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CLOSED IDEALS IN A CONVOLUTION ALGEBRA 
OF HOLOMORPHIC FUNCTIONS 

RAINER BRÛCK AND JURGEN MULLER 

ABSTRACT. We consider the usual topological vector space H(G) of all functions 
holomorphic in a region G C C. If G satisfies certain conditions, it is possible to 
introduce the Hadamard product as multiplication in H(G), and then H(G) turns out to 
be a commutative topological algebra. In [5] we characterized the invertible elements in 
//(G), and the aim of this paper is to study the closed ideals and some further questions. 

Introduction. Let/(z) = £^0/(«)zw and g(z) = £^0g(«)z" be power series with 
positive radii of convergence Rf and Rg, respectively. Then the Hadamard product (or 
convolution) off and g is defined by 

oo 

(f*g)(z)--=Ef(n)g(ny. 

Note that the radius of convergence of the power series / * g is at least R/Rg, and 
thus positive. For a region G C C let H(G) denote the topological vector space of 
all functions which are holomorphic in G, where H(G) carries the topology of locally 
uniform convergence. Throughout this paper we require that G satisfy the following 
conditions: 0 G G, 1 ^ G and Gc • Gc C Gc, where Gc denotes the complement of G 
with respect to C and Gc • Gc = {z • w : z, w G Gc}. (Note that these conditions imply 
Gc Gc = Gc and ID C G, where D> denotes the unit disk.) We call such regions admissible. 
From the Hadamard multiplication theorem ([10], see also [2, pp. 21—22] or [7]) we 
obtain that in this case H(G) with * as multiplication is a complete metrizable locally 
convex topological algebra (a so-called Z?o-algebra), which we denote by H*{G). Since 
1 ^ G, the algebra H*(G) has an identity 7 given by 

7(z)=-U 
1 —z 

In [5] we investigated the invertible elements of H*(G). The aim of this paper is to 
study the ideal structure in H*(G), where we are mainly interested in characterizing the 
closed ideals and closed maximal ideals. It will be seen that our problems are strongly 
related to several classical questions in function theory such as analytic continuation 
of lacunary series or zero distribution of entire functions. For motivation we recall 
some well-known results in the algebra H(G) with the usual pointwise multiplication of 
functions, which can be found for example in [15, p. 121]. 
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916 R. BRÙCK AND J. MÛLLER 

THEOREM A. For an ideal I C H(G) the following statements are equivalent: 
i) I is closed, 

ii) I is principal. 
Hi) I is finitely generated. 

THEOREM B. For an ideal M C H{G) the following statements are equivalent: 
i) M is closed and maximal, 

ii) M={fe H(G) :f(a) = 0}for some a G G. 
Hi) M is the kernel of some homomorphism </>: H{G) —> C. 

While in Theorems A and B the region G may be arbitrary, the results in //*(G) are 
much more complicated and strongly depend on the geometry of G. For the purpose of 
giving some examples of admissible regions let g G [1, oo], a G R , t G N 5 

De := {z G C : \z\ < g}, 

r a : = { / 1 + / a : f G [ l , o o ) } , 

and 
Ak:={e2^k:j = 0,l,...,k-l}. 

(Note that Ta is part of a logarithmic a-spiral, and r 0 = [l,oo).) Then the regions 
G = D := D>i, G = De \ Ta, G = ®Q \Ak and G = C \Ak are admissible. 

FIGURE 1: 0>3\r5 andD3V8 

The following lemma shows that in a certain sense these regions are typical. A region 
G C C with 0 G G is called a-starlike (with respect to 0), if Gc • Ta = Gc. With this 
notation it is possible to divide the admissible regions into two classes. 

LEMMA 1. i) If G is admissible, and if I is not isolated in Gc, then G is ot-starlike for 
some a G Hi In particular, G is simply connected and G c P ^ \ Tafor some g G [1, oo]. 

ii) If G is admissible, andifT is isolated in Gc, then GcnBQ = A * for some g G (1, oo] 
and A: G N. If in addition, oo G G, then G = C \ A^for some k G N. 

PROOF, i) From the assumptions and Lemma 2.2 in [1] we obtain that Ta C Gc for 
some « G l , and therefore Gc C Gc - Ta C Gc - Gc = Gc which implies the assertion. 

ii) Assume that there exists a sequence (z„) in Gc such that \zn\ > 1 and z„ —> ( 
(n —» oo) for some £ G 50 Pi Gc. Then, for a given e > 0 we can choose m G N such 
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CLOSED IDEALS IN A CONVOLUTION ALGEBRA 917 

that |(w — 1| < e/2, and therefore \z% — 1| < e for all « sufficiently large, which is a 
contradiction. Hence, we have GcnU6 C dP for some £ G (l,oo]. Since G is admissible, 
this implies the assertion (see for example [15, p. 183]). • 

The ideal structure of //*(D>) has been investigated to a certain extent by Brooks ([4], 
see also [13, pp. 98-109]). But as far as we know there are no results for other admissible 
regions. For the characterization of closed ideals in H*(G) it turns out that the results are 
essentially different in the two cases indicated by Lemma 1, so that we will divide the 
paper into two parts. 

1. Closed ideals in //*(G) for G such that 1 is not isolated in Gc. 

1.1. Characterization of closed ideals. In this section let G always be an admissible 
region such that 1 is not isolated in Gc (unless otherwise stated), and therefore also 
a-starlike for some a G R by Lemma 1. For/ G H* (G) let 

oo 

m = YÀnY (zeD). 

We may consider/ as a function/: No —> C associated wi th / For B C No we set 

lB'.= {f€ H*{G) :/(/i) = 0 for all n G B). 

Obviously, IB is an ideal in //*(G), and IB is closed as is easily seen by the Cauchy 
integral formula. (Actually, this holds for arbitrary admissible regions G C C.) We will 
prove that there are no others. 

THEOREM 1. For an ideal I C H*(G) the following statements are equivalent: 
i) I is closed. 

ii) I = h for some B C No. 
Hi) I is the closure of a principal ideal. 

PROOF. Let / be closed. We define 

B := {n G N0 :/(») = 0 for a l l / G / } . 

Then it is obvious that / C /#. If n G No \ B then/(«) f 0 for some/ G /, which implies 
zn =f(z) * zn/f(n) G /. Now we denote by UB the linear span of {zn : n G N0 \ B} (i.e., 
the space of all polynomials with gaps at every n G B). Then we have HB C I C IB-
Since G is a-starlike, a theorem of Arakelyan [1] shows that there exists a (universal) 
matrix summability method such that the power series around 0 of every/ G H(G) is 
summable t o / locally uniformly in G. For fixed/ G H(G) we may achieve that this 
matrix is row finite by a suitable truncation (cf. [9, p. 10]). Therefore, if/ G IB, we obtain 
a sequence of polynomials in n^ converging t o / locally uniformly in G, which means 
that n# = IB. This shows I-h-
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918 R. BRÛCK AND J. MULLER 

To prove that Is is the closure of a principal ideal we consider 

m •= E £• 

Then/ is entire, and therefore/ E /#. For «G N o \ 5 w e have zn =f(z) * (n\zn) E (/) 
which implies Is = HB C (/). Since (/) C 7# is obvious, the theorem is proved. • 

In view of Theorem A there arise several questions. 
(1) Which principal ideals are closed? 
(2) Which closed ideals are principal? 
(3) Which finitely generated ideals are principal? 

1.2. Principal ideals which are closed. We turn to the first question. Let G C C be 
admissible and l e t / G H*(G) be given. We define B(f) := {n e N0 : /(«) = 0} and 
formally 

H£5(/yW 

Then it is obvious that (/) is closed in H*(G) if/-i also defines a function in //*(G). For 
various results concerning the analytic continuation of/_i we refer the reader to [5]. In 
particular, for G = D (and if/ is not a polynomial) the condition 

lim \f{n)\xln = 1 

is necessary and sufficient for/_i to be in //*(B). The following result shows that a 
restriction on the absolute value of the nonvanishing coefficients is always necessary for 
(/) to be closed. 

PROPOSITION 1. Letf e H*{G), f not a polynomial, be such that 

liminfl/(«)|1/"=0, 

or 
liminf|/(«)|1/w< \IQ, 
n$B{f) 

if G a Bg for some g G [l,oo). Then I = (f) is not closed in H*(G). This holds in 
particular iff is a transcendental entire function. 

PROOF. Suppose that/ satisfies 

l im[/M l M=0 
k—»oo 

for some subsequence («*) of the nonnegative integers with n^ fi B(f). Now consider 

oo 

*=0 
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CLOSED IDEALS IN A CONVOLUTION ALGEBRA 919 

where g(rik)2 =f(rik) for A: G N. It is clear that g is a (transcendental) entire function. 
Setting 

/ W * ) : = £ « ( a * y * and QN(z) := E ^ / g ^ ) 

we obtain that (P#) converges to g in //(C) and /V = 8# * / £ /, so that g G 7. But 
g £ I, since otherwise we would have g = A * / for some /z G //*(G) which means 
h(rik) = l/g("yt) for all A: G N. Thus limsup,^^ ^(w)!1/71 = oo which is a contradiction. 

If G C D>£ for some £ G [1, oo) and 

lim \f(nk)\
1^ < 1/Q 

k—»oo 

for some subsequence («*) of the nonnegative integers with n^ £ B(f), then 

oo 

S(z) : = £ & » * > * €ff(D e)C#(G), 

where g(«^) -f{rik)x~e for & G N and for a sufficiently small £ > 0. A similar argumen
tation as above shows g G I \ I. m 

A question which obviously arises (but which seems to be hard to answer) is whether 
it is possible to characterize the closed principal ideals in H*(G) in the cases G ^ 0. 

1.3. Closed ideals which are principal Now we turn to the question of which of the 
closed ideals IB are principal. For that purpose we consider the function 

7B(z):=£z". 

If 1B G //(G), then it is obvious that 1B generates the closed ideal IB. For example, this 
is true, if 

(i) G = 0 and B C No is arbitrary or 
(ii) G is arbitrary and B or N0 \ B is finite. 
At first sight, for given B CNQ one could try to find more suitable functions/ G H(G) 

suchthati?(/) = 2?and/li G H(G). But for example, in the interesting case G = C\Ta this 
does not lead further than (ii) above since for every/ G //(C \ Ta) with/_i G //(C \ Ta) 
necessarily B(f) is finite (see [5], Lemma 2). We will now give a more general answer 
for this case. 

For that purpose we recall the notion of density. For a set B C No let N(r) denote the 
number of all n G B n Pr for r > 0. Then the quantities 

</(£) ^ l i m s u p r - 1 ^ ) 
r—+oo 

and 
rf(5):= liminf r_ 1#(r) 

r—xx) 
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are called the upper and lower density of #, respectively. The set B is said to have density 
d(B\ if the limit 

d(B) := lim r~lN(r) 
r—>oo 

exists. Furthermore we assume that the reader is familiar with the définition and basic 
properties of functions of exponential type as it may be found in [3] or [11]. 

THEOREM 2. LetG = C\ Tafor some aeR and let B C N0. 
ft) Ifd(B) > 0 and Mo\B is infinite, then Ig is not principal, 

(ii) Ifd(B) = 0, then Is is principal 

PROOF, (i) Since d(B) > 0 we have d(H0 \ B) < 1. Therefore, a theorem of Pôlya 
([12, p. 772], see also [2, p. 76]) implies that every function/ G h is entire. Now the 
assertion follows from Proposition 1 (note that IB cannot be generated by a polynomial). 

(ii) We restrict ourselves to the special case a = 0 (i.e., G = C \ [1, oo)), because the 
general case may be proved in a similar way with only some slight changes in technical 
details. 

We set 

and 

F ( w ) : = n ( l - - ) , if O^B „(zR\ nL ) 

W 2 ^ 
F(w):=w J ] f 1 - — ) ' ifOEB. 

Then Fis an entire function of zero exponential type [11, p. 595]. By a theorem of Wigert 
[2, p. 8] the power series 

oo 

/(*):= £F( /0z" 

defines a function in H(C \ {1}), and thus in /#. We will show that IB - (/). 
For that purpose let g G h- By a theorem of Arakelyan [1] there exists a function G 

holomorphic and of inner exponential type zero in the half plane IT := {w G C : Re w > 
0} (inner exponential type means that G is of exponential type in every closed sector 
{w G C : | arg w\ < (5} with /3 < ir/2) such that 

oo 

g(z) = £G(«)z". 

Setting H := G/F, it is clear that H is holomorphic in IT. If H is of inner exponential 
type zero, then the above mentioned theorem of Arakelyan implies that the power series 

oo 

n=0 

defines a function in //(C \ [l,oo))5 and thus g = / * h. In fact, we will prove that 

lim sup Iwl"1 log |//(w)| = 0 
|w|—-KX) 

|argw|</3 
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CLOSED IDEALS IN A CONVOLUTION ALGEBRA 921 

forall/3<7r/2. 
We have [3, p. 137] 

lim r~x log \F(re±il3)\ = 0. 
r—>oo 

Let £ > 0. Then we obtain for r > r$ sufficiently large |F(re±I/3)| > e~Er. Furthermore, 
there exists a sequence (r„) such that rn —» oo (« —> oo) and |F(w)| > e_er" for |w| = rw 

(see [3, p. 52]). Since G is of inner exponential type zero in n we have \G(w)\ < M\e£^ 
for | arg vv| < (3 and some constant Mi > 0. Setting c := 2 / cos/? we get \H(w)e~£CW\ < 
(\G(w)\e-£\w\)(\F(w)\-le-£M) < M := max{Mb 1} for w = re±[\r > r0 and \w\ = rn. 
Using the Phragmén-Lindelôf theorem [3, p. 4] we arrive at \H(w)\ < M\écw\ < Me2^ 
for | arg w\ < /} which easily implies the assertion. • 

1A. Finitely generated ideals. Concerning the question whether every finitely gener
ated ideal in H*(G) is principal, the answer is yes in the special case G = D> but it remains 
open for arbitrary simply connected admissible regions G. The following results may be 
proved along the lines of the work of von Renteln [17], so that we only state the results 
and omit the proofs. 

PROPOSITION 2. Letf, g G //*(D>). Thenf divides g if and only if to every e > 0 there 
exists no G No such that \g(n)\ < (1 + £)n\f{ri)\for all n > no. 

PROPOSITION 3. Every finite number of functions f,... Jm G //*(D>) has a greatest 
common divisor d which is given (up to invertible elements) by 

oo 

d(z) = J2 dnZn and dn = max{\fj(n)\ : j = 1 , . . . , m}. 

PROPOSITION 4. Letf.fi,. . . , /m G //*(D>). Thenf belongs to the finitely generated 
ideal (f\,... ,fm) if and only if to every s > 0 there exists no G No such that 

m 

| /"(»)|<0 + ey,i;|jÇ(/i)| for all n> n0. 

THEOREM 3. Every finitely generated ideal in H*(B) is principal. 

1.5. Closed maximal ideals. The final aim of this section is to characterize the closed 
maximal ideals in H*(G) and the spectrum 

M(H*(G)) := {</>: H*(G) —> C : </> is a nonzero continuous algebra homomorphism} 

of H*(G). By the Cauchy integral formula we see that</>„ G M(H*(GJ) for every « G No, 
where 

&(/):=/(«) (f£H*{GJ). 

(This also holds for arbitrary admissible regions G.) The following analogue of Theo
rem B, which is an easy consequence of Theorem 1 and the fact that a complex homo
morphism is uniquely determined by its kernel, shows in particular that M(H*(G)) -
{</>„ : n G N0}. 
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922 R. BRUCK AND J. MULLER 

COROLLARY 1. For an ideal M C H*(G) the following statements are equivalent: 
i) M is closed and maximal. 

ii) M = I{n} = {fe H*(G) :/(») = 0} for some ne N0. 

iii) M is the kernel of a unique 

From the above results it follows that every closed maximal ideal in //*(G) is princi
pal, and every closed ideal is an intersection of closed maximal ideals. Furthermore, there 
is a one-to-one correspondence between the closed maximal ideals and the elements of 
M(H*(G)). We do not know whether every complex homomorphism is automatically 
continuous. In [4] (see also [13, p. 103]) Brooks proved that there exists a one-to-one 
correspondence between all the maximal ideals in //*(D>) and the Stone-Cech compacti-
fication of No- It would be of interest whether such a result also holds for H*(G). 

2. Closed ideals in H*(G) for G such that 1 is isolated in Gc. 

2.1. The special case G - C \ {1}. At first we consider the special algebra 

H*0:={fGH*(C\{l}):f(Oo) = 0}, 

because the situation here is very lucid. Furthermore, let Eo denote the algebra of all entire 
functions of zero exponential type with the usual pointwise multiplication of functions. 
By a theorem of Wigert [2, p. 8] the power series 

oo 

/(*) = £/(»)*" 

defines a function in H^ if and only if there exists a function F G Eo such that F(n) =f(n) 
for all n G No, and F is uniquely determined by Carlson's theorem ([6], see also [3, 
p. 153]). In the following we write/ instead of F. This means that T:HQ—> EO defined 
by T(f) : = / is an algebra isomorphism. For e > 0 and F ç f t w e set 

| |F||, := inf{C > 0 : \F(w)\ < Ce£^ for all w G C}. 

Then {|| • ||e : e > 0} is a system of norms on Eo which defines a locally convex topology 
on Eo that is completely metrizable, i.e.,Eo with this topology is a Fréchet space in which 
also the multiplication is continuous (hence a Bo -algebra). This topology was introduced 
by Rasevskiï [14]. With the closed graph theorem (see for example [18, p. 50]) it is easy 
to see that T:HQ—> E0 is continuous, and therefore the open mapping theorem (see for 
example [18, p. 47]) implies that T is a homeomorphism. Thus, we have found that 

H% and Eo are algebraically and topologically isomorphic. 

Now we are able to apply results concerning Eo to our problem. For that purpose let 
(an) be a sequence in C such that either (a„) is finite or (\an\) is monotonically increasing 
and |an | —• oo (n —» oo). Then we set 

I{fln) := {f G H*0 :f(an) = 0 for all /i}, 
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where an is an /ra-fold zero off whenever an occurs in the sequence (an) m times. 
Obviously, I(an) is a closed ideal in //J. It may occur that I(an) is trivial. 

According to Hadamard's factorization theorem [3, p. 22] and Lindelôf's theorem [3, 
p. 27], it is easy to see that for/, g G EQ such that / /g is an entire function, we also have 
f/gEEo. Thus, g divides/ in E$ if and only if every zero of g is also a zero of/ (counting 
multiplicity). It follows that every principal ideal IC H^is of the form / = I(a„). In fact, 
again referring to Lindelôf's theorem, an ideal I C H^is principal and nontrivial if and 
only if I = I(an) for some sequence (an) such that (an) is finite or \an\jn —* oo (n —* oo) 
and £« 1 /an is convergent, where the sum ranges over all n such that an ^ 0. 

An application of Rasevskiï's theorem [14] yields 

THEOREM 4. An ideal I C H^ is closed and non-trivial if and only if I - I(an)for 
some sequence (an) such that (an) is finite or \an\/n —> oo (n —• oo). 

COROLLARY 2. There exist closed ideals in H^ which are not principal. 

In view of Corollary 2 the question arises whether every closed ideal in H^ is finitely 
generated. We do not know the answer but we prove 

THEOREM 5. Every closed ideal in H^ is the closure of a two-fold generated ideal 

PROOF. According to Theorem 4 we may assume that / = I(a„) is such that (an) is 
infinite and a\ ^ 0. We define sequences (bn) and (cn) by 

bm-i := Û„, b2n := -a„ (n e N), 

and 

C2n-\ := am c2n := -an -6„ (ne N), 

where 
6„ :=min{Sw/2, l , |a„|}, 

and 
6n := min{|tf„ ±am\:meN,an? ±am}. 

Then it is obvious that E^i l/bn = 0, and an easy estimate shows that E^ i l/c„ 
converges to c G C, say. Now by Lindelôf's theorem [3, p. 27] the infinite products 

Fi(w):=fl(l-f) 

and 

F2(w):=e-c v vn(l--)^/c" 

define functions in EQ, SO that/ := r - 1 ^ ) a n d / := T~X(F2) are in/. Setting ? := (/!,/) 
we see that I is a closed ideal in //J and thus I must be of the form I(an). But by 
construction of (bn) and (cn) we have (ân) = (an) which completes the proof. • 
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The assertion of Theorem 3 is false in H^. According to an example of von Renteln 
[16, p. 10] there exist functions F\, F2 G EQ such that F\ and Fi have no common zeros 
and (FUF2) J E0. Setting / = ( ^ ( F i ) , 7T-1(F2)) we see that I ? H*0, and thus / is 
neither principal nor closed. 

In view of the closed maximal ideals in H^ and the spectrum M(F§) we have an 
analogue of Corollary 1, but here M{F§) = {<j>a : a G C}, where <j>a{f) := f(a) for 
/ G H^, is uncountable. 

COROLLARY 3. For an ideal M C H^ the following statements are equivalent: 
i) M is closed and maximal, 

ii) M = I(a) = {f£H*0 :f(a) = 0}for some a G C. 
iii) M is the kernel of a unique <f> G M(HQ). 

2.2. The case G = C\Ak. Now we turn to the more general case of the algebras 

#o> - V e H*(C \Ak) :/(oo) = 0} (* G N), 

which is essentially reducible to the special case H% = H^ x .At first we introduce some 
notation. For k G N andy G { 0 , . . . , k — 1} we define 

ljk(z) := j(z/e
2lTiJ/k) (z f e2**'/*) 

and 7y* * flj := {7/* * / : / G / ^ } = {/" G //(C \ {e2**/*}) :/(oo) = 0}. 
Then we have 

^ = © 7 / * * ^ 

where © denotes a topological direct sum. By Laurent expansion we see that every 
/ G H^k has a unique decomposition 

/=E7/**J$ 
j=0 

with jÇ G / ^ fory = 0 , . . . , A: — 1, and a simple application of the maximum principle 
shows that the subspaces ljk * H^ are closed in FTQ k. 

The key for "lifting" the results from H^ to H^ k lies in the knowledge of the homo-
morphisms from H^ k into H^. 

LEMMA 2. For k G N the following statements are equivalent: 
i) T is an algebra homomorphism from H^ k into H^. 

ii) There exists an algebra endomorphism t on H% and a k-th root of unity £ such that 

7-0 J 7=0 y 

In this case we have t - T\H*. Moreover, T is continuous if and only ift is continuous. 
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PROOF. 1. Let 7be a homomorphism from/ZJ k into //J, and let/ = EJLQ1 7/**JÇ G #0^ 
be given. Then we have 

T<f) = E T{ijk) * 7105) = E m>*) * '(//) 

where f := T\H* is an endomorphism on H^. It remains to show that there exists a £ such 
that C* = 1 and 7(7/*) = <?7. Let 7(7) = £^ 0 g(«K- Since 7(7) = 7(7) * 7(7) we have 
g(«) G {0,1} for every « G N0. No wit follows from results on the distribution of zeros of 
entire functions of exponential type zero that g = 0 org = 1 (cf [3, p. 166]). If 7(7) = 0, 
then t = 0 and 7 = 0 and we are done. So let 7(7) = 7. Since (7(7~i*))* = 7(7) = 1 in 
EQ we find that 7(7 u) G £b has no zeros and so 7(7u) is necessarily a constant^, say, 
which satisfies £* = 1. It follows more generally that 7(7/*) = (7(7 u))7 = Cy for every 
j G {0 , . . . , k - 1} and thus 7(7/*) = Cy7 for every y G { 0 , . . . , k - 1}. 

2. If 7 is as in (ii), then the linearity of 7 follows from the linearity of t. Furthermore, 
for/, g G H^k one computes 

* - i 

w=0 /f£=m (mod k) 

and therefore 

7V*s) = ' ( E C E jç *««) = '((E<^) * (EC'ft)) 

= 7'(/)*7,fe). 

3. The above considerations show that f = T\H* and so continuity of 7 implies 
continuity of t. On the other hand, if t is continuous, then the continuity of 7 follows 
from the fact that the mappings/ —» jÇ are continuous by the maximum principle. • 

Let 7̂  denote the (continuous and surjective) homomorphism from Lemma 2 cor
responding to C and (for our purposes without loss of generality) the identity t, let K^ 
denote the kernel of T( and set 

J/c := {J C H*Qk : J is an ideal such that KCCJ}. 

Then we have 

THEOREM 6. Let k G N and a k-th root of unity £ Z>e g/ve«. 7/ze« 

7 ^ ( 7 c r 1 ( / ) 

defines a one-to-one mapping from the set of all ideals in H^ onto J^. Moreover, if I is 
closed, then also (7^)_l(7) is closed, and ifl = (f\,... ,fn) andK^ = (g i , . . . ,gw), then 

(T<)-\l) = (fu...,fn,gu...,gm). 
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PROOF. The first statement follows directly from a well-known general result on 
homomorphic images of rings (see for example [8, p. 87]), and the second follows 
directly from the fact that 7̂  is continuous. 

If I = (/I ,...,/„) and Kc = (gx,..., gm\ then obviously 

( T c r ^ D W , . . . , / » , ^ , . . . , ^ ) . 

On other hand, let h G (T^)~l(I) be given. Then there exist functions g7 G H^ with 

7((/*) = E?=i g/ *jÇ. Since 7̂  is surjective, we have gy = Tçfjij) for some /zy- G //J^ and so 

7c(*) = 7c(è*/*J5)-
7=1 y 

Therefore, /i = YL\ fy *J} + /*o with some ho G ^ = (gi , . . . ,gw), which shows /i G 

According to Lemma 2 we see that for every a G C and every A>th root of unity £ the 
composition <j>a^ := 0fl o 7 :̂ HI k —> C is a continuous homomorphism. Actually, it turns 
out that 

M(H^k) = {<t>a£ • « G C, £ is a A>th root of unity}. 

Let 0 G M(H^k) be given. First, since 0|//* G M{H$\ by Corollary 3 there exists a 

constant a G C with 0 ^ = 0a. Now, for/ = Ylj=0
l Ijk *fj £ Hoj we find 

w)=E M*) - m=E M » • 0.oç). 
7=0 y=0 

Since (f)(1)2 = (f)(1) and 0 ^ 0, we have 0(7) = 1. Moreover, 0(7 u)* = </>O0 = U 
thus 0(7u) = C f°r some A>th root of unity Ç and finally 0(7/*) = <t>(^\ki - Q for 
y = l , . . . , * - l . 

Clearly, for every a and £ as above 

A ,̂C " ^ i ({0}) = {/" G / f o : £ $ ( « ) = 0 j = (Tcy
l (/(a)) 

7=0 . } 

is a closed maximal ideal in H^ k such that K^ C J. According to Corollary 3 it would be 
of interest whether every closed maximal ideal is obtained in this way. 

2.3. The general case. Finally, we consider briefly the general case of an admissible 
region G such that 1 is isolated in Gc and ( j / C \ 4 f o r every A: G N. In this case, by 
Lemma 1, we have N>6 C G UAk C C for some g > 1. Much as in Section 2.2, we see 
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by separation of singularities that 

H*(G) = H*0,k(BH(GUAk) 

is a topological direct sum. Moreover, let T denote the (continuous) projection from 
H*(G) onto H%k, i.e. 

where/ = f +fi is such that/i G H^k a n d / G H(GUAk). Since by the Hadamard 
multiplication theorem H(GUAk) is an ideal in H(G), we find that T is a homomorphism. 
According to [8, p. 87], this implies 

PROPOSITION 5. Let G be an admissible region such that 1 is isolated in Gc and 
G?à\Akforallke N. Then 

Ii->7^\l) = I®H(GUAk) 

defines a one-to-one mapping between the set of all ideals in H^ k and the set of all ideals 
in H*(G) containing H(G U A^). Moreover, I is closed if and only if I 0 H{G U Ajç) is 
closed. 
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