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We characterize bilinear forms V on l\ such that K(e,e) = ||l/||= 1 in terms of their matrices. For such V, we
prove that |^(.x,y)|2g0(|.xp)^(|y|2) for all x,y, where $(.*)= V(x,e), \)i(y)=V(e,y). Some other properties of
such forms are given.
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1. Introduction

Let A, B be complex C*-algebras with identities eA, eB. We say that a bilinear form V
on A x B is unital if

V(eA,eB) = \\V\\=\.

Note that if A,B are finite-dimensional and V is any bilinear form with | |K | |=1 , then
there will be unitary elements xoeA, yoeB such that V(xo,yo)=l, and a unital form Vx

is then obtained by putting Vl(x,y) = V(xox,yoy).
If V is unital, then states <f> (on A), ip (on B) are defined by: <j>{x)= V(x,eB),

\p(y) = V(eA,y). A result of Haagerup [2] states that we then have

for self-adjoint x,y. This is not true for \V(x,y)\ or for non-self-adjoint elements, though
Grothendieck-type theorems assert the existence of other states <j>', ijj' giving such
inequalities with an intervening constant.

This result is an essential lemma in Haagerup's proof of the C*-algebra version of
Grothendieck's inequality. A second essential, and rather tricky, lemma (Lemma 3.2)
deals with Im V(x,y) in the very special case A = B = l\,. Bilinear forms on \\ are thus of
key importance for the general case. They are also of considerable interest in their own
right. Our main theorem (Theorem 2) states that for a unital bilinear form V on l2

x,
with <t>, ip defined as above, we have

\v(x,y)\2S<H\x\2)il>(\y\2)
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for all x,y. This easily implies Haagerup's Lemma 3.2. Furthermore, it reproves the
known fact [1], [7] that Grothendieck's theorem holds with constant 1 for /£,, but with
the extra feature that it identifies the dominating states as the <f>, ij/ defined above. There
would appear to be no other known situation where there is a ready-made formula for
the "best" dominating states for a given bilinear form. We show by an example that the
<p, \j/ above (which are, of course, the natural candidates) are no longer the best choice
even in the case l2

x x /^; the best constant is, of course, already unknown for this case.
Hence it is not surprising that some quite delicate work is needed to obtain our
Theorem 2.

It is not at all easy, a priori, to recognise when a bilinear form on /£, is unital. Our
Theorem 1 provides a full—and perhaps unexpected—characterization of such forms in
terms of the real and imaginary parts in the 2 x 2 matrix (V(ej,ek)): in the notation used
below, the non-trivial condition involved is h2 ^bcd + acd + abd + abc. The deduction of
Theorem 2 then roughly mimics one of the standard proofs of the commutative
Grothendieck inequality; in a quite natural way, the inequality just mentioned is seen to
be exactly what is needed. On the way to Theorem 1, we find further interesting
properties of unital forms, in some cases applying to C*-algebras generally. For
example, if O^x^e^ and 0^_y^eB, then the least possible value for Re V(x,y) is exactly
~~ 8-

We finish by giving short proofs, avoiding our theorems 1 and 2, of Haagerup's
Lemma 3.2 and of the fact that the complex 2 x 2 Grothendieck constant is 1.

2. Elementary results

Notation. As usual, l"x denotes C with supremum norm. The y'th unit vector is
denoted by e,- and et + ---+en by e. For x,y in l"x, the elements |x| and xy are defined
pointwise.

Our first lemma, which is implicitly in [2], explains why certain results on l\ are
applicable to the general case.

Lemma 2.1. Let V be a unital bilinear form on AxB. Let p,q be elements such that
,0^q^eB. Then there is a unital bilinear form VY on l2

x such that:

), V1(el,e2) = V(p,eB-q),

VMi,^)=V{eA-p,q), Vl(e2,e2)=V(eA-p,eB-q).

Proof. This follows from the fact that for such p,

which is easily seen, e.g. from the Gelfand representation.

Lemma 2.2. Let V be a bilinear form on /£, and let V(e},ek) be given by the matrix
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« 0
y

Proof. By convexity and scalar multiplication, ||K|| is the maximum modulus of
numbers of the form

where |p| = |A| = |/i| = l. For fixed p., we can choose p and / to make this expression equal

We shall use this lemma constantly, sometimes with the expression in the equivalent
form \p.~ict + pP\ + \p.~ly + p.8\. Clearly, /? and y can be interchanged, and we may
consider \p\^\ instead of \p\ = \. Also, if V is defined by V(ej,ek) = V(e},ek), then

Y\. The form W = j(V + V) is then hermitian (i.e. W(x,y) is real for real x,y) and

\\w\

Lemma 2.3. The matrix of a unital bilinear form on l2
x is of the form

(a + ih b- ih\
\c-ih d + ih)'

where each of a + b, c + d, a + c, b + d, a + d, b + c is non-negative and a + b + c + d— 1.

Proof. Let the matrix be

U 0
\y 8

Positive functionals <j), ty are defined by: 0(x) = V(x, e), ij/(y) = V(e, y). Hence

are all real and non-negative. Therefore the matrix has the form stated. Clearly,
V{e,e) = a + b + c + d=\. Also,
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so a + d and b + c are non-negative. (From the imaginary part, we see that |/i|^|.)

We shall use the notation of Lemma 2.3 consistently. We give simple direct proofs of
the next three results, although they are implied by later theorems.

Lemma 2.4. For a unital form on 1%, as above, if a + b = 0, then a = b = h = O.
Equivalently, if<l>(el)=0, then K(e,,e,) = 0.

Hence if A,B are C*'-algebras, V is a unital form on A x B, 0^p^eA, 0^q^eB and
= 0,then V(p,q)=0.

Proof. Note that c + d=\. If / i#0, then |c-i7i| + |rf + (7i|> 1, hence ||K||>1. SO /I = 0.
By Lemma 2.2, we also have |c + /a| + \d — ia\^ 1, hence a = 0.

The last statement follows at once, by Lemma 2.1.
For the real part, it is easy to improve this result, as follows.

Lemma 2.5. For a unital form on l2
K as above, we have a2f^(a + b)(a + c), i.e.

Hence if V is a unital form on A x B, and 0^p^eA, 0^q^eB, then \ReV(p,q)\2^

Proof. As mentioned above, the form remains unital if we change h to 0, so we
assume that h = 0. Let

F((x,P) = Re V(ei°e1 + e2,e
il!el+e2)

= a cos (a + P) + b cos a + c cos /? + d.

Then F(a.,fi)^\ for all a,/? and F(0,0)=l. The second-order partial derivatives at (0,0)
are

{DllF)(0,0)=-a-b,

(D22F)(0,0)=-a-c,

(Dl2F)(0,0)=-a.

The statement follows, by the standard conditions for a local maximum.

Proposition 2.6. For a unital form on /£, as above,

bed + acd + abd + abc > 0.
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Proof. If a + b = 0, then by Lemma 2.4, a = b=O, and the expression is zero. Similarly
if c + d = 0. Assume that a + b > 0 and c + d > 0. Now

= a2 + 2ab(2x2-l) + b2,

where x = cos 9. Let

F(x) = [_a2 + 2ab(2x2-l) + b2y>2 + lc2 + 2cd(2x2 -

Then F(l) = 1 and F(x)gl for all x e [ - l , l ] . Hence F'(l)^0, so

ab | cd ^Q.
a+fc

The statement follows.

Proposition 2.7. Let V be a unital bilinear form on Ax B, and let 0^p^eA, O^q^eB.
Then the least possible value for Re V(p, q) is —\, and this can occur.

Proof. By Lemma 2.1, we have to show that for a unital form on l2^, with the above
notation, we must have a'Si—^. Assume that a<0, and write a= — a'. It is elementary
that the form obtained by replacing b and c by j(b + c) is still unital: hence we may
assume that b = c. Since b^a'>0, Proposition 2.6 becomes b{a + d) + 2ad^0, or

Now d^.a' (since a + d^.0), so in fact d>a'. Write d = (\ +k)a'. Our inequality becomes

or b^2{l+k~l)a'. Also, 2b + d-a'= a + b + c + d=l, so

The least value of k + 4k~l is 4. Hence a'^f.
We now show that a unital form on /£, is given by

-1/8 3/8
3/8 3 /8 /
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so that a can be — g. (This will follow from Theorem 1, but we give a short direct
proof.) We have to show that

\-e

for all 9. Writing x = cos0, we have

The required inequality is: (4 — 3X2)1 / 2 + 3JC^4 for |x |^ l . This is correct, since

(4-3x) 2 - (4-3x 2 ) =

Remark. The example given is in fact the unique unital form on l2
x having a= — 5.

For, given such a form with b = c, we then require k = 2 in the above proof, hence
d = b = \. We cannot have 6 = § + <5, c = §—5 with <5>0, since then the expression in
Proposition 2.6 is negative. So b = c = \, and this expression equals 0; it will follow from
Theorem 1 that /i = 0.

Two further examples may be instructive at this point.

Example 2.8. In the case of real l2
x, it is trivial that

1/2 1/2
1/2 1/2

defines a unital bilinear form. This shows that results 2.4 to 2.7 fail in the real case.

Example 2.9. For any I with |A| = 1, a unital form on (complex) /^ is given by

1/1+A 1+X
4\1 —A 1-X

To show this, let |a|= 1. Then

a(l-A) + a(l-X) = 2Re(a-cd),

so

since it equals either 4|Re(<x)| or 4|Re(od)|.
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3. Characterization of unital bilinear forms on 1%

Let V be a unital bilinear form on /£, with matrix as above. Haagerup, [2, Lemma
3.2], gives an upper estimate for the imaginary part h. We will derive a rather stronger
estimate which turns out, together with the other more obvious conditions, to be
necessary and sufficient for V to be unital. Our estimate takes the rather unexpected
form h2 ^ E, where £ is the quantity in Proposition 2.6. We see later that this is exactly
what is needed to prove our Grothendieck-type theorem.

The proof involves some manipulation, but the principle is elementary. The proof of
necessity (which is what is really wanted for applications) essentially consists of squaring
twice to remove the square roots implicit in the statement | |K | | ^1 . The proof of
sufficiency then amounts to a careful check that these steps are reversible.

With our usual notation, write

A = ab — cd,

E = bed + acd + abd + abc,

F = (a + d)(b + c)(a + c)(b + d).

The next lemma is only needed for sufficiency.

Lemma 3.1. A2 + E = F.

Proof. Let

G = bcd(b + c + d) + acd(a + c + d) + abd(a + b + d) + abc(a + b + c).

Then

= G + 4abcd,

while

so

F-E = a2b2 + c2d2 - labed = A2.

Theorem 1. Let V be the bilinear form on \2
X with matrix

+ b — ih\
\c-ih d + ih)'
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Then V is unital if and only if the following conditions hold:

(i) a + b + c + d=\,

(ii) each ofa + b, c + d, a + c, b + d, a + d, b + c is non-negative,

(iii) h2^bcd + acd + abd + abc( = E).

Proof. Observe first that (iii) is equivalent to:

(iiia) (h sin 0 + A cos 0)2 g A2 + E for all 0.

Necessity. We have seen (Lemma 2.3) that (i), (ii) are necessary.
With 0 chosen arbitrarily, write

The statement 1̂ 11 = 1 is equivalent to: |CT| + | T | ^ 1 for all 6. Now

2 + 2(cd-h2)cos26-2h(c

hence (recall that a + b + c + d=\),

\z\2-\a\2 = c2 + d2-a2-b2-2Acos20-2hsm2e.

Provided that we know |T| ̂  1 (which is clearly true if V is unital), the inequality
|CT|^ 1 — |T| is equivalent to |CT|2^(1 — |T|)2, hence to

(1)

— a — b) + 4Asin20-4fcsin0cos0

= 2(c + d) + 4Asin20-4/isin0cos0,

(the last two lines again use a + b + c + d=l). Squaring again, we obtain
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|T|2 = (e + </)2 + 4A2sin40+4/i2sin20cos20

+4(c + d)A sin2 9 - 4h(c + d) sin0 cos 0-8/iA sin3 0 cos 0.

Writing cos 20= 1 — 2sin20 in the expression for |T|2, we see that this is equivalent to

For sin 0#O, this is equivalent to

which then holds by continuity also when sin 0 = 0. The inequality is equivalent to

= A2 sin2 9+ abc + abd + cd(l-c-d)

= A2 sin2 0 + abc + abd + cd(a + b)

= A2sin20 + £

hence to
( ) = A2 ,

i.e. statement (iiia).

Sufficiency. Suppose now that statements (i), (ii), (iiia) hold. Both squaring steps can
be reversed provided that the right-hand side in (1) is between 0 and 2 (we will then
have |T |_1 where needed for the first step). By (iiia) and Lemma 3.1, this amounts to
showing that

It is clearly enough to show that c2 + rf2 + 2F1/2
 = 1. Since F-x(l -x)y{l -y) for certain

x,y in [0,1], we have F1/2g£, so we only need to consider the case where c2 + d2>j.
Then one of c, d (say c) is greater than \.

Suppose that a = 0, b^O. Since a + c=l— b — d and x(\—x) decreases on the interval
[ i 1], we have (a + c)(b + d)^c(\-c). Similarly for (b + c)(a + d). Hence
and

Now suppose that a<0. Since a + b^0, we have b+c^c — a>{, hence (b + c)(a + d)^
(c — a)(\ —c + a), and
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F^(c-a)(l -c + a){c + a)(l -c-a)

= ( c 2 - a 2 ) [ ( l - c ) 2 - a 2 ] .

So F1 / 2^c(l —c) and the conclusion follows as before.

Corollary 3.2 ([2, Lemma 3.2]). With the above notation, h2^F and also

(c + d)(a + c)(b + d)

Proof. By Lemma 3.1 (for the second statement, interchange b and d).

Note. By considering scalar multiples, we see that the statement ||K|| = V(e,e) ( / I ) is
equivalent to (ii) and h\

4. Grothendieck-type theorems for tl,

First we consider linear operators into a Hilbert space. Let A be a commutative
C*-algebra, H a Hilbert space and T an operator from A to H with UrH = 117(011 = 1.
By [5, Theorem 9.4], we then have ||rx||2^2/(|x|2) for all xeA, where /(*) =
<Tx, TeA}. This shows that 7r2(r)!g,y2||T|| (where n2 denotes 2-summing norm), and
that for operators of this kind, unlike bilinear forms, there is an automatic formula for
the dominating functional, if we disregard the fact that the factor 2 is not optimal (in
fact, 7r2( 1") ̂  (2/^/re) 11 T||, SO by Pietsch's theorem, there is a functional g such that
||Tx||25i(4/7r)g(|xj2); see e.g. [3, Theorems 5.2 and 9.11]). We now describe a case where
the 2 can be replaced by 1. We denote by L(X, Y) the space of continuous linear
operators from X to Y.

Lemma 4.1. (Cf. [3, exercise on p. 103]). Let Te(L(ll,,H) be such that <Tej,Tek} is
real and non-negative for all j , k. Then a positive linear functional f is defined by:
f(x) = <Tx,Te>and

for all x. (Consequently n2(T) = \\T\\.)

Proof. Write x = Yj= i x(j)ej and Te, = ys. Then
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Since iyk,yi'> = iyi,yk'>, we have

= Z\x(j)-x(k)\2<yj,yk>
k

Since ||T|| = ||Te|| and | |/ | | = /(e) = ||r||2, it follows that / is positive and 7t2(T) = ||r||.

The condition in Lemma 4.1 implies that ||T|| = ||Te||. The special feature of the case
n = 2 is that the converse applies, as we now show.

Proposition 4.2. (i) Let TsUl^H) satisfy ||T|| = ||Te||, and let f{x) = (Tx,Te)>. Then
for all x in /£,,

(ii) For any TeUl^H), we have n2(T) = \\T\\.

Proof, (i) Let Tej=yj. By Lemma 4.1, we only need to show that <yi,y2> = 0. By
hypothesis, Hyi+^H^IIyi+a^ll. hence Re <J/J,y2>^Re<y,,ay2>, for all a with |a| = l.
Choose a so that <j'i,«3'2> = |<J;i»3'2>|- Then we clearly have | |

(ii) For T satisfying \\T
an element x0 such that
defined by T,(x) = T(xx0).

= ||re||, the statement follows from (i). For other T, choose
xo| = e and ||T*o|| = ||T||> and apply (i) to the operator Tt

Theorem 2. (i) Let V be a unital bilinear form on 1%. Let <p{x)= V(x,e), \p(y)= V(e,y).
Then for all x,y in l2^,

\V{x,yf^{\x\2m\y\2). (1)

(ii) Let V be any bilinear form on /£, with \\v\\ = 1. Then there are states <j>, i]/ such that
(1) holds. In other words, the 2 x 2 Grothendieck constant equals 1.

Proof, (i) implies (ii) (standard). There exist elements x0, y0 such that \x0\ = \yo\=e
and V(xo,yo) = l. Define Vl by

VAx,y)=V{xxo,yyo).
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Then Vt is unital, so by (i) there exist states 0, i// such that for all x, y:

Since V(x,y) = K,(XQ 'X.^O 1y) and I x ^ x l ^ x l (etc.), the same inequality is satisfied by
V(x,y).

Proof of (i). First, consider the case where one of ^ (e j , <f>{e2) (say <p(e2)) is 0. By
Lemma 2.4, we then have (with our previous notation) c=d=h=0 and a+ 6=1. It
follows easily that V(x,y) = </>(x)\lf(y), and the statement follows since |0(x)|2 = </>(|x|2),
etc.

Suppose now that <£(e,)>0, <f>(e2)>0. Then an inner product is defined on C2 by

Let H^ be C2 equipped with this inner product. For any x,

V(x,ek) = X x(j)V(ej,ek)

where

Define a linear operator T from /^ to //^, by: Tek=zk for it = 1,2. Then the above shows
that

for all x, y. Note that (1) Te = zl+z2 = e, (2) (f>(Ty) = V(e,y) = ip(y). Now with our
previous notation,

(a + ih)(b + ih)
a + b c + d

_ab-h2 cd-h2

~ a+b c+d '

By Theorem 1, this is non-negative. By Lemma 4.1, ||r^||^ = /(|_v|2) for all y, where
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= 4>{Ty) by (1) above)

by (2)).

So

Corollary 4.3. Let A, B be C*-algebras, V a unital bilinear form on Ax B. IfO^x^
^y^eB, then

(where 4>, i/> are defined as before).

Proof. For l2
m, this follows immediately, since 0(x2) ^ 4>(x), etc. The result for general

C*-algebras follows, by Lemma 2.1.

This corollary combines Lemmas 3.1 and 3.2 of [2] (where the real and imaginary
parts are considered separately) in the form actually required for the proof of the
generalized Grothendieck inequality. We remark that it is quite easy to deduce
Corollary 4.3 from Theorem 1 without Theorem 2: in our usual notation, one shows
that a2 + h2^(a + b)(a + c). Since even the proof of our Theorem 1 is as much work as
the proof of Haagerup's lemmas, we give an alternative short proof of Corollary 4.3 in
Section 5.

Higher dimensions; Grothendieck's inequality

The standard Grothendieck inequality states that for a bilinear form V on \"m with
norm 1, there are states <f>', tj/' such that |K(x,)')|2^KG$'(|x|2)i/''(|)'|2) for all x, y. One
approach to this is somewhat analogous to our proof of Theorem 2 (cf. [5, chapter 9];
[3, p. 115]). Once one has found <£' such that |K(x,y)|gK||jc||^||j'||0O, Theorem 9.4 of [5]
does the rest. The hard part, proving the existence of <f>', is equivalent to showing that
7t2(S)SK||S||, where S:/^-W" is given by (Sx)(y) = V(x,y). For n>2 , our 0 will not serve
as <j>'. What can be said about our (f>, ip is the following. Let V be a unital form on ln

m.
By Corollary 4.3, for each j , k,
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For elements x,y, we have

V(x,y)= I 1 x(j)Hej,ek)y(k),
j=l k=l

and hence

: I t \x(j)\2\y(k)\2<l>(ej)<Kek)
j=l k = l

Example 3.8 in [2], exhibits a unital form on Ij, x Lm(/), where / = [ — n/2, TC/2], for
which there is no constant C such that

for all x,y. By finite approximation, it follows that the n2 appearing above cannot be
replaced by a constant independent of n.

Example 4.4. The following example (which is adopted from Haagerup's) shows that
even in the case of /^ x l3

x, the best value of C in the above statement is at least ^Jl,
and that <j), ip is not the best choice of dominating functionals. This demonstrates a
fundamental difference between the 2 x 2 and 2 x 3 cases, rather analogous to the
difference between the C*-algebras on Z 2 * Z2 and Z2 * Z 3 (cf. [6]).

Let / = [ — n/2, n/2] and let Vo be Haagerup's bilinear form:

V0(x,f)=1-x(l)Sf(t)e"dt+l-x(2)$f(t)e-»dt.

Choose (5>0 and partition / into

'-[!-*§}
I2= —l\ and 73 = /\(/i u /2). Let fs be the characteristic function of Ij. A unital form V
is defined on l2^ x l^ by putting V(ej,ek) = V0(ej,fk). The matrix V(ej,ek)) is

Wl-e-" l-eiS 2cos<5\
4\ \-eiS \-e~il1 2cos5J

and we have
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Let xo=(l, — 1), yo = (l, — l,0). Then K(x0,>>O) = isin<5, while \l/{yl) = 1 — cos<5. The
statement follows, since sin2<5/(l — cos<5)-+2 as <5-»0.

We now show how a better choice of dominating functionals can be made. For u, v in
\\, write [«,i>] = U(1)I>(1) + H(2M2) . Then V(x,y) = lSx,Ty\, where Sx = x/s/2 and T is
given by the matrix for V multiplied by yjl. With <p as before, we have ||Sx||2 = </»(|x|2).
We shall define a positive functional t/^, with norm tending to 1 as d-*0, such that
| | | | 2 | y | 2 ) for all y, hence such that |K(x,j;) |2^0(|JC|2)^I(IJ 'H2) for all x,y. Now

where r(d) = jcosd(\ — cos<>). Since Ty = YJ=iy(j)(Tej), we have

^ \y(j)\2r(S)

where ||iAi|| = 1 — cos2^ + cos«5. (The difference between ij/ and i//l is that 1— cos<5 has
been replaced by 1 — cos2 S.)

5. Two short proofs

Proof of Haagerup's Lemma 3.2 (our Corollary 4.3 with an extra constant)
The following is in the spirit of Haagerup's proof, but considerably shorter. With our

previous notation, write a + b = 4>, a + c = (//, a + ih = A. We assume our Lemma 2.5 (or
Haagerup's 3.1), giving a2^^. We will show that |/l|2^2</)i^ (i.e. Corollary 4.3 with an
extra factor of 2). Clearly, this holds if |a|^|/i | , so we assume that | a |^ | / i | and also
w.l.o.g. h^.0. Then A = rew, where n/4^9^3n/4 (the argument only needs 0^8^3n/4).

If <f>=0, the result is immediate, by Lemma 2.4, so we assume that <£>0 and (again
w.l.o.g.) that 4>^\ji. Let p2 = <t>/\}i, so that p ^ = ( ^ ^ ) 1 / 2 .

Let x=(A, 1), y=(n, 1), where |A| = |/*| = 1. Writing x as e—(1 —/)e, (etc.), one sees that

V(x,y) = \ -(1 -A)0-(1 - / i )*+( l -A)(l -n)A.
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Let A = e'*, fi = ew. Then the statement ReV(x,y)^ 1 says

(1)

Now choose fi = eifi so that O^fi^n/2 and l-cos/3 = p2. Then cos(0 + /?)gcos0 (a
diagram is helpful!), hence Re (fiA)^ Re (A), or Re(B)^0, where B = (\-p)A. It is now
elementary that for X equal to either i or — i, we have Re(l — A)J8^|B|.

Now |l — ̂ |2==2 —2cos/? = 2p2, hence |B| = ^ p | / l | . Form (1), we now have

hence \A\^

Proof that the 2 x 2 Grothendieck constant is 1

The following is more direct (though weaker) than our Theorem 2, or the proofs in
[1], [7]-

Let V be a bilinear form (not necessarily unital) on l2^ with ||K||=1. We may assume
that its matrix has the form

pa2

where av, a2, bu 62 = 0 a nd |p| = | a | = l ( o u r earlier notation is no longer in force!). For
any a with |a| = 1, we have

Let x , , x2 be elements of a Hilbert space with ||x, ]| = | |x2| | = 1. Let

y = a1xi+pa2x2, z = blxi+opb2x2.

By the Lindenstrauss-Pelczyhski form of Grothendieck's inequality, we have to show
that ||_y|| + ||z||^ 1. We will show in fact that we can choose a with |a| = 1 to satisfy

(2)

| | | | | | . (3)

Let <x1 )px2> = j?. Suppose that |<x| = |<5|= 1 and Re a ^ Re (/?<5). Then for any c,, c 2 ^ 0 ,
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= |c ,+ac2 | 2 .

Hence (2), (3) will be satisfied if Re a ^ Re)? and Re (air) ^ Re (fid). Let P = reie, <7=<?"*
(where — n^4>^n). If r / 0 , let a = e'9: then the conditions are satisfied, since Re (oca) =
cos(0-tf>) and Re (j?<r) = r cos (0 -tf>). If r = 0 , let a = ei<t>12.
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