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Compound particles are a class of composite systems in which solid particles encapsulated
in a fluid droplet are suspended in another fluid. They are encountered in various natural
and biological processes, for e.g. nucleated cells, hydrogels, microcapsules etc. Generation
and transportation of such multiphase structures in microfluidic devices is associated
with several challenges because of the poor understanding of their structural stability
in a background flow and the rheological characteristics of their dispersions. Hence,
in this work, we analyse the flow in and around a concentric compound particle and
investigate the deformation dynamics of the confining drop and its stability against
breakup in imposed linear flows. In the inertia-less limit (Reynolds number, Re � 1)
and assuming that the surface tension force dominates the viscous forces (low capillary
number, Ca, limit), we obtain analytical expressions for the velocity and pressure fields up
to O(Ca) for a compound particle subjected to a linear flow using a domain perturbation
technique. Simultaneously, we determine the deformed shape of the confining drop correct
up to O(Ca2), facilitating the following. (i) Since O(Ca2) calculations account for the
rotation of the anisotropically deformed interface, the reorientation dynamics of the
deformed compound particles is determined. (ii) Calculations involving the O(Ca2) shape
of the confining interface are found to be important for compound particles as O(Ca)

calculations make qualitatively different predictions in generalised extensional flows. (iii)
An O(Ca) constitutive equation for the volume-averaged stress for a dilute dispersion
of compound particles was developed to study both shear and extensional rheology in a
unified framework. Our analysis shows that the presence of an encapsulated particle always
enhances all the measured rheological quantities such as the effective shear viscosity,
extensional viscosity and normal stress differences. (iv) Moreover, linear viscoelastic
behaviour of a dilute dispersion of compound particles is characterised in terms of complex
modulus by subjecting the dilute dispersion to a small-amplitude oscillatory shear (SAOS)
flow. (v) Various expressions pertaining to a suspension of particles, drops, and particles
coated with a fluid film are also derived as limiting cases of compound particles.
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1. Introduction

Compound particles are particles confined in a fluid drop. Suspensions of these complex
and multiphase structures are encountered in petroleum, food and pharmaceutical
processing industries (Bird, Armstrong & Hassager 1987; Barnes, Hutton & Walters 1989;
Tadros 2011; Jia, Wang & Fan 2020) and in biological and soft matter systems (Wisdom
et al. 2013; Gasperini, Mano & Reis 2014; Wen et al. 2015; Reigh et al. 2017; Zhang et al.
2017; Choe et al. 2018; Somerville et al. 2020). While several classical and seminal works
have focused on the rheological characterisation of a suspension of particles (Einstein
1906, 1911) or fluid droplets (Taylor 1932; Stone & Leal 1990; Stone 1994), relatively
less attention has been given to study the stability and rheology of composite systems,
namely multiphase structures consisting of solid particles and fluid droplets together, such
as compound particles. Therefore, in this work, we theoretically investigate the fluid flow
in and around a compound particle, the deformation dynamics of the confining drop and its
stability against breakup in an imposed flow. Further, we characterise a dilute dispersion of
compound particles by determining its rheology in terms of the effective viscosity, normal
stress differences and complex modulus.

Several numerical (Kawano & Hashimoto 1997; Smith, Ottino & Cruz 2004; Chen,
Liu & Shi 2013; Hua, Shin & Kim 2014; Chen et al. 2015a; Chen, Liu & Zhao 2015b;
Patlazhan, Vagner & Kravchenko 2015; Kim & Dabiri 2017) and theoretical (Mori 1978;
Johnson 1981; Harper 1982; Johnson & Sadhal 1985; Sadhal, Ayyaswamy & Chung 1997;
Sagis & Öttinger 2013) studies have addressed the hydrodynamics and the deformation
dynamics of composite systems in an imposed flow. Johnson (1981) investigated the
creeping flow past a rigid sphere coated with a thin film. Later, Sadhal & Johnson (1983)
and Johnson & Sadhal (1983) extended this study to a fluid droplet coated with a thin
film and calculated the modification to the drag force due to a thin coating. Rushton &
Davies (1983) theoretically investigated the translational dynamics of a compound droplet,
a multiphase system where a droplet is confined in another droplet, either concentrically
or eccentrically (Sadhal & Oguz 1985; Qu & Wang 2012). The dynamics of a compound
drop is also influenced by externally imposed flows. For example, Davis & Brenner (1981)
investigated the steady state deformation dynamics of a concentric compound particle
in a shear flow. Stone & Leal (1990) generalised this study to understand compound
droplets. They also performed boundary-integral-method-based numerical simulations
and analysed the breakup of compound droplets in a linear flow. Kim & Dabiri (2017)
numerically investigated the time evolution of eccentric compound droplets subjected
to a simple shear flow. The effects of inertia (Bazhlekov, Shopov & Zapryanov 1995),
viscoelasticity (Zhou, Yue & Feng 2006), surfactant laden interfaces (Hamedi & Babadagli
2010; Xu et al. 2013; Srinivasan & Shah 2014; Zhang et al. 2015; Mandal, Ghosh
& Chakraborty 2016), confinement (Song, Xu & Yang 2010) and electric field (Soni,
Thaokar & Juvekar 2018; Santra, Das & Chakraborty 2020a; Santra et al. 2020b) on
compound drops have also been addressed and thus, the literature on compound drops is
plentiful. However, the presence of three fluids and multiple deforming interfaces make the
analysis of compound drops cumbersome. On the other hand, analytical calculations with
compound particles though a subset of compound drops, (i) are tractable relatively easily
and (ii) demonstrate the strong hydrodynamic response such as interface deformation that
results from the interaction between the encapsulated solid particle and the confining fluid
interface. Therefore, the analysis of compound particles provide useful physical insights
into the deformation dynamics of the interface and rheological response of dispersions
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containing multiphase structures as we illustrate in this work. Table 1 summarises and
distinguishes the present work from the previous theoretical studies which analysed the
deformation dynamics of composite systems in an imposed flow. The bottom up approach
of microstructure based rheology determination dates back to the classical calculation of
effective viscosity of dilute suspensions of single phase constituents such as particles and
droplets (Einstein 1906, 1911; Taylor 1932). Further modifications, for example, to analyse
the effect of insoluble surfactants on the rheology of dilute emulsions, have been addressed
numerically (Li & Pozrikidis 1997). Several works to incorporate such effects (Pal 1996a;
Zhao & Macosko 2002; Vlahovska, Bławzdziewicz & Loewenberg 2009; Mandal, Das &
Chakraborty 2017) and to relax the assumption of diluteness (Loewenberg & Hinch 1996;
Loewenberg 1998; Jansen, Agterof & Mellema 2001; Golemanov et al. 2008) to predict
the rheology of concentrated emulsions are available in the literature but attempts to
understand the rheological behaviour of dispersions of compound particles or compound
droplets are scarce (Johnson & Sadhal 1985; Stone & Leal 1990; Pal 1996b, 2007, 2011;
Mandal et al. 2016; Das, Mandal & Chakraborty 2020; Santra et al. 2020b).

In the present work, we analyse the deformation dynamics of a concentric compound
particle in an imposed linear flow using an asymptotic expansion in capillary number, Ca.
This is interesting because deformation dynamics is usually analysed only up to O(Ca)

and it may be interesting to understand the deviations predicted by O(Ca2) calculations.
The O(1) velocity field and O(Ca) deformation dynamics of a concentric compound
particle in a linear flow is already reported in Chaithanya & Thampi (2019). In contrast,
the present work investigates the O(Ca) velocity field, and O(Ca2) deformation dynamics
of a concentric compound particle. It has been found that the higher-order calculations
are particularly relevant for compound particles, as they predict qualitatively different
behaviour compared to the leading-order calculations as discussed in § 4. The present
work is also able to analyse the effect of rotation of the deformed compound particle on
the deformation dynamics, which is neglected in Chaithanya & Thampi (2019). Moreover,
using these calculations we develop a constitutive equation for volume-averaged stress
and characterise the rheological response of a dilute dispersion of compound particles.
Both shear and extensional rheology are analysed in a single framework by quantifying
the effective shear viscosity, extensional viscosity and normal stress differences. We also
analyse, for the first time, the linear viscoelastic behaviour (of the dilute dispersion) in
terms of complex modulus by subjecting the compound particle to a small-amplitude
oscillatory shear (SAOS) flow. The approach followed in this paper is similar to the work
by Leal (2007) and Ramachandran & Leal (2012) in the context of a fluid droplet in a
linear flow.

This paper is organised as follows. In § 2, we present the mathematical formulation
and present the analytical solutions using a domain perturbation technique with capillary
number, Ca as the small parameter. We thus calculate the velocity and pressure fields
up to O(Ca) using the standard technique of superposition of vector harmonics and then
determine the consequence of this flow field, namely the shape of the confining drop
corrected up to O(Ca2). In § 4, we analyse the deformation of the confining drop, and
contrast the dynamics obtained by the O(Ca) and O(Ca2) calculations. Then in § 5, we
determine the rheology of a dilute dispersion of compound particles in terms of shear and
extensional viscosities, normal stress differences and the complex modulus.

2. Mathematical formulation

We consider a drop of radius b that concentrically encapsulates a solid particle of radius
a = b/α as shown in figure 1, and α is referred to as the size ratio. The inner and
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Outer phase

rmin

rmax
Inner phase

x ·∇uimp
a

b = aα

x2

x1x3

r
φθ

μ = λμ̂

μ̂

ϕ

=+

Figure 1. A schematic of the compound particle consisting of a solid sphere of radius a encapsulated in a drop
of radius b = aα. The confining interface deforms when subjected to an imposed flow uimp. The longest and
shortest dimensions of the deformed interface are respectively indicated by rmax and rmin. If the imposed flow
is a simple shear flow, the alignment angle ϕ is defined as the angle between the elongated direction of the
confining drop and the direction of the imposed flow.

outer fluids are assumed to be Newtonian having viscosities μ̂ and μ = λμ̂ respectively,
and λ is referred to as the viscosity ratio. The typical applications in which the compound
particles are encountered are associated with small length and velocity scales, thus the
viscous effects are dominant compared to the inertial effects. Hence, we assume that the
Reynolds number is small and solve for the Stokes’ equations in the inner and outer fluids
(Russel, Saville & Schowalter 1989),

(1/λ)∇2û − ∇p̂ = 0; ∇ · û = 0, (2.1a,b)

∇2u − ∇p = 0; ∇ · u = 0, (2.2a,b)

where, û and u are the velocity fields in the inner and outer fluids respectively. The
corresponding pressure fields are p̂ and p. The variables are non-dimensionalised by using
the confining drop size b as the characteristic length. Let G be the characteristic strain
rate associated with the compound particle and therefore, bG and μG are chosen as the
characteristic velocity and pressure respectively for obtaining non-dimensional quantities.

Equations (2.1a,b) and (2.2a,b) are solved using the standard technique of superposition
of vector harmonics subjected to the following boundary conditions:

(i) In the far field, the velocity of the outer fluid approaches the imposed velocity field,
i.e.

u → uimp as x → ∞. (2.3)

We consider the ambient flow to be linear, of the form,

uimp = (E + Ω) · x, (2.4)

where, x is the position vector, E and Ω are respectively the symmetric and
anti-symmetric parts of the velocity gradient tensor, ∇uimp.

(ii) No-slip boundary condition is imposed on the surface of the encapsulated particle,

û = Ω · x at |x| = 1/α. (2.5)
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(iii) Continuity in velocity and stresses are maintained on the confining interface,

u − û = 0, (2.6)(
σ − 1

λ
σ̂

)
· n = 1

Ca
(∇ · n)n, (2.7)

where Ca = μGb/γ is the capillary number, n is the unit normal vector to the
confining interface and σ = −pI + (∇u + ∇uT) and (1/λ)σ̂ = −p̂I + (1/λ)(∇û +
∇ûT

) are the stress tensors in the outer and inner fluids, respectively.
(iv) Under the action of the imposed flow, the confining interface of the compound

particle deforms and does not remain spherical. With the intention of using domain
perturbation technique as a method to solve the problem which can be done by
considering Ca as a small parameter, it is convenient to describe the shape of
the confining interface using a scalar function, F(xs, t) = r − (1 + Caf (xs, t)) =
0, where r = |x| and xs is the position of the interface. In terms of this scalar
function, the kinematic boundary condition on the interface is given by (Leal 2007;
Ramachandran & Leal 2012)

1
|∇F|

∂F
∂t

+ Ca(u · n) = 0, (2.8)

where u is the fluid velocity evaluated at the interface, either approached from the
inner or the outer fluid and t is non-dimensionalised by the interface relaxation time
scale CaG−1. The normal vector n on the interface and the curvature ∇ · n of the
interface may be obtained as

n = ∇F
|∇F| = 1

|∇F|
(x

r
− Ca∇f

)
, (2.9)

and

∇ · n = 1
|∇F|

(
2
r

− Ca∇2f
)

− Ca2 1
|∇F|3

(x
r

− Ca∇f
)

· (∇(∇f ) · ∇f ), (2.10)

respectively. Here, |∇F| =
√

1 + Ca2|∇f |2. Further, the kinematic boundary
condition (2.8) may be simplified as,

∂f
∂t

= (u|r=(1+Caf ) · n)

√
1 + Ca2|∇f |2. (2.11)

Even though the governing equations are linear, the problem is nonlinear because of the
coupling between the unknown confining drop shape (f ) and the flow field. However, the
problem can be solved analytically, by assuming that the droplet deformations are small,
i.e. Ca � 1. We solve the governing equations by expanding all the variables via domain
perturbation approach in terms of capillary number, Ca, (Stone & Leal 1990) as,

f (x, t) = f (0)(x, t) + Caf (1)(x, t) + Ca2f (2)(x, t) + · · · ,

p(x, t) = p(0)(x, t) + Cap(1)(x, t) + Ca2p(2)(x, t) + · · · ,

u(x, t) = u(0)(x, t) + Cau(1)(x, t) + Ca2u(2)(x, t) + · · · ,

p̂(x, t) = p̂(0)(x, t) + Cap̂(1)(x, t) + Ca2p̂(2)(x, t) + · · · ,

û(x, t) = û(0)
(x, t) + Caû(1)

(x, t) + Ca2û(2)
(x, t) + · · · .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.12)

This asymptotic expansion assumes that the capillary number calculated based on either
of the fluids is small, i.e. Ca � 1 and Ca/λ� 1. In the domain perturbation approach, the
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interfacial quantities at r = (1 + Caf ) can be obtained by using Taylor’s series expansion
in terms of quantities calculated at the droplet surface r = 1. For e.g. the velocity at the
confining (deformed) interface can be obtained as

u|r=1+Caf = u(0)|r=1 + Ca(u(1)|r=1 + x · ∇u(0)|r=1f (0)) + · · · . (2.13)

Using this approach, we solve for the velocity and pressure fields up to O(Ca) and
simultaneously determine the O(Ca) and O(Ca2) correction to the confining spherical
drop shape.

3. Hydrodynamics of the compound particle in a linear flow

In this section, we determine the velocity and pressure fields by solving (2.1a,b) and
(2.2a,b) along with the boundary conditions (2.3)–(2.8) using domain perturbation
technique explained above and the standard solution methodology of superposition of
vector harmonics to solve Stokes’ equations.

3.1. Leading-order solution O(1)

By substituting (2.12) in (2.1a,b) and (2.2a,b), the O(1) governing equations and the
corresponding boundary conditions can be obtained. The leading-order solution is
reported and analysed in Chaithanya & Thampi (2019), so below we just provide the final
expressions.

Using the standard technique of superposition of vector harmonics (Leal 2007;
Chaithanya & Thampi 2019), we may write the velocity and pressure fields in the outer
fluid as a linear combination of E and Ω as

p(0) = c1D(2) : E, (3.1)

u(0) = (E + Ω) · x + 1
2 p(0)x + c2D(1) · E + c3D(3) : E, (3.2)

where D(n) represents the decaying spherical harmonics of order n, defined as nth-order
gradients of fundamental solution of Laplace’s equation, 1/r. Similarly, the pressure and
velocity fields in the inner fluid are

p̂(0) = d1G(2) : E + e1D(2) : E, (3.3)

û(0) = λ
2

xp̂(0) + Ω · x + d2G(1) · E + d3G(3) : E + e2D(1) · E + e3D(3) : E, (3.4)

where, G(n) represents the growing spherical harmonics of order n and it is related to the
decaying harmonics as, G(n) = r2n+1D(n). Here, ci, di and ei are the constants that are
linear function of shape parameter b1, which is related to the leading-order shape function
as,

f (0) = b1E :
xx
r2 . (3.5)

The expressions for the constants ci, di and ei are given in Appendix A. Using (3.5) and
leading-order form of (2.11), we obtain the temporal evolution of the shape parameter,

b1(t) = b∗
1

(
1 − exp

(
− t

tc

))
, (3.6)

indicating that the relaxation process of the confining interface is exponential with b∗
1 as

the steady state shape parameter and tc as the relaxation time scale.
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3.2. First-order solution O(Ca)

In this section, we solve for the O(Ca) pressure and velocity fields. The governing
equations at O(Ca) are given by

(1/λ)∇2û(1) − ∇p̂(1) = 0; ∇ · û(1) = 0,

∇2u(1) − ∇p(1) = 0; ∇ · u(1) = 0.

}
(3.7)

The corresponding boundary conditions are,

u(1) → 0 as x → ∞, (3.8)

the no-slip boundary condition on the interface of the encapsulated particle,

û(1) = 0 at r = 1/α, (3.9)

the continuity of normal and tangential velocities on the confining interface,

((u − û) · n)
(1)

r=(1+Caf (0))
= 0,

((I − nn) · (u − û))
(1)

r=(1+Caf (0))
= 0,

}
(3.10)

and the stress balance at the interface,

((
σ − 1

λ
σ̂

)
: nn

)(1)

r=(1+Caf (0))

= (∇ · n)(2), (3.11a)

((
(I − nn) ·

(
σ − 1

λ
σ̂

))
· n
)(1)

r=(1+Caf (0))

= 0. (3.11b)

Similar to the previous section, (3.7) are solved using the technique of superposition
of vector harmonics. The pressure and velocity fields in the outer fluid are at most
quadratically dependent on E and Ω . Thus,

p(1) = c4D(2) : E + c5D(2) : (E · E) + c6(D(4) : E) : E + c7(E : E)

+ c8D(2) : (Ω · E) + c9D(2) : (E · Ω) + c10(Ω : Ω), (3.12)

u(1) = 1
2 xp(1) + c11D(1) · E + c12D(3) : E + c13(E · E) · D(1) + c14E · (D(3) : E)

+ c15D(1)(E : E) + c16D(3) : (E · E) + c17 Ω· D(1) + c18(Ω · E) · D(1)

+ c19(E · Ω) · D(1) + c20 Ω · (D(3) : E) + c21(Ω · Ω) · D(1) + c22(Ω : Ω)D(1)

+ c23E : (E : D(5)) + c24(D(3) · Ω) : Ω + c25(D(3) · Ω) : E. (3.13)
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Dilute dispersion of compound particles

Similarly, the pressure and velocity fields in the inner fluid are,

p̂(1) = d4G(2) : E + d5G(2) : (E · E) + d6(G(4) : E) : E + d7(E : E) + d8G(2) : (Ω · E)

+ d9G(2) : (E · Ω) + d10(Ω : Ω) + e4D(2) : E + e5D(2) : (E · E)

+ e6(D(4) : E) : E + e7(E : E) + e8D(2) : (Ω · E)

+ e9D(2) : (E · Ω) + e10(Ω : Ω), (3.14)

û(1) = λ
2

xp̂(1) + d11G(1) · E + d12G(3) : E + d13(E · E) · G(1) + d14E · (G(3) : E)

+ d15G(1)(E : E) + d16G(3) : (E · E) + d17 Ω· G(1) + d18(Ω · E) · G(1)

+ d19(E · Ω) · G(1) + d20 Ω· (G(3) : E) + d21(Ω · Ω) · G(1) + c22(Ω : Ω)G(1)

+ d23E : (E : G(5)) + d24(G(3) · Ω) : Ω + d25(G(3) · Ω) : E + e11D(1) · E

+ e12D(3) : E + e13(E · E) · D(1) + e14E · (D(3) : E) + e15D(1)(E : E)

+ e16D(3) : (E · E) + e17 Ω· D(1) + e18(Ω · E) · D(1) + e19(E · Ω) · D(1)

+ e20 Ω· (D(3) : E) + e21(Ω · Ω) · D(1) + e22(Ω : Ω)D(1) + e23E : (E : D(5))

+ e24(D(3) · Ω) : Ω + e25(D(3) · Ω) : E, (3.15)

where ci, di and ei for i = 4 to 25 are the constants determined from the boundary
conditions as follows. As earlier, the shape function f (1) may be expressed as quadratic
combinations of E and Ω as,

f (1) = b2
x · E · x

r2 + b3E : E + b4
x · (E · E) · x

r2 + b5
(x · E · x)2

r4

+ b6
x · (Ω · E) · x

r2 + b7Ω : Ω + b8
x · (Ω · Ω) · x

r2 , (3.16)

where bj, j = 2 to 8 are unknown constants. In other words, we have seven additional
constants along with b1 discussed in the previous section to describe the deformed drop
shape. As the volume of the inner fluid in the compound particle should remain constant,

1
3

∫
SD

(1 + Caf (0) + Ca2f (1))3 dΩ − 1
3

∫
SP

(1/α)3 dΩ = 4π

3
− 4π(1/α)3

3
, (3.17)

where SD and SP are the surfaces of the confining drop and the encapsulated particle,
respectively. Simplifying (3.17), we get

∫
SD

(1 + Caf (0) + Ca2f (1))3 dΩ = 4π, (3.18)

and this gives the following relations between the constants describing the interface

b3 + b4

3
+ 2b5

15
+ 2b2

1
15

= 0, b7 + b8

3
= 0. (3.19a,b)
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Enforcing the equation of continuity on the velocity field results additional relations
between the unknown constants,

c6 = −c14, c7 = 0, c10 = 0, c11 = 0, c13 = 0, c18 = c19, c21 = 0,

λd4 = −126d12

5
, λd6 = −110d23

7
, λd9 = −42d24

5
, −5λd5

2
+ 6d14 + 21d16 = 0,

3λd7

2
+ d13 + 3d15 = 0,

3λd10

2
+ 3d22 − d21 = 0,

5λd8

2
+ 14d20 + 21d25 = 0,

λe6 = −e14, e7 = 0, e10 = 0, e11 = 0, e13 = 0, e18 = e19, e21 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.20)

In order to impose the continuity in velocity and stress boundary conditions on the
deformed interface, we evaluate those quantities at r = (1 + Caf (0)) as,

(u|r=(1+Caf (0)))
(1) = u(1)|r=1 + f (0)∇u(0) · x|r=1,

(σ · n)
(1)

r=(1+Caf (0))
= σ (1)|r=1 · n(0) + σ (0)|r=1 · n(1) + f (0)(∇σ (0) · x|r=1) · n(0).

⎫⎬
⎭

(3.21)

From (2.9), (2.10) and (3.16), we obtain the normal vector n(1) and the curvature of the
interface (∇ · n)(2) at O(Ca) as

n(1) = −∇f (0) = 2b1

(
x(x · E · x)

r4 − E · x
r2

)
r=1

, (3.22)

and

(∇ · n)(2) = 2(( f (0))2 − f (1)) − (∇2f )(1) − (∇f (0))2 − x · (∇f (0) · ∇∇f (0))

= (−10b2
1 + 18b5)(x · E · x)2 + 4b2x · E · x − (2b3 + 2b4)E : E

+ (4b4 − 8b5) x · (E · E) · x + 4b6 x · (Ω · E) · x −(2b7 + 2b8)Ω : Ω

+ 4b8 x · (Ω · Ω) · x, (3.23)

respectively. The system of equations obtained by imposing the boundary conditions
are given in Appendix B. In the limit α → ∞, the expressions for the constants (refer
(B16)–(B30) in Appendix B) are consistent with the O(Ca) calculations for a drop
(Ramachandran & Leal 2012). As done earlier, the kinematic boundary condition may
be used to evaluate the shape function, f (1) as,

∂f (1)

∂t
= (u · n)

(1)

r=(1+Caf (0))
, (3.24)
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Dilute dispersion of compound particles

which further reduces to the description of temporal evolution of the deformed interface
as,

∂b2

∂t
= c4

2
+ 9c12, (3.25a)

∂b4

∂t
= −3c5

2
− 24c6 + 9c16 − 300c23 − b1(2 − 12c3), (3.25b)

∂b5

∂t
= 75c6

2
+ 525c23 + b1(3 − c1 − 48c3), (3.25c)

∂b6

∂t
= −3c8

2
− 6c20 − 9c25 + 2b1, (3.25d)

∂b8

∂t
= −3c9

2
− 9c24. (3.25e)

Here, the variables ci are linear functions of bj where j varies from 2 to 8. We solve the
above set of (3.25a)–(3.25e) along with (3.19a,b) to obtain the shape parameters bj. The
temporal evolution of the shape is illustrated using plots in the next section and the steady
state shape values of bj are given in Appendix C. The expressions for the shape functions
in the limit α → ∞ are also given in Appendix C (refer (C2)–(C7)), they are consistent
with the calculations for a drop (Ramachandran & Leal 2012).

Hence, using a domain perturbation approach and standard technique of superposition
of vector harmonics, we calculated the pressure and velocity fields up to O(Ca) in both
inner and outer fluids for a compound particle when subjected to an imposed linear flow.
Along with these, we determined the time evolution of the deforming interface of the
confining drop up to O(Ca2). These solutions are illustrated in the next section for various
linear flows.

4. Deformation dynamics of a compound particle in a general linear flow

In the previous section, we described the O(1) flow field (Chaithanya & Thampi 2019), and
then derived the O(Ca) flow field generated by a compound particle and the corresponding
consequences, namely the O(Ca) and O(Ca2) corrections to the confining drop shape.
We now analyse these results for different linear flows (i) a simple shear flow, and (ii)
extensional (both uniaxial and biaxial) flows. We then expand the discussion on interface
deformation dynamics for generalised shear and generalised extensional flows in this
section.

4.1. Simple shear flow
Consider a simple shear flow of the form u = x2i1, where x2 is the component of position
vector x and i1 is the unit normal vector associated with x1 in the chosen coordinate system.
The symmetric and anti-symmetric parts of the velocity gradient tensor of the imposed
flow are,

ES = 1
2

⎡
⎣0 1 0

1 0 0
0 0 0

⎤
⎦ , ΩS = 1

2

⎡
⎣ 0 1 0

−1 0 0
0 0 0

⎤
⎦ . (4.1a,b)

917 A2-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

23
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.233


P.K. Singeetham, K.V.S. Chaithanya and S.P. Thampi

0

4

α
x 2

αx1 αx1

2

–2

–4
–4 –2 0 2 4 –4 –2 0 2 4

0

4(b)(a)

2

–2

–4

3.5

3.0

2.5

2.0

1.5

1.0
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Figure 2. (a) Velocity field, represented as streamlines, in and around a compound particle in an imposed
shear flow in the flow–gradient (x1–x2) plane, for α = 2, Ca = 0.1 and λ = 1. The O(1) flow field is shown in
(b) for comparison. The colour field shows the magnitude of velocity. The filled circle is the encapsulated solid
particle and the solid red line shows the confining drop interface.

Using (4.1a,b), the shape of the confining drop may be obtained as,

r(θ, φ) =
(

1 + b1Ca
(x1x2

r2

)
+ Ca2

(
b2

x1x2

r2 + b3 − b7

2
+ b4 − b8

4

(
x2

1 + x2
2

r2

)

+b5
x2

1x2
2

r4 + b6

4

(
x2

1 − x2
2

r2

))
+ O(Ca3)

)
, (4.2)

where x1 = r sin θ cos φ, x2 = r sin θ sin φ and x3 = r cos θ , r is the magnitude of the
position vector x, θ is the polar angle measured from the x3 axis (0 ≤ θ ≤ π) and φ is
the azimuthal angle measured around the x3 axis (0 ≤ φ ≤ 2π).

The steady state flow fields in and around a deformed compound particle are illustrated
in figure 2(a). Equations (A2), (A4), (B2), (B4) and (C1) have been used to calculate the
velocity field and the corresponding confining drop shape. For comparison, O(1) velocity
field is shown in figure 2(b) (Chaithanya & Thampi 2019). In the imposed simple shear
flow, the encapsulated rigid particle rotates with an angular velocity G/2, and the curved
streamlines inside the confining drop illustrate the recirculating fluid flow around this
rotating rigid particle. Similarly, the outer fluid close to the interface also has curved
streamlines. However, compared to that of a spherical compound particle (figure 2b) or
a particle without a confining drop (Sadhal et al. 1997; Leal 2007), the streamlines around
the compound particle show distortions corresponding to the deformed interface.

Now we proceed to analyse the confining drop shape and its evolution. The time
evolution of the confining drop shape (up to O(Ca2)) in a simple shear flow for α = 2,
λ = 1 and Ca = 0.2 is depicted in figure 3(a). At t = 0, the confining drop is spherical,
but the imposed flow deforms the interface with time. Finally, the confining drop attains a
steady shape that is elongated in a direction close to the extensional axis of the imposed
flow and compressed in the orthogonal direction.
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(c)

1.0
α = 1.5, λ = 1

α = 2, λ = 1

α = 2.5, λ = 1

λ = 0.5, α = 1.5

λ = 10, α = 1.5

λ = 100, α = 1.5

α = 1.5, λ = 1

α = 2, λ = 1

α = 2.5, λ = 1

λ = 0.5, α = 1.5

λ = 10, α = 1.5

λ = 100, α = 1.5

0.8

0.6

0.4

0.2

0

D

Figure 3. The time evolution of (a) the confining drop shape in a simple shear flow for λ = 1, α = 2 and
Ca = 0.2 (equations (3.6), (3.25) along with (3.19a,b)). The black patch at the centre indicates the encapsulated
solid particle. (b) The deformation parameter D determined by (4.3), and (c) the alignment angle ϕ, for various
size ratios α and viscosity ratios λ. The solid lines correspond to D (and ϕ) obtained for various α and the
dotted lines correspond to those obtained for various λ.

Similar to the deformation parameter defined by Taylor (1932) to analyse the shape of
drops, we define a deformation parameter D as

D = (rmax − a) − (rmin − a)

(rmax − a) + (rmin − a)
, (4.3)

that quantifies the extent of deformation of the compound particle as done in Chaithanya
& Thampi (2019). Here, rmax and rmin are the longest and shortest dimensions of the
deformed interface as shown in figure 1. The limits, D = 0 and D = 1 respectively
correspond to the case of an undeformed spherical interface and the case where the
confining interface touches the encapsulated solid particle. The latter case can be regarded
as the onset of break-up of the confining drop since the interface comes into contact
with the encapsulated solid particle. Therefore, unlike that of a simple drop, large values
of deformation parameter do not necessarily mean a large deformation of the confining
drop. This is especially the case in the limit α → 1. In other words, in the limit α → 1,
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breakup (D = 1) may occur even with a weak deformation of the confining drop, and
therefore the perturbation approach used in this work remains valid all the way up to the
confining drop breakup.

The time evolution of deformation parameter D for Ca = 0.2 but for various values
of α and λ are plotted in figure 3(b). In all cases, D increases with time indicating the
progression of deformation. Finally D reaches a plateau corresponding to the steady state
shape of the confining drop. In some cases, D reaches 1 representing the break up of the
confining interface. Of course the progression of deformation and the final value of D
depend upon the particular values of α and λ, and this dependence is discussed later in
this section.

Another consequence of calculations at O(Ca2) is its ability to predict the orientation of
the elongated interface in a simple shear flow. The O(Ca) correction to the confining drop
shape shows that the elongated direction of the confining drop aligns with the extensional
axis of the flow, i.e. 45◦ with the flow direction in the flow–gradient plane as reported in
Chaithanya & Thampi (2019). However, O(Ca2) calculation takes into account the effect
of vorticity of the imposed flow, which then predicts that the elongated interface does not
orient along the extensional axis of the imposed flow. We define an alignment angle ϕ, as
shown in figure 1, as the angle between the elongated direction of the confining drop and
the flow direction (x1) in a simple shear flow.

The time evolution of alignment angle ϕ at Ca = 0.2 for various values of α and λ is
plotted in figure 3(c). The alignment angle ϕ decreases with time before reaching a steady
value, indicating that the deformed drop rotates towards the flow direction as dictated by
the imposed vorticity, finally attaining an orientation that is in between the flow direction
and the extensional axis of the imposed shear flow.

The extent of deformation of the confining interface of the compound particle that
resulted from the imposed shear flow is different in different directions. The steady state
shape of the confining drop (see (4.2)), when viewed in three different planes, namely
the flow–gradient (x1–x2), flow–vorticity (x1–x3) and gradient–vorticity (x2–x3) planes are
shown in figures 4(a)–4(c). The interface deformation is largest in the flow–gradient plane
with the confining drop elongated in a direction described by ϕ. Confining drop is lesser
deformed in the flow–vorticity plane and the gradient–vorticity plane, with the interface
elongated in the flow direction in the former and compressed along the vorticity direction
in the latter.

Figures 4(a)–4(c) also illustrate the deformed shape of the confining drop for various
capillary numbers. Increase in Ca signifies increasingly dominant shear force over the
resisting interfacial tension and, therefore, the extent of deformation of the confining
interface increases with increase in Ca. This is evident from the confining drop shapes
shown in various planes (figures 4(a)–4(c)). For the largest capillary number Ca = 0.3
considered in this figure, dimples form on the interface, as evident in the flow–gradient
plane (figure 4a). The extent of compression of the interface is not same in all directions,
with the maximum compression observed along the vorticity direction. Incidentally, in
this particular case, the deformed interface comes in contact with the encapsulated solid
particle (figure 4c) and marks the break up of the confining drop.

The extent of deformation of the confining drop is mainly dependent upon the three
non-dimensional numbers, namely the capillary number Ca, the size ratio α and the
viscosity ratio λ, as illustrated comprehensively in figure 5. The steady state deformation
parameter D as a function of Ca for various α and λ is shown in figures 5(a) and 5(b)
respectively. The corresponding steady state shapes of the deformed interface of the
compound particle at a fixed Ca = 0.1 but for various α and λ are shown in figures 5(c)
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(c)

Figure 4. The deformed shape (see (4.2)) of the confining drop viewed from various planes: (a) in
flow–gradient (x1–x2) plane, (b) in flow–vorticity (x1–x3) plane and (c) in gradient–vorticity (x2–x3) plane
for different capillary numbers. The dashed line represents the initial, undeformed shape of the confining drop
and the filled circle is the encapsulated solid particle.

and 5(d) respectively. The deformation parameter (or deformation of the confining drop)
increases with increase in capillary number Ca, and decreases with increase in size ratio
α and viscosity ratio λ. This dependency of steady state deformation parameter on Ca,
α and λ based on leading-order calculations is reported by Chaithanya & Thampi (2019),
and they are shown as dotted lines in figure 5. The O(Ca2) calculations are shown as solid
lines in figure 5.

As expected O(Ca) and O(Ca2) theory respectively show a linear and a quadratic
dependence of D on Ca. More importantly, O(Ca) calculations underpredict the
deformation parameter. (However, at very large viscosity ratios, O(Ca) calculations
overpredict the value of D.) Interestingly, the difference between O(Ca2) and O(Ca)

calculations decreases with decrease in α, and with increase in λ at a fixed capillary
number. This is because, small α or large λ correspond to cases where the deformed
interface of the confining drop deviates least from the spherical shape. The degree
of underprediction in D by linear theory is proportional to Ca, showing that O(Ca2)
theory significantly deviates from O(Ca) predictions as capillary number increases. This
observation also assumes importance because, compared to O(Ca2) calculations the linear
theory will also be overpredicting Cacrit, the capillary number at which break up of the
confining interface of the compound particle occurs.
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Figure 5. The effect of Ca on the steady state deformation parameter D (a) for various size ratios α, at λ = 1
and (b) for various viscosity ratios λ, at α = 1.5. The markers in (a, b) indicate Cacrit, the capillary number
at which D = 1, which signifies breakup of the confining drop as the interface comes in contact with the
encapsulated rigid particle. The corresponding steady state confining drop shapes at Ca = 0.1 and (c) for
various α and (d) for various λ. The solid and the dotted lines correspond to O(Ca2) and O(Ca) calculations
respectively.

Similar to D, the alignment angle also depends upon the capillary number, the size ratio
and the viscosity ratio. Figures 6(a) and 6(b) show the dependency of steady state ϕ on
Ca for various size ratios and viscosity ratios. In all cases, the alignment angle decreases
with increase in Ca, making the elongated interface to orient closer to the flow direction
of the imposed shear flow. The vorticity associated with the imposed flow acts to rotate the
deformed drop towards the flow axis, while the surface tension force acts to revert it back
to the spherical shape, and this competition determines the alignment angle. If the surface
tension forces dominate the shear forces (smaller Ca), the confining drop aligns with the
extensional axis, otherwise the confining drop aligns more with the flow axis. Similarly, ϕ

decreases with decrease in α or λ at a given Ca. Thus, the deformed drop aligns closer to
the flow axis in strong shear flows, and when the encapsulated particle is bigger and the
viscosity of the confining fluid is larger. This behaviour of alignment angle following that
of deformation parameter occurs as larger deformation results in more anisotropic shapes
that orient closer to the flow direction.

To summarise this section, we have analysed fluid flows in and around a compound
particle as well as the consequent deformation of the confining interface when it is
subjected to an imposed shear flow. The O(Ca2) calculation of the deformed shape of
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α = 1.5 λ = 0.5

λ = 1

λ = 10

λ = 100

α = 2

α = 2.5

α → ∞ (drop)

Linear theory Linear theory

π /4

ϕπ /6

π /12

(a)
π /4
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(b)
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Ca Ca
0.10

Figure 6. The effect of capillary number on the steady state alignment angle, ϕ calculated from (4.2) in a
simple shear flow (a) for various size ratios at λ = 1 and (b) for various viscosity ratios at α = 1.5.

the confining drop shows that the deformation of the interface increases with increase in
Ca and this larger deformation results in orienting the deformed interface to align close to
the flow axis in a simple shear flow. Further, the steady state deformation parameter and
the critical capillary number increase while the alignment angle decreases with increase
in α and λ due to increased hydrodynamic interaction between the enclosed solid and the
confining interface.

4.2. Extensional flows
In this section, we analyse the deformation of the confining drop when the compound
particle is subjected to an extensional flow. This analysis is important since earlier
investigations, both experimental (Taylor 1934; Bai Chin & Dae Han 1979; Grace 1982;
Mietus et al. 2002; Mulligan & Rothstein 2011) and theoretical or numerical (Taylor 1934;
Bai Chin & Dae Han 1979; Qu & Wang 2012), have concluded that the deformation
and breakup of a simple drop (without encapsulated particles) differ considerably when
subjected to shear and extensional flows.

Consider the two extensional flows namely, the uniaxial and biaxial flows described by
the strain rate tensor,

EE = 1
2

⎡
⎣∓1 0 0

0 ∓1 0
0 0 ±2

⎤
⎦ , ΩE = 0, (4.4a,b)

where the first and second signs indicate uniaxial and biaxial flows, respectively. We follow
the same convention throughout this section. Then the shape of the confining drop for
uniaxial and biaxial flows can be obtained as

r(θ, φ) =
(

1 + b1Ca

(
∓1

2
(x2

1 + x2
2)

r2 ± x2
3

r2

)
+ Ca2

(
b2

(
∓1

2
(x2

1 + x2
2)

r2 ± x2
3

r2

)

+ 3
2

b3 + b4

(
1
4

(x2
1 + x2

2)

r2 + x2
3

r2

)
+ b5

(
1
2

(x2
1 + x2

2)

r2 − x2
3

r2

)2
⎞
⎠+ O(Ca3)

⎞
⎠ .

(4.5)
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Figures 7(a) and 7(b) show the velocity fields in and around a compound particle
obtained for uniaxial and biaxial flows, respectively. The deformed shape of the confining
drop is also plotted (solid red line). Clearly, the velocity fields are similar in both cases
with recirculating fluid flows appearing in each quadrant. The orientation of the elongated
interface is along the extensional axis of the flow but the extent of the deformation is
different for uniaxial and biaxial flows. For uniaxial flows, extensional axis of the imposed
flow is along the x3 axis while for biaxial flows extensional flow is in the radial direction
in the x1–x2 plane. This difference results in the confining interface adopting a prolate
spheroid-like shape for uniaxial flows and an oblate spheroid-like shape for biaxial flows.
These shapes, for various α, when viewed in two different planes, the x1–x3 plane and the
x1–x2 plane are shown in figures 7(c)–7(f ). The axisymmetry of the deformed shapes is
apparent in the x1–x2 plane in all cases.

As earlier, the deformation parameter D can also be calculated using (4.3) for uniaxial
and biaxial flows as

D = 3α

4(α − 1)

(
b1Ca + Ca2

(
b2 ± b4

2
± b5

2
∓ αb2

1
4(α − 1)

))
+ O(Ca3). (4.6)

In the limit of λ→ ∞ and (α − 1) → 0 such that the hydrodynamic interaction between
the encapsulated particle and the interface is a dominant effect, (4.6) reduces to give the
deformation parameter as,

D = 630α(α − 1)Ca ± α(671α − 986)Ca2

420(α − 1)2 . (4.7)

Thus, D is same for uniaxial and biaxial flows up to O(Ca) but differ at O(Ca2). This
difference is also illustrated in figures 7(c)–7(f ). The deformation calculated at O(Ca2)
(solid lines) is more compared to that at O(Ca) (dotted lines) for uniaxial flows. On the
other hand, for biaxial flows, drop deformation and thus the predicted value D are less
at O(Ca2) compared to that at O(Ca). In other words, O(Ca) calculation underpredicts
deformation for uniaxial flows and overpredicts it for biaxial flows.

Similar to the case of a simple shear flow, the deformation of a confining drop in
extensional flows increases with decreasing α or λ for a particular Ca, and increases with
increase in Ca. These dependencies can also be understood by monitoring critical capillary
number, Cacrit beyond which the confining drop breaks up (D = 1). Therefore, Cacrit is
plotted as a function of λ for various α and various imposed flows in figure 8. Irrespective
of the flow type, Cacrit increases with increase in λ or α. For small viscosity ratios, λ < 1,
Cacrit for shear flows is smaller suggesting that shear flows are stronger in deforming the
interface compared to the uniaxial and biaxial flows. This trend reverses for large λ. As
mentioned earlier, due to the difference in the deformation characteristics, uniaxial flows
show lower Cacrit compared to biaxial flows.

4.3. Generalised shear and extensional flows
In this section, we expand the analysis described in the two previous sections to generalised
shear and generalised extensional flows. We may define a generalised shear flow (Graham
2018) which has the velocity gradient tensor as,

EGS = (1 + β)

2

⎡
⎣0 1 0

1 0 0
0 0 0

⎤
⎦ , ΩGS = (1 − β)

2

⎡
⎣ 0 1 0

−1 0 0
0 0 0

⎤
⎦ , (4.8a,b)
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Figure 7. Velocity field in and around a compound particle in an imposed (a) uniaxial and (b) biaxial flow.
Here, α = 2, Ca = 0.1 and λ = 1. The colour bar represents the magnitude of the velocity. Effect of the size
ratio α on the deformation of a compound particle (c) in the x1–x3 plane and (e) in the x1–x2 plane for uniaxial
flow and (d) in the x1–x3 plane and (f ) in the x1–x2 plane for biaxial flow. The solid and dotted lines represent
the drop shape at O(Ca2) and O(Ca) (Chaithanya & Thampi 2019) respectively.

where the parameter β takes values from −1 to 1. The limiting cases of β = −1 and β = 1
correspond to the pure rotational and pure straining flows, respectively. Simple shear flow
is obtained when β = 0.

Figure 9 shows the steady state flow fields in and around a deformed compound particle
for β = −1 and β = 1. As shown in figure 9(a), for β = −1 which corresponds to a pure
rotational flow, the velocity field has only azimuthal component of velocity, there will not
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Figure 8. The variation of the critical capillary number Cacrit vs the viscosity ratio λ for various size ratios
α (= 1.5, 2, 2.5) and in different imposed flows.
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Figure 9. Velocity field in and around a compound particle in an imposed flow; (a) β = −1, (b) β = 1. Here,
α = 2, Ca = 0.05 and λ = 1. The colour bar represents the magnitude of the velocity.

be any velocity normal to the interface, and therefore the confining drop remains spherical.
As β increases, the strength of the extensional component in the imposed flow increases
(refer to figure 9b), which results in larger deformations, with the largest D obtained for a
purely extensional flow (β = 1).

Figure 10(a) summarises the deformation behaviour of the confining drop of the
compound particle by plotting the dependence of deformation parameter, D, on β. In
purely rotational flows (β = −1), the confining drop does not deform (D = 0), since
the imposed flow corresponds to deformation free (rigid-body-like) rotation of the fluid.
As β increases, the strength of extensional component in the imposed flow increases
which results in larger deformations, with largest D obtained for β = 1. Figure 10(a)
also shows the predicted values of D at O(Ca), shown as dotted lines for comparison.
In the linear theory, D increases linearly with β with rotational component playing no
role. As mentioned earlier, the first effect of imposed vorticity is taken into account
at O(Ca2), and thus D calculated at O(Ca2) exhibits a nonlinear behaviour with an
increase in β, as shown. Thus, in the rotation dominated flows (β < 1), O(Ca) calculation
underpredicts the deformation of the confining drop. On the other hand, as β → 1, O(Ca)

overpredicts D. It is also worth noting that O(Ca2) corrections are significant when
the hydrodynamic interaction between the encapsulated particle and the confining drop
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Figure 10. The deformation parameter D (a) in generalised shear flows, as a function of β and (b) in
generalised extensional flows as a function of m. In these plots, λ = 1 and Ca = 0.1. Solid and dotted lines
correspond to O(Ca2) and O(Ca) calculations.

interface becomes strong. Therefore, the case of α = 1.5 shows largest deviation in the
predicted values of D at O(Ca2) compared to predictions of linear theory.

A similar analysis can be performed for extensional flows as well, where the generalised
extensional flow may be defined with a velocity gradient tensor as,

EGE = 1√
2(1 + m + m2)

⎡
⎣1 0 0

0 m 0
0 0 −(1 + m)

⎤
⎦ , ΩGE = 0, (4.9a,b)

where, the parameter m may take different values. For example, m = −1/2 corresponds to
a uniaxial flow (x1 being the extensional axis), m = 0 corresponds to a planar extensional
flow and m = 1 corresponds to a biaxial flow (x3 being the compressional axis).

Figure 10(b) shows the dependency of deformation parameter D on m. Clearly, the
deformation parameter is only weakly dependent on m, with D varying only slightly
between uniaxial (m = −1/2), planar extensional (m = 0) and biaxial (m = 1) flows.
However, irrespective of the type of imposed flow, D increases with decrease in α. Again,
predictions from O(Ca) calculations are shown as dotted lines in the same figure for
comparison. It is interesting to note that, the linear theory shows a monotonic increase
of D with m while this is not the case at O(Ca2). The implication is that linear theory
falsely suggests that biaxial flows (m = 1) are stronger than uniaxial flows (m = −1/2)
in deforming the confining interface (Chaithanya & Thampi 2019), while the situation
reverses by taking into account of O(Ca2) corrections. In other words, D at m = 1
is smaller than D at m = −1/2, similar to the calculations for a simple drop (Davis
& Brenner 1981), and therefore, uniaxial flows are stronger in deforming a compound
particle. This effect may be understood as follows. Biaxial flow compresses the confining
drop towards an oblate shape while a uniaxial flow stretches it towards a prolate shape.
As deformation increases, the prolate shaped interface meets the solid inclusion before the
corresponding oblate. Therefore, though biaxial flow is obtained by reversing the direction
of uniaxial flow, the latter is stronger than the former to cause breakup of the confining
drop. The other observation to note is that, as observed for generalised shear flows, the
difference that arises due to O(Ca2) corrections from the linear theory also increases with
decrease in α, making the O(Ca2) calculations more relevant for compound particles.
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5. Rheology of a dilute dispersion of compound particles

So far, we have analysed the deformation dynamics of a compound particle when subjected
to various imposed flows using the results derived from a domain perturbation approach.
The same analysis is useful in predicting the rheological behaviour of a suspension of
compound particles. In this section, we characterise the rheology of a dilute dispersion
of compound particles in terms of effective shear viscosity, extensional viscosity, normal
stress differences and the complex modulus.

Consider a dispersion made up of compound particles such as those shown in figure 1
(encapsulated particle of size a, confining interface of size b = aα and inner fluid viscosity
μ̂) in a carrier fluid of viscosity μ = λμ̂. The volume fraction (based on the size of the
confining drop) of the compound particles φ � 1, so that the dispersion is dilute and
hence any hydrodynamic interaction between the compound particles will be neglected.
On subjecting this dispersion to an imposed flow described by a rate of strain tensor E , we
may define a volume-averaged stress (Batchelor 1970) for the dispersion as,

〈σ 〉 = −〈p〉I + 2E + φS, (5.1)

where S is the stresslet associated with a single compound particle. This quantity can be
easily extracted from the steady state far field solution of the disturbance velocity field
generated by a single compound particle (calculated in §§ 3.1 and 3.2),

u =
(

−c1

6
E + Ca

(
c5

2
(E · E − I

3
(E : E)) + c8

4
(Ω · E − E · Ω)

))
:
(

Ix
r3 − 3xxx

r5

)
,

(5.2)

where the last bracketed term (Ix/r3 − 3xxx/r5) is the symmetric part of the gradient of
Oseen tensor. The expression for c1 is given in Appendix A (see (A5)), and the expressions
for c5 and c8 are given in Appendix B (see (B14) and (B15)). Therefore, as implied by the
boundary integral equations for creeping flow, the stresslet can be identified as (Batchelor
1970; Leal 2007; Ramachandran & Leal 2012),

S = 8π

(
−c1

6
E + Ca

(
c5

2

(
E · E − I

3
(E : E)

)
+ c8

4
(Ω · E − E · Ω)

))
. (5.3)

Substituting (5.3) in to (5.1) gives an expression for the volume-averaged stress as,

〈σ 〉 = −〈p〉I + 2E
(

1 − φ
c1

2

)
+ φCa

(
3c5

(
E · E − I

3
(E : E)

)

+ 3c8

2
(Ω · E − E · Ω)

)
+ O(φ2, φ2Ca, φCa2), (5.4)

which can be further analysed to extract the rheological quantities of interest for a dilute
dispersion of compound particles as discussed below.

5.1. Shear viscosity
Subjecting the dilute dispersion of compound particles to an imposed flow, uimp = x2i1,
the effective shear viscosity of the dispersion can be calculated from (5.4) as,

μeff = 〈σ 〉12

2E12
=
(

1 − φ
c1

2

)
+ O(φ2, φ2Ca, φCa2). (5.5)

Thus, the first correction to the shear viscosity is O(φ) and it depends only on the
leading-order stress field. In other words, O(Ca) stress field generated due to deformation
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of the confining drop does not contribute to shear viscosity for dilute dispersions. However,
hydrodynamic interaction between compound particles can lead to further corrections,
which will be accounted at O(φ2). Taking appropriate limits the expression derived above
for shear viscosity (5.5) can also be deduced from the works of Davis & Brenner (1981),
Stone & Leal (1990), Mandal et al. (2016) and Das et al. (2020).

It is interesting to look at the limiting case of (5.5) first. (i) In the limit, α → 1 (or λ→
0), (5.5) reduces to the Einstein relation for the effective viscosity of a dilute suspension of
spherical rigid particles μeff = (1 + 5

2φ) (Einstein 1906, 1911). (ii) In the limit of α → ∞,
(5.5) reduces to Taylor’s relation for the effective viscosity of a dilute emulsion μeff =
(1 + ((5 + 2λ)/(2 + 2λ))φ) (Taylor 1932; Oldroyd 1953). (iii) In the limit of α → 1, but
retaining O(α − 1) terms, the effective shear viscosity of a suspension of particles that are
coated with a thin fluid film of inner fluid can be calculated as,

μeff �
(

1 + φ
(

5
2 − 15

8 (α − 1)λ+ O(α − 1)2
))

. (5.6)

Therefore, O(α − 1) correction to the effective viscosity of a dispersion is negative,
indicating that the viscosity of a dilute suspension of spheres can be reduced by providing
a thin coating of a viscous fluid. (iv) In the limit of λ→ ∞, (5.5) reduces to the effective
viscosity of a dilute emulsion of bubbles μeff = (1 + φ), where the positive viscosity
correction arises purely due to the interfacial tension of the confining interface.

Figure 11(a) shows the complete picture, where the enhancement factor in the effective
shear viscosity (μeff − 1)/φ is plotted as a function of size ratio α and viscosity ratio λ.
At a given viscosity ratio, μeff decreases with increase in α from Einstein’s to Taylor’s
limit. Similarly, for a given size ratio, the effective viscosity decreases with increase in
viscosity ratio. This behaviour can be understood as follows. As the resistance to the fluid
flow increases, an increase in the effective viscosity may be anticipated. The resistance to
the imposed flow is maximum in the case of rigid solid spheres. This resistance decreases
with increase in the thickness of the coating (confining drop size) on the rigid spheres.
Therefore, the effective viscosity decreases with increase in the size of the confining drop
(α). Similarly, as the viscosity of the inner fluid decreases, the resistance to the imposed
flow decreases, thus, the outer fluid can easily slip past the confining interface. Therefore,
the effective viscosity decreases with increase in the viscosity ratio. It is worth noting that,
as mentioned earlier, Ca does not appear at O(φ) in (5.4) and therefore the stress resulting
from the deformation of the confining drop does not have any effect on these calculations.

Another useful rheological measure that can be extracted from (5.4) is the shear
viscosity of the compound particles when the confining interface has zero surface tension
or Ca → ∞. This corresponds to a situation where the kinematic boundary condition (2.8)
is not respected, b1 = 0 and therefore the effective shear viscosity is obtained as,

μS
eff =

(
1 − φcS

1
2

)
, (5.7)

where the expression for cS
1 is given in Appendix A (see (A16)). In the limit of α → ∞,

the μS
eff = λμ(1 + φ(5(1 − λ)/(2 + 3λ))), a result obtained by Batchelor & Green (1972)

for a dilute emulsion of drops.
Figure 11(b) illustrates the dependence of μS

eff on the size ratio and viscosity ratio of the
compound particles in the dispersion. The dependence of μS

eff on α and λ is similar to that
of μeff , however, with the important difference that the effective viscosity μS

eff is smaller
than the suspending fluid viscosity μ for a range of viscosity ratios. As seen in the figure,
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Figure 11. Effect of the viscosity ratio λ and size ratio α on the shear viscosity, plotted as contours of the
enhancement factor, (a) (μeff − 1)/φ (see (5.5)) and (b) (μS

eff − 1)/φ corresponding to the case of Ca → ∞
(see (5.7)).

this reduction in viscosity occurs only beyond a viscosity ratio termed as critical viscosity
ratio λS

c . Equating μS
eff − 1 to zero, we obtain the critical viscosity ratio from (5.7) as,

λS
c = −(3α10 + 125α7 − 336α5 + 200α3 + 8 − 5(49α20 + 14α17 − 1175α14 + 2352α12

− 1288α10 − 16α7 + 64)1/2)/(8(4α10 − 25α7 + 42α5 − 25α3 + 4)), (5.8)

beyond which a reduction in viscosity will be observed.

5.2. Extensional viscosity
By subjecting the dilute dispersion of compound particles to a uniaxial extensional flow,
we can calculate the extensional viscosity (or Trouton’s viscosity) μT

eff as the ratio of the
normal stress difference to the imposed shear rate,

μT
eff = σ33 − σ11

E33
= σ33 − σ22

E33
. (5.9)

Hence, the extensional viscosity of a dilute dispersion of compound particles can be
obtained from (5.4) as

μT
eff =

(
3 + 3φ

(
−c1

2
+ Ca

3c5

4

))
+ O(φ2, φ2Ca, φCa2). (5.10)

The above expression (5.10) can be deduced from the work of Santra et al. (2020b) on
compound drops by taking the appropriate limit.

The dependencies of the Trouton viscosity of a dilute dispersion of compound particles
on the size ratio and viscosity ratio of individual compound particles are shown in
figure 12. Again, instead of viscosity, it is the enhancement factor (μT

eff − 3μeff )/φ that
is plotted against λ. For a Newtonian fluid, the Trouton viscosity is equal to 3μeff and
the enhancement factor is exactly zero. This limit is indicated by the flat line in figure 12.
Dispersions of compound particles show deviations from this Newtonian limit – larger
deviations (and thus larger μT

eff ) are observed for smaller values of α and λ. As λ increases,
the enhancement factor for the Trouton viscosity asymptotes to a constant, independent
of α. On the other hand, for a given λ, increase in α reduces the Trouton viscosity.
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Figure 12. The variation of the Trouton viscosity vs the viscosity ratio λ for various size ratios and Ca = 0.1.

The decrease in the Trouton viscosity with an increase in the size ratio or with an increase
in the viscosity ratio occurs for the same reason as the decrease in the effective viscosity
discussed in the previous section.

These observations can also be endowed by analysing (5.10). The Newtonian limit can
be recovered for the special case, when Ca = 0 so that the confining interface is exactly
spherical, and (5.10) reduces to give the extensional viscosity μT

eff = 3μeff . In general,
compound particles show deviations from this Newtonian behaviour since Ca /= 0 and
the confining drop is deformed. Of course, as mentioned in the previous sections, the
extent of the deviation depends upon the specific values of α and λ. For large values of
λ the enhancement factor (μT

eff − 3μeff )/φ asymptotes to 36Ca/35 a constant, which is
independent of α and consistent with the observations in figure 12. In the limit of α → 1,
but retaining O(α − 1) terms, the extensional viscosity of a suspension of particles that
are coated with a thin fluid film of inner fluid can be calculated as,

μT
eff − 3μeff

φ
� Ca

(
− 675(λ− 4)

896(α − 1)
+ 225(45λ2 − 130λ+ 136)

3584
+ O(α − 1)

)
. (5.11)

It is clear that the Trouton viscosity increases with a decrease in α. In the
opposite limit, the case of simple drops without encapsulated particles, i.e. as α →
∞, (5.10) provides the enhancement factor (μT

eff − 3μeff )/φ = 9Ca(64λ3 + 732λ2 +
1179λ+ 475)/(560(λ+ 1)3). This result matches with the result of Ramachandran &
Leal (2012) with the slip coefficient being zero and with Mandal et al. (2017) when no
surfactants are present.

Hence, it is clear that a larger Trouton viscosity is observed for smaller values of α and
λ. This behaviour is qualitatively similar to that of the effective shear viscosity. However,
comparison with the case of Ca = 0 suggests that deviations from the Newtonian limit
(μT

eff /= 3μeff ) arise in the dispersion of compound particles due to the deformation of
the confining interface. Consequently, a time-dependent increase in the deformation of the
confining drop (as discussed in § 4.1) can give rise to a time-dependent increase in the
extensional viscosity. Another feature to notice is that, (5.11) shows that the enhancement
factor for μT

eff of a dilute dispersion of compound particles can be made negative. This is
similar to the case of shear viscosity and indicates that the extensional viscosity of a dilute
suspension of spheres can be reduced by providing a thin film coating of a less viscous
fluid on the particles.
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5.3. Normal stress differences
In § 4, we have seen that an imposed flow acts to deform the confining spherical drop
while the interfacial tension acts to revert it back, yielding an anisotropic shape of the
confining drop. Therefore, the force distribution around the compound particle will also
be anisotropic, inducing normal stress differences in a dispersion of compound particles.
Normal stress differences, a characteristic of viscoelastic behaviour of a fluid, can also be
determined by analysing the volume-averaged stress (5.4) as in the last two sections.

Subjecting the dilute dispersion of compound particles to a simple shear flow uimp =
x2i1, (5.4) renders the first and second normal stress differences N1 and N2 as

N1 = σ11 − σ22 = φCa
(

3c8

2

)
+ O(φ2, φ2Ca, φCa2), (5.12)

N2 = σ22 − σ33 = φCa
(

3(c5 − c8)

4

)
+ O(φ2, φ2Ca, φCa2). (5.13)

The dependency of the first and second normal stress differences on the viscosity and
size ratio of compound particles is shown in figure 13(a). In all cases, N1 is positive and N2
is negative. Moreover, it may be noted that both N1 and −N2 decrease with an increase in
the viscosity ratio for a given α. The asymptotic values of the normal stresses as λ→ ∞
can be deduced from (5.12) and (5.13) respectively as N1/φCa = 32/5 and −N2/φCa =
20/7. For a given viscosity ratio, both N1 and −N2 decrease with an increase in the size
ratio. The two data sets are put together in figure 13(b), which shows the ratio of normal
stress differences, −N2/N1 as a function of λ for various α. This ratio increases with an
increase in λ or α. Irrespective of α and λ, the value of mod − N2/N1 is less than 1.
This behaviour can be understood by analysing the extent of deformation of the confining
drop in different planes. We have seen that the deformation of the confining drop is larger
in the flow–gradient plane compared to that in the vorticity–gradient plane. Therefore,
the N1 which is based on the stresses in the flow–gradient plane is always larger than the
N2 which is based on the stresses in the vorticity–gradient plane. The maximum value of
−N2/N1 = 0.4464 is approached at large λ, independent of the value of α.

The limiting case of α → ∞ which corresponds to a dilute suspension of drops
that does not contain encapsulated particles, is also shown in figure 13(a). The
mathematical expressions that correspond to these curves can be obtained from (5.12) and
(5.13) respectively, as N1/φCa = (16λ+ 19)2/(40(λ+ 1)2) and N2/φCa = −(800λ3 +
1926λ2 + 1623λ+ 551)/(280(λ+ 1)3), and they are consistent with the works of
Ramachandran & Leal (2012) and Mandal et al. (2017). On the other hand, in the limit
α → 1, which corresponds to solid particles coated with a thin film of inner fluid, we can
determine the normal stress differences as

N1

φCa
= 45

32(α − 1)2 − 15(15λ− 34)

64(α − 1)
+ (3375λ2 − 5460λ+ 4412)

512
+ O(α − 1), (5.14)

and

N2

φCa
= − 45

64(α − 1)2 + 15(45λ− 89)

448(α − 1)
− 16875λ2 − 18720λ+ 10484

7168
+ O(α − 1).

(5.15)

The apparent large increase in N1 and −N2 as α → 1 represents the result of increased
deformation of the confining interface in this limit. These expressions hold correct only
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Figure 13. Effect of the viscosity ratio λ on the normal stress differences for different size ratios; (a) N1/φCa
(solid lines) and N2/φCa (dash-dotted lines), (b) −N2/N1.

when Ca < Cacrit, i.e. when the thin film coated on the particle is stable (without breakup)
in the imposed flow.

Hence, as observed for the extensional viscosity, both N1 and N2 are also
dependent upon extent of deformation of the confining drop. Consequently, the
normal stress differences for a dilute dispersion of compound particles will exhibit
capillary-number-dependent and time-dependent behaviour following the extent of
deformation of the confining interface.

5.4. Small-amplitude oscillatory shear flow
Finally, we characterise the linear viscoelastic behaviour of a dilute dispersion of
compound particles by subjecting the dispersion to a SAOS. In general, the rheological
response of the dispersion may be linear or nonlinear, and the transition from linear to
nonlinear response can be observed by increasing the amplitude of the shear rate at a
fixed frequency. In the following, we restrict our analysis to the linear regime, where the
analytical calculations are possible.

Consider an imposed oscillatory shear flow of the form

uimp = exp (iωt)x2i1, (5.16)

where ω is the frequency of oscillation. In the linear regime, shear stress is related to the
complex modulus (G∗) (Ramachandran & Leal 2012) via,

〈σ12〉 = G∗

ω
2E12, (5.17)

where G∗ = G′ + iωG′′, G′ is the elastic or storage modulus and G′′ is the viscous or loss
modulus. Comparing (5.17) and the volume-averaged stress, (5.4), we find that

G∗ = ω
(

1 − φ
c1

2

)
. (5.18)

The constant c1 in (5.18), associated with the velocity field, is dependent on the drop shape
parameter b1.

Previously, in § 4.1, we described the time evolution b1, and thus the shape of the
confining interface in an imposed simple shear flow. Here, we need to analyse the time

917 A2-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

23
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.233


P.K. Singeetham, K.V.S. Chaithanya and S.P. Thampi

evolution of the shape parameter b1 in an imposed oscillatory shear flow, which is obtained
from the leading-order kinematic boundary condition, (2.11), as

∂b1

∂t
+ iωb1 = −b1 − b∗

1
tc

. (5.19)

In the long time limit, where the unsteady term can be neglected, so that we can obtain a
frequency-dependent shape parameter,

b1 = b∗
1

1 + iωtc
. (5.20)

Following the procedure developed in Ramachandran & Leal (2012), we evaluate c1 in
terms of b1 using (5.20) and substitute it in (5.18), to obtain the expression for the complex
modulus (G∗) as,

G′ + iωG′′ = ω

(
1 − φ

2
(5(((40 − 100α3 + 100α7 − 40α10)λ− 4(α − 1)4(4 + 16α

+ 40α2 + 55α3 + 40α4 + 16α5 + 4α6)λ2) + iω(−48 − 200α3 + 336α5

− 225α7 − 38α10 + (16 + 400α3 − 672α5 + 250α7 + 6α10)λ

+ 8(−1 + α)4(4 + 16α + 40α2 + 55α3 + 40α4 + 16α5 + 4α6)λ2))/

((−40 + 100α3 − 100α7 + 40α10)λ+ 10(−1 + α)4(4 + 16α + 40α2

+ 55α3 + 40α4 + 16α5 + 4α6)λ2 + iω(48 + 200α3 − 336α5 + 225α7

+ 38α10 + (−96 + 100α3 − 168α5 + 75α7 + 89α10)λ+ 12(−1 + α)4

× (4 + 16α + 40α2 + 55α3 + 40α4 + 16α5 + 4α6)λ2)))

)
. (5.21)

In the limit of α → ∞, which corresponds to a drop without a suspended particle, the
complex modulus is given as

G′ + iωG′′ = ω

(
1 + 5φ

4λ(5 + 2λ) + iω(19 − 3λ− 16λ2)

40λ(1 + λ) + iω(38 + 89λ+ 48λ2)

)
, (5.22)

and this matches with the expressions derived in Ramachandran & Leal (2012).
Figure 14 shows the variation of the storage (G′) and loss (G′′) moduli with frequency

(ω) for different size and viscosity ratios. The value of the storage modulus G′, which
varies as ω2, is close to zero at low frequencies, but it increases with an increase in
frequency, eventually reaching a plateau at high frequencies. On the other hand, the
loss modulus G′′ varies as ω at low and high frequencies. Figure 14 shows that viscous
modulus, represented as G′′ − ω decreases with increase in frequency. It may be noticed
that, irrespective of the size or viscosity ratio, the viscous modulus (G′′) dominates the
elastic modulus (G′) at low frequencies and vice versa at high frequencies. In other words,
at low frequencies, the viscous response dominates the elastic response and the dispersion
behaves like a viscoelastic fluid. At high frequencies, the elastic response dominates the
viscous response and thus the dispersion behaves like a viscoelastic solid. This difference
in behaviour arises because, at low frequencies, the confining interface relaxes fast enough
compared to the imposed time scale, i.e. tc < ω−1, leading to a fluid-like behaviour of
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Figure 14. The normalised components of the complex moduli G′/φ (solid lines) and (G′′ − ω)/φω

(dash-dotted lines) vs the frequency ω (see (5.21)). Effects of (a) the size ratio α (for λ = 1) and (b) the
viscosity ratio λ (for α = 2).

the dilute dispersion. But at high frequencies, the interface does not relax fast enough to
follow up with changes in the imposed flow that the dispersion of compound particles
will show a history dependence. It can also be observed that, when α is sufficiently small,
the viscous modulus dominates the elastic modulus irrespective of frequency. Therefore, a
dilute suspension of spheres coated with a thin film always behaves like a viscoelastic fluid,
provided Ca � 1. This analysis is valid only if (i) the time scale of the imposed flow (1/ω)
is much larger than the momentum diffusion time scale (ρa2/μ) and (ii) the characteristic
time scale of the droplet (tc) is much smaller than the characteristic time scale of the
imposed flow (ω−1, G−1). Mathematically, the above conditions are, ρa2/μ � ω−1,
tc � ω−1 and tc � G−1. The first inequality is maintained by the choice of Reynolds
number, while the second and third inequalities are maintained by carefully selecting the
values of ω, and G−1.

6. Conclusions

In this work, we analysed the deformation dynamics of a single compound particle when
the encapsulated particle is concentrically located inside the confining drop. Assuming that
the interface deformations are small, namely Ca � 1 we solved the incompressible Stokes
equations analytically using a domain perturbation approach and obtained the flow field
correct up to O(Ca) and the deformed shape of the confining interface up to O(Ca2). Using
these results, we further characterised the rheology of a dilute dispersion of compound
particles in terms of effective viscosities, normal stress differences and complex modulus.

On subjecting a compound particle to various linear flows it has been found that the
presence of an encapsulated particle always enhances the deformation of the confining
drop compared to a simple drop which does not contain an encapsulated particle.
The enhanced deformation results from the hydrodynamic interaction between the
encapsulated particle and the confining interface since the disturbance flow field developed
inside the confining drop has to comply with the no-slip, no-penetration boundary
conditions on the surface of the encapsulated particle and less stringent interfacial
boundary conditions prescribing the continuity of velocity and stress on the confining
interface. Naturally, decreasing the size of the encapsulated particle or decreasing the
viscosity of the confining fluid will reduce the strength of the hydrodynamic interactions,
thus resulting in less deformation of the confining interface. The extent of deformation of
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the confining interface was characterised by defining a deformation parameter, which also
allowed us to calculate the critical capillary number Cacrit at which the confining interface
comes into contact with the encapsulated particle, resulting in a break up of the confining
drop. Our analysis shows that O(Ca2) corrections to the drop shape are important and
may qualitatively differ from the O(Ca) predictions for compound particles. For example,
O(Ca) correction to the confining drop shape shows that the biaxial flow is stronger in
deforming the confining interface compared to the uniaxial and shear flows at the same
Ca. However, O(Ca2) correction shows that this is not true, instead either uniaxial or shear
flows can be stronger depending upon the viscosity ratio of the confining fluid and the
viscosity of the suspending medium. Similarly, in generalised extensional flows, the O(Ca)

correction shows a monotonic increase in deformation as we move from uniaxial to biaxial
flows while the O(Ca2) correction shows a non-monotonic behaviour with deformation,
being least for a biaxial flow. Another feature that emerges from O(Ca2) calculation is
its ability to predict the reorientation dynamics of the anisotropically deformed interface.
The elongated direction of the deformed interface rotates closer to the flow direction in
an imposed simple shear flow. This reorientation can lead to a reduced deformation of
the interface and, therefore, in the case of generalised shear flows, it was observed that
deformation of the confining drop increases as we move from vorticity dominated flows
to extension dominated flows. In other words, the deformation of the confining drop of a
compound particle reduces either when the strength of vorticity increases or strength of
extension reduces in the imposed flow.

Using the solution obtained from the domain perturbation approach, we have analysed
the rheology of a dilute dispersion of compound particles. The different limits of the
analysis, namely that of a dispersion of (i) solid particles, (ii) drops and (iii) solid particles
coated with a thin fluid film have also been discussed in the context of each rheological
quantity. The effective viscosity of a dilute dispersion of compound particles is found to
vary between the effective viscosity of a dilute suspension of solid particles and fluid
drops. While the effective viscosity is found to be independent of the drop deformation at
O(Ca), it decreases with an increase in the size the confining drop or with a decrease in the
viscosity of the inner fluid. For the special case of miscible fluids, the effective viscosity
can be less than the suspending fluid viscosity in the limit of large viscosity ratio. Similar
to the shear viscosity, the Trouton viscosity and normal stress differences decrease with
increasing size of the confining drop or decreasing viscosity of the inner fluid (confining
drop fluid). However, unlike the shear viscosity, these rheological parameters depend upon
the extent of deformation of the confining interface and thus on Ca. It is interesting to note
that, for very large viscosity ratios, these rheological parameters asymptote to a constant
value that depends only on Ca and not on the size ratio of the encapsulated particle to the
confining interface.

The fact that the extensional viscosity is not equal to three times the shear viscosity
indicates the non-Newtonian nature of a dilute dispersion of the compound particles, which
was further characterised using a small-amplitude oscillatory shear flow. In the limit of
low frequencies, we found that the viscous modulus dominates the elastic modulus since
the confining interface relaxes to its quasi-steady state. However, at high frequencies, the
interface deformation time scale is much smaller than the flow time scale that the elastic
response dominates the viscous response. The viscous modulus is found to increase and the
elastic modulus is found to decrease with a decrease in the size ratio of the confining drop
to the particle. Similarly, we have shown that the viscous modulus increases and the elastic
modulus decreases with a decrease in the viscosity ratio of the outer fluid to the inner fluid.
The present study assumes that the surface tension force is much larger than the shear
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forces, that the capillary number is small and depends on a domain perturbation approach
to proceed with analytical calculations. Numerical simulations will have to be employed to
relax this assumption in order to go beyond the asymptotic limit of small capillary number
and to quantitatively determine the deformation behaviour as well as rheology. Similarly,
the consequences of eccentric configuration of the compound particle on the stability
of the confining drop as well as rheology of the dispersion including hydrodynamic
interactions between the compound particles also have to be the subject of future
investigations. On the other hand, this study also inspires investigations related to active
compound particles (the encapsulated particle is active, e.g. a microswimmer). Recently,
Chaithanya & Thampi (2020) investigated the O(Ca) deformation dynamics of an active
compound particle and discussed the interesting competition that arises from activity
and the imposed flows. However, higher-order calculations, eccentric configurations
and self-propulsion of active compound particles have to be the subject of future
investigations.

Supplementary material. Supplementary material are available at https://doi.org/10.1017/jfm.2021.233.
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Appendix A

This appendix provides a complete description of the velocity and pressure fields of both
inner and outer fluids at leading order (O(1)) when subjected to a linear flow. The pressure
and velocity fields for both outer and inner fluids at leading order, the same as (3.1)–(3.4)
but simplified after substituting for the expressions for spherical harmonics, are as follows
(Chaithanya & Thampi 2019):

p(0) = c1

r5 (x · E · x), (A1)

u(0) =
(

1 − 6c3

r5

)
E · x + Ω · x +

(
c1

2r5 + 15c3

r7

)
x · (x · E · x), (A2)

p̂(0) =
(

−126d3

5
+ e1

r5

)
(x · E · x), (A3)

û(0) =
(

d2 − 6d3r2 − 6e3

r5

)
E · x + Ω · x +

(
12d3

5
+ λe1

2r5 + 15e3

r7

)
x · (x · E · x).

(A4)
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In (A1)–(A4), the unknown constants ci, di and ei for i = 1, 2, 3, are

c1 = ((−240 − 190α10 − 1125α7 + 1680α5 − 1000α3 + (30α10 + 1250α7 − 3360α5

+ 2000α3 + 80)λ+ (160α10 − 1000α7 + 1680α5 − 1000α3 + 160)λ2)

+ b1((−128α10 + 800α7 − 1344α5 + 800α3 − 128)λ2

+ (−152α10 − 100α7 + 924α5

− 800α3 + 128)λ))/(38α10 + 225α7 − 336α5 + 200α3 + 48 + (89α10 + 75α7

− 168α5 + 100α3 − 96)λ+ (48α10 − 300α7 + 504α5 − 300α3 + 48)λ2), (A5)

c2 = 0, (A6)

c3 = ((48 + 38α10 + 225α7 − 336α5 + 200α3 + (−6α10 − 425α7 + 847α5 − 400α3

− 16)λ+ (−32α10 + 200α7 − 336α5 + 200α3 − 32)λ2)

+ b1((16α10 − 100α7+168α5 − 100α3 + 16)λ2 + (24α10 + 100α7 − 308α5

+ 200α3 − 16)λ))/(6(48α10 − 300α7 + 504α5 − 300α3 + 48)λ2

+ 6(89α10 + 75α7 − 168α5 + 100α3 − 96)λ+ 6(38α10

+ 225α7 − 336α5 + 200α3 + 48)), (A7)

d1 = −126((−250α5(α2 − 1)+250α5(α2 − 1)λ) − 10α5b1(2α5 − 5α2 + 8+(3α5+5α2

− 8)λ))/5(3(38α10 + 225α7 − 336α5 + 200α3 + 48) + 3(89α10 + 75α7 − 168α5

+ 100α3 − 96)λ+ 3(48α10 − 300α7 + 504α5 − 300α3 + 48)λ2), (A8)

d2 = (5α3λ(100 + 19α7 − 84α2 + (16α7 + 84α2 − 100)λ) − 4α3b1λ(40 + 16α7

− 21α2 + (19α7 + 21α2 − 40)λ))/(38α10 + 225α7 − 336α5 + 200α3

+ 48 + (89α10 + 75α7 − 168α5 + 100α3 − 96)λ+ (48α10 − 300α7 + 504α5

− 300α3 + 48)λ2), (A9)

d3 = ((−250α5(α2 − 1)λ+ 250α5(α2 − 1)λ2) − 10α5b1λ(2α5 − 5α2 + 8 + (3α5

+ 5α2 − 8)λ))/(3(38α10 + 225α7 − 336α5 + 200α3 + 48) + 3(89α10 + 75α7

− 168α5 + 100α3 − 96)λ+ 3(48α10 − 300α7 + 504α5 − 300α3 + 48)λ2),
(A10)

e1 = (−400 − 475α7 + (400 − 400α7)λ+ b1(320α7 − 168α5 + 128 + (380α7 − 252α5

− 128)λ))/(38α10 + 225α7 − 336α5 + 200α3 + 48 + (48α10 − 300α7 + 504α5

− 300α3 + 48)λ2 + (89α10 + 75α7 − 168α5 + 100α3 − 96)λ+ 48), (A11)

e2 = 0, (A12)

e3 = (−(−95α5 − 80)λ− (80 − 80α5)λ2 + b1(−(64α5 − 40α3 + 16)λ− (76α5

− 60α3 − 16)λ2))/(6(38α10 + 225α7 − 336α5 + 200α3 + 48) + 6(89α10 + 75α7

− 168α5 + 100α3 − 96)λ+ 6(48α10 − 300α7 + 504α5 − 300α3 + 48)λ2).
(A13)917 A2-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

23
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.233


Dilute dispersion of compound particles

The O(1) velocity field also enabled the determination of the shape of the deformed
interface of the confining drop up to O(Ca). The deformed interface described in terms of
the shape parameter b1 = b∗

1(1 − exp(−t/tc)) (refer to (3.6)), where the time-independent
parameter b∗

1 is

b∗
1 = (−32 + 200α3 − 231α5 + 25α7 + 38α10 + (32 − 200α3 + 336α5 − 200α7

+ 32α10)λ)/(4(−4 + 10α3 − 10α7 + 4α10)+4(4− 25α3+42α5 − 25α7 + 4α10)λ),
(A14)

and the time scale, tc, that controls the rate of deformation is

tc = (48 + 200α3 − 336α5 + 225α7 + 38α10 + (−96 + 100α3 − 168α5 + 75α7

+ 89α10)λ+ (48 − 300α3 + 504α5 − 300α7 + 48α10)λ2)/(10(−4 + 10α3

− 10α7 + 4α10)λ+ 10(4 − 25α3 + 42α5 − 25α7 + 4α10)λ2). (A15)

When the confining interface has zero surface tension i.e. Ca → ∞ or b1 = 0, the
expression for c1 simplifies to

cS
1 = 5(−38α10 − 225α7 + 336α5 − 200α3 − 48 + (6α10 + 250α7 − 672α5

+ 400α3 + 16)λ+ (32α10 − 200α7 + 336α5 − 200α3 + 32)λ2)/(38α10

+ 225α7 − 336α5 + 200α3 + 48 + (89α10 + 75α7 − 168α5 + 100α3 − 96)λ

+ (48α10 − 300α7 + 504α5 − 300α3 + 48)λ2). (A16)

The corresponding unknown constants for a drop (without an encapsulated particle) can
be obtained by taking the limit α → ∞, and are given by

c1 = −2λ+ 5
λ+ 1

, c2 = 0, c3 = 1
6λ+ 6

, (A17a–c)

d1 = 21
2(λ+ 1)

, d2 = − 3λ
2λ+ 2

, d3 = − 5λ
12(λ+ 1)

, (A18a–c)

e1 = 0, e2 = 0, e3 = 0. (A19a–c)

Further, the steady state value of the shape parameter b1 for a simple drop is

b∗
1 = 16λ+ 19

8(λ+ 1)
. (A20)

Appendix B

This appendix provides a complete description of the velocity and pressure fields of both
inner and outer fluids at O(Ca) when subjected to a linear flow. The solutions, the same as
(3.12)–(3.15) but simplified after substituting for the expressions for spherical harmonics,
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are as follows:

p(1) =
(

c5

r3 + 6c6

r5

)
E : E −

(
3c5

r5 + 60c6

r7

)
x · (E · E) · x + 105c6

r9 (x · E · x)2

− 3c8

r5 x · (Ω · E) · x, (B1)

u(1) =
(

c5

2r3 + 3c6

r5 − 3c16

r5 + 30c23

r7

)
x(E : E) +

(
6c6

r5 − 6c16

r5 + 120c23

r7

)
(E · E) · x

−
(

3c5

2r5 + 30c6

r7 − 15c16

r7 + 420c23

r9

)
x(x · (E · E) · x)

−
(

15c6

r7 + 420c23

r9

)
(x · E)(x · E · x) +

(
105c6

2r9 + 945c23

r11

)
x(x · E · x)2

+
(

3c25

r5

)
(Ω · E) · x −

(
3c25

r5

)
(E · Ω) · x −

(
3c8

2r5 + 15c25

r7

)
x(x · (Ω · E) · x),

(B2)

p̂(1) =
(

d5r2 + 6d6r4 + d7 + e5

r3 + 6e6

r5

)
E : E −

(
3d5 + 60d6r2 + 3e5

r5

+ 60e6

r7

)
x · (E · E) · x +

(
105d6 + 105e6

r9

)
(x · E · x)2

−
(

3d8 + 3e8

r5

)
x · (Ω · E) · x, (B3)

û(1) =
(
λd5r2

2
+ λd7

2
+ d15 − 3d16r2 − 120d23r4

7
+ λe5

2r3 + 3λe6

r5 − 3e16

r5

+30e23

r7

)
x(E : E) +

(
d13 − 6d14r2 − 6d16r2 + 120d23r4 + 6λe6

r5 − 6e16

r5

+120e23

r7

)
(E · E) · x +

(
−3λd5

2
+ 15d16 + 360d23r2

7
− 3λe5

2r5 − 30λe6

r7

+15e16

r7 − 420e23

r9

)
x(x · (E · E) · x) +

(
15d14 − 420d23r2 − 15λe6

r7

−420e23

r9

)
(x · E)(x · E · x) +

(
120d23 + 105λe6

2r9 + 945e23

r11

)
x(x · E · x)2

+
(

d18 + 3d25r2 + 3e25

r5

)
(Ω · E) · x +

(
d19 − 3d25r2 − 3e25

r5

)
(E · Ω) · x

−
(

3λd8

2
+ 15d25 + 3λe8

2r5 + 15e25

r7

)
x(x · (Ω · E) · x). (B4)

The unknown constants are obtained on the application of boundary conditions as
follows:
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Dilute dispersion of compound particles

(i) The no-slip boundary condition (see (3.9)) on the surface of the particle gives the
following set of equations:

−2λd4

21α2 + λe4α
3

2
+ 15e12α

5 = 0, (B5a)

d11 + 5λd4

21α2 − 6e12α
5 = 0, (B5b)

λd5

2α2 + λd7

2
+ d15 − 3d16

α2 − 120d23

7α4 + λe5α
3

2
+ 3λe6α

5 + e15α
3

−3e16α
5 + 30e23α

7 = 0, (B5c)

d13 − 6d14

α2 − 6d16

α2 + 120d23

α4 + 6λe6α
5 − 6e16α

5 + 120e23α
7 = 0, (B5d)

−3λd5

2α2 + 15d16

α2 + 360d23

7α4 − 3λe5α
3

2
− 30λe6α

5 + 15e16α
5 − 420e23α

7 = 0,

(B5e)

15d14

α2 − 420d23

α4 − 15λe6α
5 − 420e23α

7 = 0, (B5f )

120d23

α4 + 105λe6α
5

2
+ 945e23α

7 = 0, (B5g)

d17 + e17α
3 = 0, (B5h)

d18 − 6d20

α2 + 3d25

α2 + e18α
3 − 6e20α

5 + 3e25α
5 = 0, (B5i)

d19 − 3d25

α2 + e19α
3 − 3e25α

5 = 0, (B5j)

−3λd8

2α2 − 15d25

α2 − 3λe8α
3

2
− 15e25α

5 = 0, (B5k)

15d20

α2 + 15e20α
5 = 0, (B5l)

d22 + λd10

2
+ 6d24

5α2 − λe9α
3

2
+ e22α

3 − 3e24α
5 = 0, (B5m)

d21 + 6d24

α2 + 6e24α
5 = 0, (B5n)

−12λd4

5α2 − 3λe9α
3

2
− 15e24α

5 = 0. (B5o)

(ii) The boundary condition concerning the normal velocity at the confining interface
(see (3.10)) is

(u|r=(1+Caf (0)))
(1) · n(0) + (u|r=(1+Caf (0)))

(0) · n(1)

= (û|r=(1+Caf (0)))
(1) · n(0) + (û|r=(1+Caf (0)))

(0) · n(1), (B6)
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which reduces to the following set of equations:

c4

2
+ 9c12 − d11 − λd4

7
− λe4

2
− 9e12 = 0, (B7a)

c5

2
+ 3c6 + c15 − 3c16 + 30c23 − λd5

2
− λd7

2
− d15 + 3d16

+120d23

7
− λe5

2
− 3λe6 − e15 + 3e16 − 30e23 = 0, (B7b)

−3c5

2
− 24c6 + 9c16 − 300c23 − d13 + 6d14 − 9d16 + 3λd5

2
− 1200d23

7
+ 3λe5

2
+24λe6 − 9e16 + 300e23 + b1(−2 + 12c3 + 2d2 − 12d3 − 12e3) = 0, (B7c)

75c6

2
+ 525c23 − 15d14 + 300d23 − 75λe6

2
− 525e23 + b1

(
3 − c1 − 48c3 − 3d2

+ 114d3

5
+ λe1 + 48e3

)
= 0, (B7d)

−3c8

2
− 6c20 − 9c25 + 3λd8

2
− d18 + d19 + 6d20 + 9d25+ 3λe8

2
+ 6e20+9e25 = 0,

(B7e)

−c9

2
+ c22 − 3c24 − d22 − λd10

2
− 6d24

5
+ λe9

2
− e22 + 3e24 = 0, (B7f )

−3c9

2
− 9c24 − d21 − 18d24

5
+ 3λe9

2
+ 9e24 = 0. (B7g)

(iii) The boundary condition concerning the tangential component of velocity at the
confining interface (see (3.10)) is

(u|r=(1+Caf (0)))
(1) − n(0)(u · n)

(1)

r=(1+Caf (0))
− n(1)(u · n)

(0)

r=(1+Caf (0))

= (û|r=(1+Caf (0)))
(1) − n(0)(û · n)

(1)

r=(1+Caf (0))
− n(1)(û · n)

(0)

r=(1+Caf (0))
, (B8)

which reduces to the following set of equations:

6c12 + d11 + 5λd4

21
− 6e12 = 0, (B9a)

6c6 − 6c16 + 120c23 − d13 + 6d14 + 6d16 − 120d23 − 6λe6 + 6e16 − 120e23 = 0,

(B9b)

6c6 − 6c16 + 120c23 − d13 + 6d14 + 6d16 − 120d23 − 6λe6 + 6e16

−120e23 − 2b1(1 − 6c3 − d2 + 6d3 + 6e3) = 0, (B9c)

−15c6 − 420c23 − 15d14 + 420d23 + 15λe6 + 420e23

+b1

(
3 + c1 + 42c3 − 3d2 + 126d3

5
− λe1 − 42e3

)
= 0, (B9d)
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Dilute dispersion of compound particles

15c6 + 420c23 + 15d14 − 420d23 − 15λe6 − 420e23

+b1

(
−5 − c1 − 30c3 + 5d2 − 186d3

5
+ λe1 + 30e3

)
= 0, (B9e)

c17 − d17 − e17 = 0, (B9f )

c18 − 6c20 + 3c25 − d18 + 6d20 − 3d25 − e18 + 6e20 − 3e25 = 0, (B9g)

c19 − 3c25 − d19 + 3d25 − e19 + 3e25 = 0, (B9h)

6c20 − 6c25 + d18 − d19 − 6d20 + 6d25 − 6e20 + 6e25 = 0, (B9i)

15c20 − 15d20 − 15e20 = 0, (B9j)

6c24 − d21 − 6d24 − 6e24 = 0. (B9k)

(iv) At O(Ca), the tangential stress balance (see (3.11b)) is obtained as,

(σ · n)
(1)

r=(1+Caf (0))
− n(1)(σ · nn)

(0)

r=(1+Caf (0))
− n(0)(σ · nn)

(1)

r=(1+Caf (0))

= (1/λ)((σ̂ · n)
(1)

r=(1+Caf (0))
−n(1)(σ̂ · nn)

(0)

r=(1+Caf (0))
−n(0)(σ̂ · nn)

(1)

r=(1+Caf (0))
),

(B10)

which reduces to the following set of equations:

λ(c4 + 48c12) − 2d11 − 16λd4

21
− λe4 − 48e12 = 0, (B11a)

λ(−3c5 − 78c6 + 48c16 − 1440c23 + b1(24c3 − 4)) + 3λd5 − 2d13

+24d14 − 6d16 − 5760d23

7
+ 3λe5 + 78λe6 − 48e16 + 1440e23

+b1(4d2 − 24d3 − 24e3) = 0, (B11b)

λ(−3c5 − 78c6 + 48c16 − 1440c23 + b1(−2c1 − 72c3 − 8)) + 3λd5

−2d13 + 24d14 − 6d16 − 5760d23

7
+ 3λe5 + 78λe6 − 48e16 + 1440e23

+b1

(
8d2 − 312d3

5
+ 2λe1 + 72e3

)
= 0, (B11c)

λ(225c6 + 5040c23 + b1(8 − 9c1 − 468c3)) − 90d14 + 2880d23 − 225λe6

−5040e23 + b1

(
−8d2 + 576d3

5
+ 9λe1 + 468e3

)
= 0, (B11d)

λ(−225c6 − 5040c23 − b1(12 − 7c1 − 372c3)) + 90d14 − 2880d23 + 225λe6

+5040e23 − b1

(
−12d2 + 768d3

5
+ 7λe1 + 372e3

)
= 0, (B11e)

λ(−3c17) + 3e17 = 0, (B11f )

λ

(
−3c8

2
− 3c18 + 24c20 − 24c25

)
+ 3λd8

2
− d18 + d19 + 18d20 + 3d25 + 3λe8

2

+3e18 − 24e20 + 24e25 = 0, (B11g)
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λ

(
−6c20 + 3c18 − 24c25 − 3c8

2

)
+ 3λd8

2
− d18 + d19 + 6d20 + 3d25 + 6e20

−3e18 + 24e25 + 3λe8

2
= 0, (B11h)

λ(3c8 − 18c20 + 48c25) − 3λd8 + 2d18 − 2d19 − 24d20 − 6d25

−3λe8 + 18e20 − 48e25 = 0, (B11i)

λ(−75c20) − 30d20 + 75e20 = 0, (B11j)

λ(3c9 + 48c24) + 2d21 + 96d24

5
− 3λe9 − 48e24 = 0. (B11k)

(v) Finally, at O(Ca), the boundary condition describing the balance of normal stress
(see (3.11a)) at the confining interface is

(σ · n)
(1)

r=(1+Caf (0))
· n(0) + (σ · n)

(0)

r=(1+Caf (0))
· n(1)−(1/λ)((σ̂ · n)

(1)

r=(1+Caf (0))
· n(0)

+ (σ̂ · n)
(0)

r=(1+Caf (0))
· n(1)) = (∇ · n)(2), (B12)

which reduces to the following set of equations:

λ(−3c4 − 72c12) − 2d11 + λd4

7
+ 3λe4 + 72e12 = 4b2λ, (B13a)

λ(−3c5 − 30c6 − 4c15 + 24c16 − 360c23) − 2λd5 + 6λd6 − 2d15 + 18d16

+1200d23

7
+ 3λe5 + 30λe6 + 4e15 − 24e16 + 360e23 = −λ(2b3 + 2b4),

(B13b)

λ(9c5 + 252c6 − 72c16 + 3600c23 + b1(−8 − 4c1 − 192c3)) − 2d13 + 6λd5

−60λd6 + 36d14 − 54d16 − 12000d23

7
− 9λe5 − 252λe6 + 72e16 − 3600e23

+b1

(
−8d2 + 384d3

5
+ 4λe1 + 192e3

)
= λ(4b4 − 8b5), (B13c)

λ(−405c6 − 6300c23 + b1(8 + 13c1 + 552c3)) − 90d14 + 105λd6

+ 3000d23 + 405λe6 + 6300e23 + b1

(
−8d2 + 348d3

5
− 13λe1 − 552e3

)

= λ(−10b2
1 + 18b5), (B13d)

λ(9c8 + 48c20 + 72c25) + 6λd8 − 2d18 + 2d19 + 36d20 + 54d25 − 9λe8

−48e20 − 72e25 = λ(4b6), (B13e)

λ(3c9 − 4c22 + 24c24) − λd9 − 2d22 − 36d24

5
− 3λe9 + 4e22 − 24e24

= −λ(2b7 + 2b8), (B13f )

λ(9c9 + 72c24) − 3λd9 − 2d21 − 108d24

5
− 9λe9 − 72e24 = λ(4b8). (B13g)

A unique solution is obtained for the system of linear algebraic equations (B5a)–(B13g)
using Mathematica 11.3, and the corresponding script file is available as a supplementary
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Dilute dispersion of compound particles

material are available at https://doi.org/10.1017/jfm.2021.233. However, due to the
complexity of the obtained expressions, which are in terms of the size ratio α and the
viscosity ratio λ, we have not included them here.

The expressions which are used in the rheological properties are

c5 = 2((1 + α)2(2 + 4α + 8α2 + 7α3 + 8α4 + 4α5 + 2α6)2(−32 − 64α − 96α2

+ 72α3+240α4 + 177α5 + 114α6 + 76α7 + 38α8) + (6912 + 55296α + 248832α2

+ 747840α3 + 1628160α4 + 2594412α5 + 2830656α6 + 1296572α7 − 2518820α8

− 7748880α9 − 12058008α10 − 12764994α11 − 8985708α12 − 2758755α13

+ 2677280α14 + 5392132α15 + 5457336α16 + 4038372α17 + 2325360α18

+ 1033440α19 + 339552α20 + 75456α21 + 9432α22)λ+ ((−1 + α)2(4 + 16α

+ 40α2 + 55α3 + 40α4 + 16α5 + 4α6)(−1056 − 6336α − 22176α2 − 51936α3

− 89856α4−116508α5 − 109248α6 − 59768α7 + 18327α8 + 81942α9 + 95364α10

+ 67134α11+ 30744α12 + 8784α13 + 1464α14))λ2 + (8(−1 + α)4(4 + 16α + 40α2

+ 55α3 + 40α4 + 16α5 + 4α6)3)λ3)/35(8(−1 + α)(1 + α)3(2 + 4α + 8α2 + 7α3

+ 8α4 + 4α5 + 2α6)3 + (12(−1 + α)2(1 + α)2(2 + 4α + 8α2 + 7α3 + 8α4 + 4α5

+ 2α6)2(4 + 16α + 40α2 + 55α3 + 40α4 + 16α5 + 4α6))λ+ (6(−1 + α)3(1 + α)

(2 + 4α + 8α2 + 7α3 + 8α4 + 4α5 + 2α6)(4 + 16α + 40α2 + 55α3 + 40α4 + 16α5

+ 4α6)2)λ2 + ((−1 + α)4(4 + 16α + 40α2 + 55α3 + 40α4 + 16α5 + 4α6)3)λ3),
(B14)

c8 = ((−32 − 64α − 96α2 + 72α3 + 240α4 + 177α5 + 114α6 + 76α7 + 38α8)2

+ (16(−1+α)2(4+16α + 40α2+55α3 + 40α4 + 16α5 + 4α6)(−32 − 64α − 96α2

+ 72α3 + 240α4 + 177α5 + 114α6 + 76α7 + 38α8))λ+ (64(−1 + α)4(4 + 16α

+ 40α2+55α3+40α4+16α5 + 4α6)2)λ3)/15((4(−1 + α)2(1 + α)2(2 + 4α + 8α2

+ 7α3 + 8α4+4α5+2α6)2) + (4(−1+α)3(1 + α)(2+4α+8α2+7α3 + 8α4 + 4α5

+ 2α6)(4 + 16α + 40α2 + 55α3 + 40α4 + 16α5 + 4α6))λ+ ((−1 + α)4(4 + 16α

+ 40α2 + 55α3 + 40α4 + 16α5 + 4α6)2)λ2). (B15)

The unknown constants for a drop can be obtained by taking the limit α → ∞, and are
as follows:

c4 = 0, c5 = 64λ3 + 732λ2 + 1179λ+ 475
140(λ+ 1)3 , c6 = −352λ2 + 1138λ+ 855

1080(λ+ 1)2 , (B16)

c8 = (16λ+ 19)2

60(λ+ 1)2 , c9 = 0, c12 = 0, c14 = 352λ2 + 1138λ+ 855
1080(λ+ 1)2 , (B17)
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c15 = 0, c16 = −1568λ3 + 458λ2 + 4915λ+ 2565
7560(λ+ 1)3 , c17 = 0, (B18)

c18 = 0, c19 = 0, c20 = 0, c22 = 0, (B19)

c23 = 64λ2 + 796λ+ 855
15120(λ+ 1)2 , c24 = 0, c25 = −32λ2 + 86λ+ 57

120(λ+ 1)2 , (B20)

d4 = 0, d5 = 16λ2 + 83λ+ 76
10(λ+ 1)3 , d6 = 11(16λ+ 19)

432(λ+ 1)2 , (B21)

d7 = (32λ2 − 554λ− 703)

60(λ+ 1)2 , d8 = −7(48λ2 + 89λ+ 38)

40λ(λ+ 1)2 , d9 = 0, (B22)

d10 = 0, d11 = 0, d12 = 0, d13 = −9λ(16λ2 + 3λ− 19)

140(λ+ 1)3 , (B23)

d14 = −2λ(16λ+ 19)

27(λ+ 1)2 , d15 = λ(−224λ3 + 3942λ2 + 8853λ+ 4579)

840(λ+ 1)3 , (B24)

d16 = λ(400λ2 + 1307λ+ 988)

756(λ+ 1)3 , d17 = 0, d18 = −304λ2 + 617λ+ 304
80(λ+ 1)2 , (B25)

d19 = 304λ2 + 617λ+ 304
80(λ+ 1)2 , d20 = 0, d21 = 0, d22 = 0, (B26)

d23 = −7λ(16λ+ 19)

4320(λ+ 1)2 , d24 = 0, d25 = 48λ2 + 89λ+ 38
48(λ+ 1)2 , (B27)

e4 = 0, e5 = 0, e6 = 0, e8 = 0, e9 = 0, e12 = 0, (B28)

e14 = 0, e15 = 0, e16 = 0, e17 = 0, e18 = 0, e19 = 0, (B29)

e20 = 0, e22 = 0, e23 = 0, e24 = 0, e25 = 0. (B30)

Appendix C

The O(Ca) velocity and pressure field enabled the determination of deformed interface
of the confining drop up to O(Ca2). The steady state shape parameters b∗

i for i =
1, 2, 3, . . . , 8 describing the deformed interface shape obtained as a solution of (3.6) and
(3.25) are as follows:

b∗
1 = (38α8 + 76α7+114α6+177α5+240α4+72α3 − 96α2 − 64α − 32+(32α8 + 64α7

+ 96α6 − 72α5 − 240α4 − 72α3 + 96α2 + 64α + 32)λ)/(16α8 + 32α7 + 48α6

+ 24α5−24α3 − 48α2 − 32α − 16+(16α8+32α7 + 48α6 − 36α5 − 120α4−36α3

+ 48α2 + 32α + 16)λ), (C1a)

b∗
2 = 0, (C1b)

b∗
7 = 0, (C1c)

b∗
8 = 0, (C1d)
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b∗
3 = (−64(42496λ4 + 234320λ3 + 453369λ2 + 372790λ+ 111245)α39 − 576(42496λ4

+ 234320λ3 + 453369λ2 + 372790λ+ 111245)α38 − 2880(42496λ4 + 234320λ3

+ 453369λ2 + 372790λ+ 111245)α37 − 240(1657344λ4 + 9405152λ3 + 18663827λ2

+ 15697303λ+ 4781284)α36 − 720(1232384λ4 + 7595296λ3 + 16095009λ2

+ 14286389λ+ 4554292)α35 − 48(26899968λ4 + 205280032λ3 + 496499983λ2

+ 482745383λ+ 164625464)α34 − 12(70245888λ4 + 1085904352λ3 + 3355389523λ2

+ 3720841238λ+ 1381097804)α33 + 12(93618688λ4 − 940803488λ3 − 4710142331λ2

− 6242960686λ− 2567047508)α32 + 12(347914752λ4 − 96241792λ3 − 5315592739λ2

− 9146369924λ− 4273714472)α31 + 2(3497867008λ4 + 10367618792λ3

− 23858712939λ2 − 69188883320λ− 38428447816)α30 + 6(1544198400λ4

+ 9611837144λ3 + 1574087091λ2 − 23801599868λ− 17269492872)α29

+ 12(929865600λ4 + 8753473292λ3 + 9855619355λ2 − 8406219104λ

− 10380658478)α28 + 12(558875520λ4 + 11220069708λ3 + 22080530147λ2

+ 432273432λ− 10846060982)α27 − 6(3048811776λ4 − 15574560512λ3

− 66605951073λ2 − 29258870932λ+ 18371978616)α26 − 6(10726479104λ4

+ 9165819712λ3 − 73792113985λ2 − 63583124852λ+ 9677259696)α25

− 84(1049385600λ4 + 3215195664λ3 − 3771419195λ2 − 6721337544λ

− 298106350)α24 − 3(8342549120λ4 + 142861203832λ3 − 689646757λ2

− 217902487606λ− 42596875264)α23 + 3(38671413120λ4 − 130717205368λ3

− 139317951955λ2 + 198853701894λ+ 77236736384)α22 + (200306967680λ4

− 96320752352λ3 − 776737688127λ2 + 388538355230λ+ 317125553944)α21

+ 3(34025112960λ4 + 118254487264λ3 − 299701705197λ2 + 25892835322λ

+ 122748248776)α20 − 24(4253139120λ4 − 27531014731λ3 + 28247683934λ2

+ 10688929290λ− 15658737613)α19 − 8(25038370960λ4 − 68547294553λ3

+ 20182463346λ2 + 65726917682λ− 42400457435)α18 − 24(4833926640λ4

− 4192223384λ3 − 16549718814λ2 + 27061462435λ− 11153446877)α17

+ 12(2085637280λ4 − 25002975296λ3 + 57199582391λ2 − 49168871439λ

+ 14886627064)α16 + 12(7345699200λ4 − 32668209984λ3 + 50313530447λ2

− 32704282567λ+ 7713262904)α15 + 12(5363239552λ4 − 20189130208λ3

+ 26264372797λ2 − 13596391053λ+ 2157908912)α14 + 12(1524405888λ4

− 4991092288λ3 + 4164522521λ2 + 526377395λ− 1224213516)α13

− 96(λ− 1)2(69859440λ2 − 252035181λ+ 335555261)α12 − 96(λ− 1)2
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(116233200λ2 − 391915553λ+ 357046748)α11 − 192(λ− 1)2(48256200λ2

− 180037856λ+ 146283171)α10 − 128(λ− 1)2(54654172λ2 − 195640271λ

+ 145862299)α9 − 384(λ− 1)2(10872336λ2 − 35453585λ+ 24761849)α8

− 6144(λ− 1)3(182849λ− 473626)α7 + 6144(λ− 1)3(137199λ− 65305)α6

+ 3072(λ− 1)3(420312λ− 393305)α5 + 184320(λ− 1)3(4814λ− 4745)α4

+ 61440(λ− 1)3(6474λ− 6451)α3 + 122388480(λ− 1)4α2 + 24477696(λ− 1)4α

+ 2719744(λ− 1)4)/(7560(4α15(λ+ 1) + 12α14(λ+ 1) + 24α13(λ+ 1)

+ 40α12(λ+ 1) + 60α11(λ+ 1) + 84α10(λ+ 1) + 112α9(λ+ 1) + 63α8(λ+ 2)

− 63α7(λ− 2) − 112α6(λ− 1) − 84α5(λ− 1) − 60α4(λ− 1) − 40α3(λ− 1)

− 24α2(λ− 1) − 12α(λ− 1) − 4λ+ 4)(4α8(λ+ 1) + 8α7(λ+ 1) + 12α6(λ+ 1)

+ α5(6 − 9λ) − 30α4λ− 3α3(3λ+ 2) + 12α2(λ− 1) + 8α(λ− 1) + 4(λ− 1))3), (C1e)

b∗
4 = (64(5632λ4 + 172976λ3 + 497595λ2 + 495874λ+ 165623)α39 + 576(5632λ4

+ 172976λ3 + 497595λ2 + 495874λ+ 165623)α38 + 2880(5632λ4 + 172976λ3

+ 497595λ2 + 495874λ+ 165623)α37 + 3840(13728λ4 + 438359λ3 + 1289855λ2

+ 1310941λ+ 445717)α36 + 5760(20416λ4 + 727418λ3 + 2265585λ2 + 2411032λ

+ 852449)α35 + 96(1782528λ4 + 83603144λ3 + 289430855λ2 + 331649806λ

+ 124039567)α34 + 24(4654848λ4 + 498202304λ3 + 2061470930λ2 + 2617627771λ

+ 1049642422)α33 − 24(6203648λ4 − 537419200λ3 − 3076478428λ2 − 4502383661λ

− 1968848734)α32 − 24(23054592λ4 − 208943120λ3 − 3642490127λ2 − 6708406504λ

− 3294389716)α31 − 4(231786368λ4 + 5253575056λ3 − 15723428046λ2

− 50222966023λ− 29390861480)α30 − 12(102326400λ4 + 6005697376λ3

+ 3000736362λ2 − 15768544147λ− 12756648516)α29 − 12(123235200λ4

+ 11232194216λ3 + 18897345407λ2 − 6606228617λ− 14055906056)α28

− 12(74067840λ4 + 13220365896λ3 + 38692505507λ2 + 12825312663λ

− 11908017656)α27 + 6(404059392λ4 − 11850873440λ3 − 104060118027λ2

− 79631012494λ+ 9589050444)α26 + 6(1421581568λ4 + 24874046176λ3

− 94108977451λ2 − 132137006798λ− 14892109620)α25 + 84(139075200λ4

+ 4679717352λ3 − 2861407541λ2 − 11492134269λ− 3240689992)α24

+ 3(1105639040λ4 + 154943915656λ3 + 78101613437λ2 − 299534341642λ

− 147708963616)α23 − 3(5125127040λ4 − 86830205416λ3 − 220888876117λ2

+ 203240984922λ+ 185541623696)α22 − (26546706560λ4 + 116624551312λ3

− 914317166391λ2 + 238068605906λ+ 596370449488)α21 − 3(4509352320λ4
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+ 146137570864λ3 − 318169826517λ2 − 23001186938λ+ 192868280896)α20

+ 12(1127338080λ4 − 43675058606λ3 + 62416654663λ2 + 24437539647λ

− 44306473784)α19 + 4(6636676640λ4 − 87155248058λ3 + 72308373729λ2

+ 126800078581λ− 118589880892)α18 + 12(1281281760λ4 − 3961926256λ3

− 22074945957λ2 + 58745421917λ− 33989831464)α17 − 12(276409760λ4

− 15599853704λ3 + 53112136847λ2 − 64878887247λ+ 27090194344)α16

− 12(973526400λ4 − 21330157224λ3 + 57007769687λ2 − 55629793927λ

+ 18978655064)α15 − 12(710790784λ4 − 16289253952λ3 + 40973881537λ2

− 36337428729λ+ 10942010360)α14 − 12(202029696λ4 − 8039633056λ3

+ 19841323937λ2 − 16417896865λ+ 4414176288)α13 + 96(λ− 1)2(9258480λ2

+ 217308843λ− 6504508)α12 + 96(λ− 1)2(15404400λ2 − 206253617λ

+ 283193567)α11 + 96(λ− 1)2(12790800λ2 − 359007952λ+ 373731177)α10

+ 128(λ− 1)2(7243324λ2 − 251120789λ+ 247988215)α9 + 384(λ− 1)2(1440912λ2

− 57486503λ+ 56197841)α8 + 6144(λ− 1)3(24233λ− 1860499)α7

− 3072(λ− 1)3(36366λ+ 1490029)α6 − 12288(λ− 1)3(13926λ+ 103519)α5

− 184320(λ− 1)3(638λ+ 997)α4 − 61440(λ− 1)3(858λ− 313)α3

− 16220160(λ− 1)4α2 − 3244032(λ− 1)4α − 360448(λ− 1)4)/(7560(4α15(λ+ 1)

+ 12α14(λ+ 1) + 24α13(λ+ 1) + 40α12(λ+ 1) + 60α11(λ+ 1) + 84α10(λ+ 1)

+ 112α9(λ+ 1) + 63α8(λ+ 2) − 63α7(λ− 2) − 112α6(λ− 1) − 84α5(λ− 1)

− 60α4(λ− 1) − 40α3(λ− 1) − 24α2(λ− 1) − 12α(λ− 1) − 4λ+ 4)(4α8(λ+ 1)

+ 8α7(λ+ 1) + 12α6(λ+ 1) + α5(6 − 9λ) − 30α4λ− 3α3(3λ+ 2) + 12α2(λ− 1)

+ 8α(λ− 1) + 4(λ− 1))3), (C1f )

b∗
5 = (16α32(10496λ3 + 34976λ2 + 38749λ+ 14269) + 96α31(10496λ3 + 34976λ2

+ 38749λ+ 14269) + 336α30(10496λ3 + 34976λ2 + 38749λ+ 14269)

+ 12α29(608768λ3 + 2170608λ2 + 2557567λ+ 996552) + 24α28(356864λ3

+ 1615184λ2 + 2247841λ+ 991996) + 84α27(20992λ3 + 447472λ2 + 901583λ

+ 477218) + 6α26(−2041472λ3 + 3253848λ2 + 14838647λ+ 9667362)

+ α25(−23574016λ3 − 5621216λ2 + 87927052λ+ 72889040) − 12α24(2721088λ3

+ 3488388λ2 − 5786731λ− 7135500) − 28α23(2256640λ3 + 4338832λ2 − 1358443λ

− 3818374) − 48α22(2095264λ3 + 5193926λ2 + 507618λ− 2934783)

− 12α21(2812928λ3 + 29423776λ2 + 15765577λ− 14225356) + 12α20(19055488λ3

− 28102800λ2 − 40707277λ+ 13868214) + 3α19(169124672λ3 − 34919120λ2
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− 260418423λ+ 29358246) + 2α18(164317504λ3 + 243615600λ2 − 412825725λ

− 51367954) − 3α17(132325696λ3 − 415223088λ2 + 165936613λ+ 123211954)

− 56α16(15144416λ3 − 22416176λ2 − 2715671λ+ 9987431) − 192α15(2067589λ3

− 304152λ2 − 4622303λ+ 2858866) + 16α14(20539688λ3 − 73281544λ2 + 76422679λ

− 23680823) + 48α13(10570292λ3 − 25338188λ2 + 18138625λ− 3370729)

+ 12α12(19055488λ3 − 37006552λ2 + 16767015λ+ 1184049) − 24α11(1406464λ3

− 7162656λ2 + 9984645λ− 4228453) − 12α10(8381056λ3 − 25744384λ2 + 26305175λ

− 8941847) − 896α9(λ− 1)2(70520λ− 87377) − 384α8(λ− 1)2(85034λ− 139235)

− 512α7(λ− 1)2(46043λ− 70165) − 768α6(λ− 1)2(15949λ− 21409)

+ 10752α5(λ− 1)2(164λ− 99) + 8564736α4(λ− 1)3 + 7305216α3(λ− 1)3

+ 3526656α2(λ− 1)3 + 1007616α(λ− 1)3 + 167936(λ− 1)3)/

(432(α − 1)3(4α7(λ+ 1) + 12α6(λ+ 1) + 24α5(λ+ 1) + 15α4(λ+ 2) − 15α3(λ− 2)

− 24α2(λ− 1) − 12α(λ− 1) − 4λ+ 4)2(4α15(λ+ 1) + 12α14(λ+ 1) + 24α13(λ+ 1)

+ 40α12(λ+ 1) + 60α11(λ+ 1) + 84α10(λ+ 1) + 112α9(λ+ 1) + 63α8(λ+ 2)

− 63α7(λ− 2) − 112α6(λ− 1) − 84α5(λ− 1) − 60α4(λ− 1) − 40α3(λ− 1)

− 24α2(λ− 1) − 12α(λ− 1) − 4λ+ 4)), (C1g)

b∗
6 = (2α18(3λ+ 2)(16λ+ 19)2 + 4α17(3λ+ 2)(16λ+ 19)2 + 6α16(3λ+ 2)(16λ+ 19)2

− 3α15(4352λ3 + 2304λ2 − 7689λ− 5092) − 60α14(512λ3 + 464λ2 − 539λ− 437)

− 6α13(2688λ3 + 2696λ2 − 2781λ− 2603) + 3α12(19488λ3 − 9004λ2 − 14031λ

+ 3547) + 8α11(14232λ3 − 6781λ2 − 10059λ+ 2608) − 8α10(4044λ3 − 7402λ2

− 303λ+ 3661) − 120α9(1488λ3 − 1439λ2 − 711λ+ 662) − 12α8(2696λ3

− 903λ2 − 1907λ+ 114) + 96α7(λ− 1)2(1186λ+ 799) + 96α6(λ− 1)2(609λ+ 431)

− 48α5(λ− 1)2(336λ− 1) − 1280α4(λ− 1)2(24λ+ 1) − 128α3(λ− 1)2(102λ+ 23)

+ 4608α2(λ− 1)3 + 3072α(λ− 1)3 + 1536(λ− 1)3)/(20(α − 1)4λ(4α7(λ+ 1)

+ 12α6(λ+ 1) + 24α5(λ+ 1) + 15α4(λ+ 2) − 15α3(λ− 2) − 24α2(λ− 1)

− 12α(λ− 1) − 4λ+ 4)2). (C1h)

The corresponding steady state shape parameters for a drop without the encapsulated
particle can be obtained by taking the limit α → ∞, and are as follows:

b∗
1 = 16λ+ 19

8(λ+ 1)
, (C2)

b∗
2 = 0, b∗

7 = 0, b∗
8 = 0, (C3)

b∗
3 = −42496λ3 + 191824λ2 + 261545λ+ 111245

30240(λ+ 1)3 , (C4)
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b∗
4 = 5632λ3 + 167344λ2 + 330251λ+ 165623

30240(λ+ 1)3 , (C5)

b∗
5 = 10496λ2 + 24480λ+ 14269

1728(λ+ 1)2 , (C6)

b∗
6 = (3λ+ 2)(16λ+ 19)2

160λ(λ+ 1)2 . (C7)
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