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ON RECENT CONGRUENCE RESULTS OF
ANDREWS AND PAULE FOR BROKEN ifc-DIAMONDS

MICHAEL D. HIRSCHHORN AND JAMES A. SELLERS

In one of their most recent works, George Andrews and Peter Paule continue their
study of partition functions via MacMahon's Partition Analysis by considering parti-
tion functions associated with directed graphs which consist of chains of hexagons. In
the process, they prove a congruence related to one of these partition functions and
conjecture a number of similar congruence results. Our first goal in this note is to
reprove this congruence by explicitly finding the generating function in question. We
then prove one of the conjectures posed by Andrews and Paule as well as a number
of congruences not mentioned by them. All of our results follow from straightforward
generating function manipulations.

1. INTRODUCTION

In his classic "Combinatory Analysis" [4, Volume II], Major Percy MacMahon began
a systematic study of a variety of plane partition problems and introduced his Partition
Analysis as an important tool in this study. As an example, MacMahon considered those
plane partitions which satisfy the inequalities

(1) cii ^ d2, aj ^ as, a2 ^ a^, and 03 ^ a.4.

Often it is the case that an arrow representation is useful in considering such families
of inequalities. For example, Figure 1 represents the relations (1). That is, we "visualise"
the inequality a,- ^ a,- as an arrow pointing from aj to a, in such a diagram.

In one of their most recent works, Andrews and Paule [1] continue their extensive
pursuits related to MacMahon's Partition Analysis by enumerating families of certain
"hexagonal" plane partitions. In particular, they define objects known as broken k-

diamond partitions and they denote the number of such partitions by the function Afc(n).
These broken A>diamond partitions can be visualised as above in Figure 1, but they are
much more extensive. Indeed, a broken ^-diamond of length 2n is given in Figure 2.
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Figure 1: A visual representation of the inequalities in (1)
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Figure 2: A broken fc-diamond of length 2n

Andrews and Paule [1] then note that the generating function for Ak(n) is, in essence,
a ratio of products of eta functions by proving that

o (l 9 ) ( i + q ) 7j(r)3T7((4ifc + 2)r)

CX)

where q = e2mT and r/(r) = q1?24 J~[ (1 - </") is Dedekind's eta function.
n=l

They then state and prove the following Ramanujan-like congruence property satis-

fied by the function Ai:
THEOREM 1 . 1 . For all n ^ 0,

A i ( 2 n + l ) = 0 (mod 3).

Andrews and Paule also conjecture a number of other congruence properties which
appear to be satisfied by Ax and A2 and state that these represent the "tip of the
iceberg." Our goals in this note include providing a stronger proof of Theorem 1.1 by
demonstrating an explicit generating function for A ^ n + 1), as well as proving one of
the conjectures that appears in [1] and a number of other Ramanujan-like congruences
modulo 2. All of the proofs provided in this note rely on straightforward generating
function manipulations.

We close this Introduction by stating the other theorems we shall prove in this note.

T H E O R E M 1 . 2 . For all n ^ 0,

(a) Ai(4n + 2) = 0 (mod 2) and

(b) A!(4n + 3) = 0 (mod 2).
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(Note that neither of these two congruences is mentioned in the work of Andrews and
Paule [1]; indeed, Andrews has shared in personal communication that he and Paule had
not observed these two congruences.)

THEOREM 1 . 3 . For all n ^ 0,

(a) A2(10n + 2) = 0 (mod 2) and

(b) A2(10n + 6) = 0 (mod 2).

We note that Theorem 1.3 (a) appears as Conjecture 1 in [1] while Theorem 1.3 (b) does
not appear in [1].

2. T H E P R O O F S

Our first goal is to prove Theorem 1.1 as a consequence of the following stronger
generating function identity:

T H E O R E M 2 . 1 .

n=0

where (a;6Joo=
i=0

PROOF: We begin by no t ing from (2) t h a t

00 (n\n" (~g; g)(

after straightforward manipulation. Next, we define

b{q) =
m,n=-oo

In [2, (1.6),(1.35)] it was shown that

We also note that
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It follows tha t

(Q3;q3U 1 K-q)
b(q) b(q)b(-q)
((<?4; g4)3oo/(g12; g12)oo) + 3g((9

2; g^Kq12; gl2)l)/((g4; <?4)oo(<?6; g6)l)

((g2; 92)?o(912; 912)oo)/((g4; 94)L(?6; 96)3»)

, 2. 2\9 ^ 12"! 12\ "̂ ^ ?~2^ 2T7 '

If we now multiply both sides of this last equality by (q2',q2)<x>/(q6',q6)oo, we obtain the
desired result. D

We now see that Theorem 1.1 follows in a straightforward fashion as a corollary of
Theorem 2.1.

PROOF OF THEOREM 1.1: Thanks to Theorem 2.1, it is clear that

n _ 0 (9J9)OO

from which the result follows directly. D
We also note that Theorem 2.1 can be used effectively to prove Theorem 1.2.
PROOF OF THEOREM 1.2: First, we note from Theorem 2.1 that

= (?V)oo (mod 2).

Since (q4; q*)oo is an even function of q, we know that

Ai(2(2n+1)) = A1{4n + 2) = 0 (mod 2).

This proves (a). Next, again from Theorem 2.1, we know that

n=0 vi>i/oo

s i SS f ( m o d 2 ) -
As above, we know that (<712;g12)oo/(g2;g2)oo is an even function of q and this implies
that Aj(2(2n + 1) + l) = A ^ n + 3) = 0 (mod 2). This is (b). D

Finally, we move to the proof of Theorem 1.3 above.
PROOF OF THEOREM 1.3: We require the well-known result of Ramanujan (proved

in [3]) which states that
1 /_25. «25\5
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where

Then, from (2), we know

EA2(n)g" = T—
In-

i / o o v 1 J M /oo

(mod 2)
1

(g;g)°o(g5;g5)c

{j^^ qR(q5)3 + 2q2R{q5f + 3q3R(q5)

-1 + 2q6R(q5)-2 - q7R(q5)-3

(mod 2).

It follows that

(mod 2)

-j5fi—3\3/"i -j5n—2\3

- gio"-8)5(l - glo"-6)2(l - gi o"-4)2(l - g i o"-2)5(l - g1On) (mod 2).

Since this last expression is an even function of g, we know that A2(5(2n + 1) + l)
= A2(10n + 6) = 0 (mod 2) which is (b) above. Similarly,

1 (mod 2)

= ql n ^ 1 " 1l°n~8)2(l ~ g1On"6)5(l - g1 0 n-4)5(l - g1 0 n-2)2( l - g10") (mod 2).
n>\

Since this last expression is an odd function of g, we see tha t A 2 (5(2n) + 2) = A2(10n

+ 2) = 0 (mod 2), which is (a) above. D
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