kra [9, p. 307]. Their proof uses meromorphic functions defined on Riemann

surfaces.

In view of the importance of Theorem 1.1, it is desirable to have as direct a proof as

possible. We give such a proof, which depends only on the well-known properties satisfied

by the cubic theta functions a(q), b(q) and c(q) given in Lemma 2.1 below.

We conclude by showing that Theorem 1.1 leads to an evaluation of a definite inte-

gral. Three similar integrals were given by Fine [10, pp. 86-91].

2. P R O O F

The three cubic theta functions are defined by

b(q) =

C(q) = V V
m n

where LI — exp(27ri/3) and q = e~2nt,Re(t) > 0. The summation indices m and n range
over all integer values. The following are some well known properties of the cubic theta
functions.

LEMMA 2 . 1 .

(2.2) a(q)3=b(q)3+c(q)3,

(2.4) ^

(2.5) a(q)=a(q3)+2c(q%

(2.6) b(q)=a(q3)-c(q3),

(2.7) a(q) = 1 + 6
n=l

(2-8)

Equation (2.2) was discovered and proved by Borwein and Borwein [5]. Additional

proofs have since been given by Borwein, Borwein and Garvan [6], Chapman [7], Garvan

[11], Hirschhorn, Garvan and Borwein [12], Liu [14] and Sole [18]. Proofs of (2.3)-(2.6)
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can be found in [6, 11, 12]. Equation (2.7) was known to Lorenz and Ramanujan; see
[13]. A beautiful and elementary proof of (2.8) using (2.7) was given by Ramanujan [15,
equation 19].

LEMMA 2 . 9 . Letx = c{q)3/a{q)3, z = a{q), X = c{q3)3/a{q3)3, Z = a(q3). Then

_
X~

2X1'3),
/ l -

P R O O F : From Lemma 2.1 we have

a(q)3

b(q)3

a(q)3

a(q3) - c(q3)

a{q3)+2c(q3))

This proves the first part. Similarly,

z = a{q)

= a(q3) + 2c(q3)

2X1'3).

This proves the second part. The third and fourth parts are obtained by rearranging the

first two parts and solving for X and Z. • D

REMARK 2.10. The first two formulas in Lemma 2.9 are called the trimidiation formu-
las, and the last two are called the triplication formulas. See [2, pp. 101-102] for another
proof and further explanation.
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P R O O F O F T H E O R E M 1.1: Using Lemmas 2.1 and 2.9, we have

z
3(1 - (]

3a(g)(l

3(o(«) -

2x

- b(q)/a(q))

- W)

(1 ~TT (1
J 1 ( l - 9 BJ_1

1(l-9B)3(l-99n)3"

3. A DEFINITE INTEGRAL

In this section we state and prove the value of an interesting definite integral. We
use the same method of proof as Fine [10, pp. 86-91], who gave three similar integrals.

THEOREM 3 . 1 .

/ 117i ^Tdq =

Jo , \l ~ 1 )
PROOF: From Theorem 1.1 we have

If we multiply by J | _ 9 , we get
7 1 = 1 *• " '

llTTT^e" "
„=!
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or equivalently

Recall the modular transformation for the Dedekind eta function, for example, see [8,
Theorem 4.11], which may be written in the form

n=l v " n=l

where q — e~27lt, p — e"2"^, Re(i) > 0. If we take t = 1/3, then p = q9, and so in this
case the modular transformation implies

3\ /3 '

Using this in (3.2) we complete the proof. D
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