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Generation and decay of counter-rotating
vortices downstream of yawed wind turbines
in the atmospheric boundary layer
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A quantitative understanding of the dominant mechanisms that govern the generation
and decay of the counter-rotating vortex pair (CVP) produced by yawed wind turbines
is needed to fully realize the potential of yawing for wind farm power maximization and
regulation. Observations from large eddy simulations (LES) of yawed wind turbines in
the turbulent atmospheric boundary layer and concepts from the aircraft trailing vortex
literature inform a model for the shed vorticity and circulation. The model is formed
through analytical integration of simplified forms of the vorticity transport equation.
Based on an eddy viscosity approach, it uses the boundary-layer friction velocity as the
velocity scale and the width of the vorticity distribution itself as the length scale. As with
the widely used Jensen model for wake deficit evolution in wind farms, our analytical
expressions do not require costly numerical integration of differential equations. The
predicted downstream decay of maximum vorticity and total circulation agree well with
LES results. We also show that the vorticity length scale grows linearly with downstream
distance and find several power laws for the decay of maximum vorticity. These results
support the notion that the decay of the CVP is dominated by gradual cancellation of the
vorticity at the line of symmetry of the wake through cross-diffusion.

Key words: turbulent boundary layers, wakes, vortex dynamics

1. Introduction

The spanwise component of a yawed wind turbine’s axial force induces a
counter-rotating vortex pair (CVP) that laterally deflects and deforms (Bastankhah &
Porté-Agel 2016; Branlard & Gaunaa 2016; Howland et al. 2016) its wake downstream.
This phenomenon has the potential to increase or regulate wind farm power output
(Howland, Lele & Dabiri 2019). Fully harnessing this potential requires a rigorous
understanding of the underlying fluid dynamics, as demonstrated by the use of lifting

† Email address for correspondence: cshapir5@jhu.edu

© The Author(s), 2020. Published by Cambridge University Press 903 R2-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

71
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/jfm-rapids
https://orcid.org/0000-0002-9868-7896
https://orcid.org/0000-0003-0330-415X
https://orcid.org/0000-0001-6947-3605
mailto:cshapir5@jhu.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2020.717&domain=pdf
https://doi.org/10.1017/jfm.2020.717


C. R. Shapiro, D. F. Gayme and C. Meneveau

line theory (Shapiro, Gayme & Meneveau 2018) for wind turbine yaw control (Howland
et al. 2019). Efficient engineering prediction methods of the mechanisms governing the
generation and decay of the induced vorticity downstream of the yawed turbine in the
atmospheric boundary layer (ABL) enable wind farm design and operational decisions
that take advantage of this knowledge.

The fate of strong streamwise vortices in the ABL, such as the yawed wind turbine
CVP, has been studied extensively. Aircraft wings at takeoff generate counter-rotating
tip vortices that can stay near the runway and generate dangerous conditions for the
next takeoff (Spalart 1998; Gerz, Holzäpfel & Darracq 2002). From a fundamental fluid
dynamics viewpoint, much effort has been invested in understanding the decay process
of vortices in turbulent flow (Tombach 1973; Devenport et al. 1996; Takahashi, Ishii
& Miyazaki 2005; van Jaarsveld et al. 2011). In the case of yawed wind turbines, the
vast literature on aircraft trailing wake vortices and individual helicoidal vortices shed
by individual turbine blades (Ivanell et al. 2010; Sørensen 2011; Chamorro et al. 2013)
is useful as a conceptual guide. However, this literature is not directly relevant to the
large-scale CVP shed by yawed wind turbines. Their CVP vortex core is expected to scale
with the turbine diameter, rather than the chord length of each blade, and their circulation
is significantly weaker than that of aircraft trailing vortices since the overall lateral forces
generated by the blades sweeping the inclined turbine disk area is only a fraction of the
total turbine axial force. Furthermore, the aircraft CVP is initially well approximated by
circular vortices, while the yawed wind turbine CVP is initially composed of two vortex
sheets.

Recent work is just beginning to link the yawed wind turbine CVP to the aircraft
trailing vortex literature: treating the yawed wind turbine as a porous lifting surface and
applying Prandtl’s lifting line theory, our recent theory predicts the initial magnitudes of
the transverse velocity and the circulation of the shed CVP (Shapiro et al. 2018). From
this insight, recent work has treated the initial streamwise-vorticity distribution as point
vortices (on a plane perpendicular to the flow) along the edge of the swept area of the rotor
(Martínez-Tossas et al. 2019; Martínez-Tossas & Branlard 2020; Zong & Porté-Agel 2020)
that diffuse under turbulent mixing, becoming a distribution of Lamb–Oseen vortices
(Saffman 1992). Their lateral diffusion rate is specified by an eddy viscosity that is
determined empirically (Zong & Porté-Agel 2020) or using a mixing length model with
the velocity scale specified by the wake velocity gradient and mixing length specified by
the size of the largest ABL eddies (Martínez-Tossas et al. 2019). The downstream evolution
is then found by numerically integrating the resulting vortex system. This numerical
approach yields results that agree well with simulations and experiments, but does not
facilitate insight into fundamental vorticity decay mechanisms or reveal scaling laws based
on the turbine yaw angle or the ambient turbulence characteristics.

In this work, we study the generation and decay of the CVP generated from yawed
wind turbines in the ABL. In order to advance engineering models for the shed vorticity,
particularly the total circulation of each vortex, analogous to the Jensen model (Jensen
1983) for the velocity deficit, we seek to derive analytical expressions that do not
require numerical integration (Meneveau 2019). Our model is motivated and validated
by large eddy simulation (LES) data, discussed in § 2, and the trailing vortex literature.
In § 3, we analytically derive the vorticity, transverse velocity and circulation distribution
generated immediately downstream of a yawed actuator disk and compare the analytical
predictions to simulations. In § 4, an eddy-viscosity assumption is applied to model the
turbulent diffusion during the downstream evolution of this initial vorticity distribution.
We propose appropriate velocity and length scales to be used to define an eddy-viscosity
that reproduces LES measurements. We derive analytical expressions for the maximum
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vorticity and total circulation of each vortex and compare these to LES. Of particular
interest is to establish whether the decay of the CVP vortex strength can be explained by
a simple model of cross-diffusion between the two vortices, an insight that can be used to
further refine point vorticity models for wake deformation and curling.

2. Large eddy simulations of yawed wind turbines in the ABL

We study the decay of the vorticity shed from yawed wind turbines in the
(neutrally-stratified) ABL using LES of yawed actuator disks. Large eddy simulations are
performed with the pseudo-spectral/finite difference code LESGO, which has been used
and validated in previous work (Calaf, Meneveau & Meyers 2010; Stevens, Martínez &
Meneveau 2018). The coordinate system x = (x, y, z) with the unit vectors i, j, and k is
defined such that x is the streamwise direction, y is the spanwise direction, and z is the
vertical direction. The origin is placed at the centre of the disk with radius R = 50 m.
The effective streamwise, spanwise, and vertical domain lengths are Lx = 3.75, Ly = 3
and Lz = 1 km, respectively, and we use 360 × 288 × 432 grid points. Turbulent inflow is
generated using a concurrent precursor domain (Stevens et al. 2018) with a friction velocity
of u∗ = 0.45 m s−1. A shifted periodic boundary condition (Munters, Meneveau & Meyers
2016) with a 0.49Lz shift is used to reduce streamwise streaks in the time-averaged
velocity field. The wind turbine with hub height zh = 100 m is placed 500 m downstream
of the domain inlet. Subgrid stresses are modelled using the Lagrangian-averaged scale
dependent model (Bou-Zeid, Meneveau & Parlange 2005). Wall stresses are modelled
using the equilibrium wall model (Moeng 1984) with roughness length z0 = 0.1 m.

The wind turbine is treated as a porous actuator disk that exerts an axial force T =
−1

2ρπR2C′
Tu2

d, perpendicular to the disk, that depends on the local thrust coefficient
C′

T , disk-averaged velocity ud, disk radius R, and the density of air ρ. The total axial
force T is distributed uniformly across the disk, leading to a distributed force f (x) =
TR(x)n, using the normalized indicator function R(x), and points in the unit normal
direction to the disk n. The yaw angle γ is measured counter-clockwise from the
positive x-axis toward the positive y-axis such that the unit normal of the actuator disk
is n = cos γ i + sin γ j. The normalized indicator function R(x) = G(x) ∗ I(x) is found
by filtering (convolving) I(x) = π−1R−2δ(x)H(R − r) (where δ(x) is the Dirac delta
function, H(x) is the Heaviside function and r is the radial distance from the centre of
the disk written in terms of the transverse coordinates (i.e. r2 = y2 + z2)) with a filtering
function G(x). The latter is a three-dimensional Gaussian whose width σR = Δ/

√
12 is

equivalent to a top-hat filter (Pope 2000) with a filter size chosen as Δ = 1.5h, where
h = (Δx2 + Δy2 + Δz2)1/2 is the root mean square of the grid spacings.

Simulations are run for yaw angles of γ = 15◦, 20◦, 25◦ and 30◦ with a local
thrust coefficient of C′

T = 1.33. Velocity fields are time-averaged for a time T where
T u∗/Lz ≈ 8 (all variables in this paper are time-averaged). A representative time-averaged
streamwise vorticity ωx field for γ = 20◦ is shown in figure 1. The vorticity contour plots
and volume rendering show the initial generation of arcs of vorticity above and below
the turbine line of symmetry. These arcs decay downstream, each tending to a more
axisymmetric distribution. The bottom vortex becomes flattened, presumably due to the
action of the ground. Furthermore, secondary vortex structures are generated at the ground.

Even with the significant time-averaging and shifted periodic boundary conditions of the
inflow, some background (noisy) vorticity is evident in the contour plots. To distinguish
between the shed CVP and the background vorticity, we apply Otsu’s method (Otsu 1979)
on the positive and negative vorticity at each cross-plane. Otsu’s method maximizes the
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FIGURE 1. Time-averaged streamwise vorticity distribution behind a yawed wind turbine with
γ = 20◦ under turbulent ABL inflow. (a) Volume rendering of the vortex core with (b–d) contour
plots of the total streamwise vorticity. Vortex cores are outlined in black.
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FIGURE 2. (a) Maximum vorticity magnitude and (b) circulation magnitude for top (blue and
negative) and bottom (red and positive) vortices with γ = 15◦ (� ), 20◦ (◦), 25◦ (�) and 30◦ (�).

intercategory (or minimizes the intracategory) variance, and thus identifies the region with
the strongest coherent vorticity, which we define as the vortex core.

To determine the circulation of each vortex as a function of x, we numerically
integrate the vorticity over the core area to obtain Γcore(x). The core vorticity ratio
α(x) = ωOtsu(x)/ωmax(x) is defined as the ratio of the thresholding value on vorticity that
separates the core vortex region from the remaining vorticity ωOtsu(x) to the maximum
vorticity magnitude ωmax(x). The total circulation of each vortex is then estimated as
Γ (x) = Γcore(x)/(1 − α(x)). This approach exactly recovers the total circulation of a
Lamb–Oseen vortex (Saffman 1992). The downstream evolution of maximum vorticity
magnitudes ωmax(x) and circulations Γ (x) for each γ measured from LES and normalized
by the inlet velocity U∞ and disk diameter D = 2R are shown in figure 2. We see similar
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decaying behaviour for all yaw angles with the bottom vortex initially having a greater
core circulation than the top vortex and decaying more quickly. Unlike the peak vorticity
that begins to decay immediately downstream of the turbine, the circulation stays nearly
constant up to x/D ∼ 3 and only then begins its decay downstream.

A number of vortex decay mechanisms have been discussed (van Jaarsveld et al.
2011), such as viscous diffusion, strong external turbulence, cross-diffusion across the line
of symmetry, and Crow instability breakup. When turbulence levels and shed vorticity
strength are moderate, evidence from many of these earlier simulations points to the
cross-diffusion mechanism (Cantwell & Rott 1988; Ohring & Lugt 1993; van Dommelen
& Shankar 1995; Leweke, Dizès & Williamson 2016) playing a dominant role. In the
following sections, we develop a model first to predict the generation and then the decay
of the yawed wind turbine CVP.

3. Generation of counter-rotating vortices from yawed actuator disks

We first model the generation of the vorticity at the rotor plane. By approximating the
elliptic projection of the transverse force of an actuator disk as a circle, the transverse force
can be written as

fy = −1
2ρCTU2

∞ cos2 γ sin γ H(R − r)δ(x), (3.1)

where CT is the standard thrust coefficient, r is the radial distance along the disk and
θ is the polar angle measured from the positive y-axis toward the positive z-axis, i.e.
sin θ = z/r. Taking the curl of the mean momentum equation, linearizing the advective
term, and neglecting turbulent and viscous stresses, the linearized mean streamwise
vorticity transport equation (also used in Martínez-Tossas, Churchfield & Meneveau 2017)
becomes

U∞∂xωx = −ρ−1∂z fy. (3.2)

Writing the derivative of the transverse force in terms of the cylindrical coordinate system
using the chain rule, using (3.1) and integrating (3.2) yields the vorticity distribution

ωx(x, r, θ) = −1
2 CTU∞ cos2 γ sin γ sin θδ(r − R)H(x). (3.3)

Integration of the vorticity (3.3) just downstream of the disk over the top and bottom
half-planes yields the circulation of both the top and bottom shed vortices

Γtop = −Γbottom =
∫ ∞

0

∫ π

0
ωx(0+, r, θ)r dθ dr = −RCTU∞ cos2 γ sin γ. (3.4)

The vortices are counter-rotating with a circulation magnitude Γ0 = RCTU∞ cos2 γ sin γ ,
which is identical to the predictions from lifting line theory (Shapiro et al. 2018).

The vorticity predicted by (3.3), which is valid for an idealized actuator disk, is now
compared to numerical simulations of a yawed actuator disk under uniform inflow from
Shapiro et al. (2018). In numerical simulations using a filtered force, the effective radius
of the wind turbine is R∗ = R + 0.75h (Shapiro et al. 2018), where h = (Δx2 + Δy2 +
Δz2)1/2 is the grid size. When comparing analytical predictions to numerical simulations,
we use this effective radius and circulation Γ ∗

0 = R∗CTU∞ cos2 γ sin γ . The vorticity
distribution can be approximated by first mapping (3.3) with an effective radius R∗ and
circulation Γ ∗

0 onto an arc-shaped line, where ωx(χ, ζ ) = −[Γ ∗
0 /(2R∗)] sin(χ/R∗)δ(ζ ),

χ = θr, and ζ = r − R∗. This vorticity is then filtered (convolved) with a two-dimensional
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FIGURE 3. Near rotor (a,d) streamwise vorticity, (b,e) spanwise velocity and (c, f ) vertical
velocity distributions from a yawed actuator disk with C′

T = 0.8 and γ = 20◦, with laminar
inflow. Top panels show values measured at x = R and bottom panels show theory. A circle with
radius R∗ is shown in black in all panels.

Gaussian G2 = (2πσ 2
R)−1 exp(−(χ2 + ζ 2)/2σ 2

R) whose width σR is equal to the filtering
kernel used to filter the axial force to obtain

ωx(θ, r) = − Γ ∗
0

2R∗
sin(θr/R∗)
σR

√
2π

exp

(
−(r − R∗)2

2σ 2
R

)
exp

(
− σ 2

R
2R2∗

)
. (3.5)

As can be seen in figure 3 for the case with C′
T = 0.8 and γ = 20◦, the vorticity

distribution predicted by (3.5), figure 3(a), reproduces the numerical results, figure 3(d),
with the simulation performed for the same parameters. For comparison to simulations, the
thrust coefficient is calculated based on the local one used for the simulations according
to CT = 16C′

T/(4 + C′
T cos2 γ )2 (Shapiro et al. 2018).

To validate the vorticity generation model, we also compare induced velocities by
applying the Biot–Savart law in the near turbine region:

v(x) = − 1
4π

∫
ωx(x′)(z − z′)

|x − x′|3 d3x′, w(x) = 1
4π

∫
ωx(x′)( y − y′)

|x − x′|3 d3x′. (3.6a,b)

Integrating in the radial direction we obtain

v(x) = 1
8π

Γ0

R

∫ ∞

0

∫ 2π

0

R sin θ ′(r sin θ − R sin θ ′) dθ ′ dx′[
(x − x′)2 + (r cos θ − R cos θ ′)2 + (r sin θ − R sin θ ′)2

]3/2 ,

(3.7)
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and integration in the streamwise direction (Gradshteyn & Ryzhik 1980, #2.271.5) yields

v(x) = 1
8π

Γ0

R

∫ 2π

0
R sin θ ′(r sin θ − R sin θ ′)

[
1
a

+ 1
a

x
(a + x2)1/2

]
dθ ′, (3.8)

where a = (r cos θ − R cos θ ′)2 + (r sin θ − R sin θ ′)2. We are primarily interested in
v at x >> R or x >> a, leading to v = −Γ0/4R and w = 0 for r ≤ R, and
v = −[Γ0/(4R)](R/r)2 cos(2θ) and w = −[Γ0/(4R)](R/r)2 sin(2θ) for r > R. The w
component has been found by using the continuity equation. Inside the radius of the
actuator disk, the v velocity component (Γ0/4R) is identical to the constant prediction
from lifting line theory (Shapiro et al. 2018), and the w component vanishes. Outside
the radius of the actuator disk, the velocity components depend on the polar angle and
decrease with the squared radial distance.

The predictions for v and w are compared to simulations for C′
T = 0.8 and γ = 20◦

measured at x = R in figure 3(b,c,e, f ). To compare the theoretically predicted velocity
components to simulation results, the velocity must be sampled before the self-induction
of the vorticity is considerable. However, directly downstream of the actuator disk, the
actuator disk streamtube is still expanding from the non-negligible streamwise pressure
gradient induced by the streamwise component of the axial force. To counteract this
effect in the simulation measurements, we have removed the expansion expected from
a decelerating streamtube by plotting v + ur cos θ and w + ur sin θ , where ur is the
radial velocity. The radial velocity is obtained by measuring the streamwise velocity
gradient at the centre of the actuator disk streamtube (assuming that ∂xu = ∂xu(R, 0, 0)

for r ≤ R∗ and ∂xu = 0 for r > R∗) and radially integrating the continuity equation, i.e.
ur = (r/2)∂xu(R, 0, 0) for r ≤ R∗ and ur = (R2∗/2r)∂xu(R, 0, 0) for r > R∗. With this
correction included, the velocity components agree well with simulations, thus further
supporting the predicted generated vorticity distribution described in (3.3).

4. Turbulent decay of counter-rotating vortices in the ABL

We now consider the decay of the CVP due to the surrounding turbulence in the ABL
and test the implications of the cross-diffusion hypothesis (Cantwell & Rott 1988; Ohring
& Lugt 1993; van Dommelen & Shankar 1995). In our simplified model, the self-induced
deformation of the shed vorticity sheet is neglected, the ABL shear is also neglected, and
only turbulent diffusion is considered. The boundary-layer assumptions are applied to the
streamwise vorticity equation downstream of the turbine (Saffman 1992; Pope 2000), and
(3.2) is replaced by an advection–diffusion equation with eddy viscosity νT(x):

U∞∂xωx = νT(x)
(
∂2

y ωx + ∂2
z ωx

)
. (4.1)

First, note that a point vortex ωx(x0, y, z) = Γpδ( y − y0)δ(z − z0) with circulation Γp
located at (x0, y0, z0) that evolves under (4.1) diffuses downstream (Saffman 1992) as

ωx(x, y, z) = Γp

4πη2(x)
exp

(
−( y − y0)

2 + (z − z0)
2

4η2(x)

)
, (4.2)

where the length scale η(x) results from the integral of the eddy viscosity

η2(x) = U−1
∞
∫ x

x0

νT(x′) dx′. (4.3)
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The virtual origin x0 is introduced to account for the finite thickness of the initial vorticity
distribution, which depends on the grid size in simulations or potentially the chord size of
a physical turbine. The solution in (4.2) is equivalent to filtering the initial condition with a
two-dimensional Gaussian kernel with a width of

√
2η(x), since the underlying governing

equation (4.1) is linear. This result is then applied to the initial vorticity distribution (3.3)
generated by the yawed turbine by placing point vortices around the circle with radius
R at locations (x0, R cos θ, R sin θ) with differential circulation dΓp = −Γ0 sin θ/2 dθ .
Integrating around the circle leads to the vorticity field

ωx(x, y, z) = −
∫ 2π

0

Γ0 sin θ

8πη2(x)
exp

(
−( y − R cos θ)2 + (z − R sin θ)2

4η2(x)

)
dθ. (4.4)

While (4.4) cannot be integrated directly for all y and z, the integral of (4.4) coincident
with the peak vorticity magnitude at y = 0 and z = ±R can be integrated as

ωmax(x) = Γ0

R2
R2

4η2(x)
exp

(
− R2

2η2(x)

)
I1

(
R2

2η2(x)

)
, (4.5)

where In is the modified Bessel function of the first kind with order n.
The total circulation in the vortex system generated by a yawed actuator disk vanishes in

all streamwise planes, i.e. Γtotal(x) = ∫∞
−∞

∫∞
−∞ ωx(x, y, z) dy dz = 0, because the vorticity

across the y-axis is equal and opposite. Here, we have neglected the image vorticity due
to the ground interaction. Integrating each vortex Γ (x) = | ∫∞

0

∫∞
−∞ ωx(x, y, z) dy dz| =

| ∫ 0
−∞

∫∞
−∞ ωx(x, y, z) dy dz| yields a normalized circulation

Γ (x)
Γ0

=
√

π

4
R

η(x)
exp

(
− R2

8η2(x)

)[
I0

(
R2

8η2(x)

)
+ I1

(
R2

8η2(x)

)]
, (4.6)

whose magnitude monotonically decreases for η ≥ 0. This decrease in circulation is
caused purely by the cancellation of vorticity along the y-axis as vorticity diffuses
downstream.

The problem of properly specifying the eddy viscosity is approached using a mixing
length model νT(x) = υ�, where υ is a velocity scale and � is the mixing length (Pope
2000). The appropriate velocity and length scales are specified using reasoning analogous
to that described in Shapiro et al. (2019) for wind turbine wakes. For a free wake, the
mixing length scales with the wake width and the scale of the velocity fluctuations are
proportional to the velocity deficit (Pope 2000). In the ABL, however, turbulent mixing of
the wake is dominated by the boundary-layer induced turbulence, whose fluctuations are
proportional to the friction velocity. Therefore, the appropriate velocity scale is the friction
velocity, i.e. υ ∼ u∗, and the appropriate length scale is the wake size (Shapiro et al.
2019). For a vortex in the ABL, the reasoning remains the same and the eddy viscosity is
νT = u∗�, where � is the size of the vortex.

In order to specify the size of the vortex, we turn to similarity scaling for wakes in the
ABL (Shapiro et al. 2019), where the wake grows linearly with downstream distance, i.e.
� ∼ x. Equivalently, the Jensen wake model (Jensen 1983) assumes that the diameter of
a top-hat wake is Dw = D + 2kx, where k is the wake expansion rate commonly taken
as k = u∗/U∞. Applying the log law to the inlet velocity U∞ = (u∗/κ) ln(zh/z0), where
κ = 0.4 is the von Kármán constant, results in an expansion rate that depends on the
hub height and roughness height k = κ/ ln(zh/z0). We assume that the vorticity grows
at the same rate 2kx, but initially starts with thickness much smaller than D. In order to
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FIGURE 4. Maximum vorticity and circulation magnitude normalized by (a,b) rotor diameter D
and inlet velocity U∞ and (c,d) theoretical circulation Γ ∗

0 and effective radius R∗. (e; inset to a)
Vortex radius showing linear growth. Symbols show simulation results (the arithmetic average
of the magnitudes corresponding to top and bottom vortices) and lines show theory, i.e. (4.5) for
panels (a,c), (4.6) for panels (b,d) and (4.8) for panel (e), the inset in panel (a).

write � in terms of the Jensen model top-hat length scale, we note that a point vortex
filtered with a box filter with a scale β has the same second moment (Pope 2000) as a
diffused point vortex with length scale β/

√
24. Therefore, we write the mixing length

as � = 2k(x − x0)/
√

24. Thus the resulting eddy viscosity and squared length scale are,
respectively, modelled according to

νT(x) = u∗2k(x − x0)/
√

24 and, from (4.3), η2(x) = k2(x − x0)
2/

√
24. (4.7)

The maximum vorticity, circulation and vortex growth rate are compared to data from
simulations in figure 4. In the model, the virtual origin x0 is chosen by noting the
equivalence between the effect of diffusion with a length scale η to Gaussian filtering with
a length scale

√
2η. Considering the filtered axial force with length scale σR = Δ/

√
12,

we conclude that the virtual origin is x0 = −24−1/4Δ/k. A similar effect is expected for
either a physical wind turbine or a drag disk, where the thickness of the initial vorticity
distribution will scale with the chord of the blades or thickness of the disk. In figure 4, we
compare the model predictions with the arithmetic average of LES measured peak vorticity
and circulation magnitudes from the top and bottom vortices, since the simulation data
showed some differences between the top and bottom vortices and these differences are
not captured by the current theory. Results shown in figure 4(c,d) also indicate that the
normalizations by R∗ and Γ ∗

0 suggested by the theory for maximum streamwise vorticity
(4.5) and circulation (4.6) (with effective parameters in LES R∗ and Γ ∗

0 determined as
explained in § 3) yield good collapse of the LES data and with the theory.

In order to validate the growth rate of the mixing length, we calculate the vortex
radius from simulations, which is defined as the location of the maximum spanwise
velocity above the rotor r1(x) + R = argmax v(x, 0, z). For a Lamb–Oseen vortex, which
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is expected beyond x/D > 5, the vortex radius is (Saffman 1992)

r1 = 2.24η = 2.24(24)−(1/4)k(x − x0) ≈ k(x − x0), with k = u∗/U∞. (4.8)

As shown in the inset to figure 4(a), the growth rate of the measured vortex radius is linear
with x and agrees with the theory.

Consideration of the transformation of the vorticity from a diffused line around the
edge of the disk to a diffused point vortex as well as the length scale η(x) reveals
power-law scalings for the maximum vorticity. Initially, the vorticity is confined to a line
around the edge of the disk. Considering this limiting case with z being the coordinate
normal to the line, U∞∂xωx = νT(x)∂2

z ωx with ωx(x, 0) = Γpδ(z), yields the solution
ωx = [Γp/(η(x)

√
4π)] exp(−z2/(4η2(x)), with maximum circulation scaling inversely

with the length scale ωmax ∼ η−1. In the far field, the vorticity behaves like a point vortex,
as derived earlier, with the expected scaling of ωmax(x) ∼ η−2. With the virtual origin
from the simulations x0 ≈ −2D, the squared length scales as η2(x) ∼ x2 + 4xD + 4D2.
Therefore, for moderate x/D ≈ 2, where the 4xD term is the same order as the 4D2 term
and dominates the x2 term, the squared length scale initially scales as η2(x) ∼ x. For large
x/D, the squared length scales as η2(x) ∼ x2. Combined with the scaling of line and point
vortices, this yields the following power laws for the maximum vorticity: ωmax ∼ x−1/2

for moderate x/D and ωmax ∼ x−2 for large x/D. These scaling laws agree well with
simulations and theory, as shown in figure 4(c).

5. Discussion and conclusions

Using concepts drawn from the aircraft trailing vortex literature (Cantwell & Rott
1988; Ohring & Lugt 1993; van Dommelen & Shankar 1995; Spalart 1998), we study
the decay of the vortices generated by yawing of wind turbines. The theory presented in
§§ 3 and 4 considers the effect of linear advection and turbulent diffusion on the decay
of the vorticity and circulation shed from yawed turbines. The analysis is based on a
streamwise-varying eddy viscosity that depends on the growth rate of the vorticity length
scale and the boundary-layer friction velocity. The analysis enables us to obtain analytical
expressions for the maximum vorticity and shed circulation from each counter-rotating
vortex that agrees well with actuator disk simulations of yawed wind turbines in the ABL.
Results refine the emerging understanding of the decay of the vorticity shed from yawed
turbines. As in Shapiro et al. (2019), we find that careful consideration of the appropriate
mixing length and velocity scale for the eddy viscosity of wind turbines in the ABL yields
an eddy viscosity that increases linearly with downstream distance and a mixing length
that grows at a rate k = u∗/U∞. While thermal stability is not directly considered in
the model so far, the effects of thermal stratification could be incorporated using, e.g.
Monin–Obukhov similarity theory to introduce a stability correction factor in estimating
the vortex expansion rate k.

The results provide a theoretical framework for engineering models of the shed vorticity
consisting of closed-form analytical expressions, i.e. (4.5), (4.6) and (4.8). These do
not require numerical integration of differential equations to evaluate the model, hence
facilitating eventual use in engineering models for wind farm design and control. The
expressions for total circulation of the vortices is particularly useful for models that
consider the yawed turbine CVP as a pair of Lamb–Oseen vortices. The scaling also agrees
well with the empirical observation of Zong & Porté-Agel (2020) in the near field of the
wake.
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Evolution of yawed wind turbine-generated vortices

Turbulent mixing appears to be the dominant process that governs the decay of the
shed vorticity. The yawed turbine generates equal and opposite circulation bound to the
rotor disk that is shed downstream, resulting in vanishing total circulation. For a single
vortex, the circulation would remain constant even as the vorticity diffuses downstream.
However, since the opposing negative vorticity similarly diffuses, the cancellation of the
diffused vorticity along the centreline of the wake results in the apparent ‘dissipation’ of
circulation for the entire system. The cross-diffusion hypothesis, however, does not fully
explain the apparent differences between the top and bottom vortices in the CVP. Ground
effects, vertical shear and the vertical structure of turbulence in the ABL clearly play a
role in creating some differences in the evolution of the top and bottom vortices that more
refined models should also aim to reproduce.
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