ON THE SPECTRUM OF THE BERGMAN-HILBERT MATRIX II

BY
CHANDLER DAVIS AND PRATIBHA GHATAGE

Abstract

We study a class of matrices (introduced by T. Kato) with principal homogeneous part, and use Mellin transform of the homogeneous kernel to determine spectral density of the positive infinite matrices.

1. Introduction. In the course of lifting Hankel operators on the Hardy space of the circle to Hankel operators on the Bergman space of the disk via the Schur multiplier

$$
M=\left[\frac{\sqrt{(i+1)(j+1)}}{i+j+1}\right]_{i, j \geqq 0}
$$

we studied the Bergman-Hilbert matrix A and its homogeneous companion B. We recall that

$$
A=\left[\frac{\sqrt{(i+1)(j+1)}}{(i+j+1)^{2}}\right]_{i, j \geqq 0} \quad \text { and } \quad B=\left[\frac{\sqrt{(i+1)(j+1)}}{(i+j+2)^{2}}\right]_{i, j \geqq 0} .
$$

In [2] it was shown that $A-B$ is compact and $1=\|B\|_{e}=\|A\|_{e}<\|A\|$, and in particular A has eigenvalues, thus distinguishing its spectral properties from those of the Hilbert matrix [1]. In fact, the relationship between A and B turns out to be a particular case of the general form of matrices with principal homogeneous part studied by T. Kato [4]. For this and other reasons which we hope will be clear in this note, B turns out to be an interesting matrix in its own right. What makes B more amenable than A is that its entries are values of a homogeneous kernel evaluated at lattice points in the plane and the same homogeneous kernel induces a rather well-behaved integral operator.
2. Consider the integral operator K defined on $\mathcal{L}^{2}(0, \infty)$ which is induced by the kernel

$$
k(x, y)=\frac{\sqrt{x y}}{(x+y)^{2}} .
$$

Note that $k(i+1, j+1)=b_{i j}, i, j \geqq 0$. We first write down the spectrum of K using the standard technique of Mellin transforms to express K as a multiplication operator

[^0]on $L^{2}(\mathbf{R})$. We are grateful to P . G. Rooney for bringing this to our notice. if \mathcal{M} denotes Mellin transform and $f \in \mathcal{L}^{2}(0, \infty)$, then we have
\[

$$
\begin{aligned}
\mathcal{M}_{K f}(s) & =m(s) \mathcal{M}_{f}(s) \quad \text { where } \quad \mathcal{M}_{f}(s)=\int_{0}^{\infty} x^{s-1} f(x) d x, \\
\mathscr{M}_{K f}(s) & =\int_{0}^{\infty} x^{s-1}(K f)(x) d x \\
& =\int_{0}^{\infty} \int_{0}^{\infty} x^{s-1} \frac{\sqrt{x y}}{(x+y)^{2}} f(y) d y d x \\
& =\int_{0}^{\infty} \frac{x^{s-\frac{1}{2}}}{(1+x)^{2}} d x \int_{0}^{\infty} y^{s-1} f(y) d y .
\end{aligned}
$$
\]

Hence

$$
m(s)=\int_{0}^{\infty} \frac{x^{s-\frac{1}{2}}}{(x+1)^{2}} d x=\left(\frac{1}{2}-s\right) \pi \csc \pi\left(s-\frac{1}{2}\right) .
$$

Hence $\sigma(K)=$ closure of range $\left\{m\left(\frac{1}{2}+i t\right), t \in \mathbf{R}\right\}=\overline{\text { Range }}\{t \operatorname{csch} t, t \in(0, \infty)\}=$ $[0,1]$. However, B is not unitarily equivalent to K, it is unitarily equivalent to an integral operator whose kernel is not easily expressible in closed form [see 5]. Hence we must rely on getting whatever information we can on the spectral density of B through eigenvalues of finite sections of it.

The finite section of B is $B_{n, m}=\left[b_{i j}\right], m<i, j \leqq n m$; we compare it with $\left(K_{n, m} f\right)(x)=\int_{m}^{n m} k(x, y) f(y) d y$. Homogeneity of k implies that $K_{n, m}$ is in fact independent of m. For any $(a, b) \subseteq[0,1], M_{n}(a, b)$ denotes the number of eigenvalues of $K_{n, m}$ in (a, b), and $X_{n, m}(a, b)$ the number of eigenvalues of $B_{n, m}$ in (a, b). All we need for Proposition 2 below is that $X_{n, m}(a, b)$ can be arbitrarily large. We will show essentially that $X_{n, n}(a, b)$ behaves asymptotically like $(\log n)\left(F^{-1}(a)-F^{-1}(b)\right)$, where $F(x)=x \operatorname{csch} x$; the precise result is a little weaker.

We rely on [6, Section 2.6]. We need a little more work as $k(x, y)=\sqrt{x y} /(x+y)^{2}$ is not a decreasing function in either variable.

Lemma 1. If $(x, y) \in(i-1, i] \times(j-1, j]$ with $m<i, j \leqq n m$, then

$$
\left|\frac{\partial k}{\partial x}\right| \leqq \frac{c}{m^{2}}, \quad\left|\frac{\partial k}{\partial y}\right| \leqq \frac{c}{m^{2}},
$$

for a constant c.
Proof.

$$
\frac{\partial k}{\partial x}=\sqrt{\frac{y}{x}} \frac{(-3 x+y)}{2(x+y)^{3}}
$$

On each segment $x+y=s, x \in[m, s-m]$, we will bound

$$
\left(\frac{\partial k}{\partial x}\right)^{2}=\frac{1}{4} \frac{(s-x)(s-4 x)^{2}}{x s^{6}} \leqq \frac{3}{4} \frac{|g(x)|}{s^{4}},
$$

where

$$
g(x)=\frac{(s-x)(s-4 x)}{x}
$$

Now note that on the segment $g(x)$ has a minimum at $x=s / 2$ where $g(s / 2)<0$, also $g(s-m)<0$ since $s \geqq 2 m$; this means that max $|g(x)|$ is attained either at $x=m$ or at $x=s / 2$. But $g /(m)<s^{2} / m$ (again because $s \geqq 2 m$), giving

$$
\left(\frac{\partial k}{\partial x}\right)^{2} \leqq \frac{3}{4} \frac{1}{m s^{3}} \leqq \text { const. } / m^{4}
$$

and $|g(s / 2)|=s$, giving

$$
\left(\frac{\partial k}{\partial x}\right)^{2} \leqq(2 m)^{-4}
$$

Hence

$$
\left|\frac{\partial k}{\partial x}\right| \leqq \frac{c}{m^{2}} \text { for } x \geqq m, y \geqq m,
$$

as desired.
We write

$$
\frac{F^{-1}(a)-F^{-1}(b)}{\pi^{2}}=\Phi(a, b)
$$

with F as above.
Proposition 1. Given $(a, b) \subseteq(0,1)$ and $\epsilon>0$, there exists n_{0} such that for all $n \geqq n_{0}$ and $m=n^{2}$ we have

$$
\left|\frac{X_{n, m}(a, b)}{\log m}-\Phi(a, b)\right|<\epsilon .
$$

Proof. In order to connect $K_{n, m}$ to $B_{n, m}$ we define an isometry $\mathcal{U}_{n, m}: \mathbf{C}^{(n-1) m} \rightarrow$ $\mathcal{L}^{2}(m, n m)$ by

$$
\mathcal{U}_{n, m}\left[x_{i}\right]_{i=1}^{(n-1) m}=\sum_{i} x_{i} \chi_{[m+i-1, m+i)} .
$$

Note that $\mathcal{U}_{n, m} B_{n, m} \mathcal{U}_{n, m}^{-1}$ is an integral operator whose kernel is constant $=k(m+i-$ $1, m+j-1)$ on each square $\{(x, y): m+i-1 \leqq x<m+1, m+j-1 \leqq y<m+j\}$, and hence $T_{n, m}=K_{n, m}-\mathcal{U}_{n, m} B_{n, m} \mathcal{U}_{n, m}^{-1}$ is an integral operator whose kernel (being zero at one corner of each such square) is bounded by c / m^{2} (see Lemma 1). Next we estimate the norm of $T_{n, m}$. As an operator on $\mathcal{L}^{2}(m, n m)$ with bounded kernel, it satisfies $\left\|T_{n, m}\right\| \leqq c(n m-m) / m^{2}<c n / m$. It is enough to consider the special values for which $m=n^{2}$; then $\left\|T_{n, m}\right\|<c / n$.

Now given $\epsilon>0$ first choose δ so that by changing s, t by less than $\delta, \Psi(s, t)$ changes by less than $\epsilon / 3$. Next we choose n_{0} so that for $n \geqq n_{0}$, $\left\|K_{n, m}-\mathcal{U}_{n, m} B_{n, m} \mathcal{U}_{n, m}^{-1}\right\|<\delta$. Now Weyl's theorem says that two compact self-adjoint
operators differing by less than δ in the sense of operator-norm must have corresponding eigenvalues differing by no more than δ. In particular, $M_{m}(a+\delta, b-\delta) \leqq$ $X_{n, m}(a, b) \leqq M_{m}(a-\delta, b+\delta)$. By [6, 2.6(b)], using our calculation of $m(s)$ above, we may choose m large enough so that

$$
\left|\frac{M_{m}(a+\delta, b-\delta)}{\log m}-\Phi(a+\delta, b-\delta)\right|<\epsilon / 3
$$

and

$$
\left|\frac{M_{m}(a-\delta, b+\delta)}{\log m}-\Phi(a-\delta, b+\delta)\right|<\epsilon / 3 .
$$

These inequalities give the conclusion of the Proposition directly: $X_{n, m}(a, b) \geqq M_{m}(a+$ $\delta, b-\delta)>\log m(\Phi(a+\delta, b-\delta)-\epsilon / 3)>\log m(\Phi(a, b)-\epsilon)$ and $X_{n, m}(a, b) \leqq$ $M_{n}(a-\delta, b+\delta)<\log m(\Phi(a-\delta, b+\delta)+\epsilon / 3) \leqq \log m(\Phi(a, b)+\epsilon)$.

Corollary. The inequalities in the previous proposition also hold for eigenvalues of finite sections of A.

Proof. We know that $A-B$ is Hilbert-Schmidt [2] and hence $\left\|A_{n, m}-B_{n, m}\right\|^{2}<$ $\sum_{i, j>m}^{n m}\left|a_{i j}-b_{i j}\right|^{2}$ with $\sum_{i, j \geqq 0}\left|a_{i j}-b_{i j}\right|^{2}<\infty$. Hence, a simple application of Weyl's theorem gives the desired conclusion.

Remark. The same argument goes through for the class of matrices [4, Section 2] of the form $A=B-C$ where B is the principal homogeneous part of A and C is Hilbert-Schmidt. If $b_{i j}=K(i+\theta, j+\theta), \theta>0$, and $K(t, 1)$ has Mellin transform on the critical line ($\operatorname{Re} s=\frac{1}{2}$) which is one-to-one, then the finite sections of A and B have the spectral density described above.

Proposition 2. $\sigma(B)=\sigma_{e}(B)=\sigma_{e}(A)=[0,1]$.
Proof. Suppose $\lambda \notin \sigma_{e}(B)$. As B is self-adjoint, λ is at most an isolated eigenvalue of finite multiplicity, and hence there exists $\delta>0$ and a subspace \mathcal{N}_{1} of finite codimension l (l being zero in case $\lambda \neq \sigma(B)$) such that $\mid((B-\lambda) x, x)) \mid \geqq \delta\|x\|^{2}$ whenever $x \in \mathcal{N}_{1}$. But also if $0<\epsilon$, by Proposition 1, there exists a projection P such that $P B P$ has at least $l+1$ eigenvalues in $(\lambda-\epsilon, \lambda+\epsilon)$. Now we may choose pairwise orthogonal unit vectors $x_{i}, 1 \leqq i \leqq l+1$ such that $P x_{i}=x_{i}$ and $P B P x_{i}=\lambda_{i} x_{i}$. If $\mathcal{N}_{2}=\left\{\sum_{i=1}^{l+1} k_{i} x_{i}, k_{i} \in \mathbf{C}\right\}$ then $\operatorname{dim} \mathcal{N}_{2}=l+1$, while co- $\operatorname{dim} \mathcal{N}_{1}=l$. Hence projection on the orthocomplement of \mathcal{N}_{1} when restricted to \mathcal{N}_{2} has a nontrivial kernel. Now if x is a non-zero vector in $\mathcal{N}_{2} \cap \mathcal{N}_{1}$ we have $x=\sum_{i=1}^{l+1} k_{i} x_{i}$ with $\left\|x_{i}\right\|=1,\|x\|^{2}=\sum_{i=1}^{l+1}\left|k_{i}\right|^{2}$ and $((B-\lambda) x, x)=\sum_{i=1}^{l+1}\left|k_{i}\right|^{2}\left(\lambda_{i}-\lambda\right)$. Thus

$$
|((B-\lambda) x, x)| \leqq \sum_{i=1}^{l+1}\left|k_{i}\right|^{2}\left|\lambda_{i}-\lambda\right|<\epsilon\|x\|^{2} .
$$

Taking $\epsilon=\delta$ gives a contradiction since $x \in \mathcal{N}_{1}$. The compactness of $A-B$ [2] shows that $\sigma_{e}(A) \supseteq[0,1] . B$ is a positive self-adjoint operator of norm 1 [2] and hence $\sigma(B) \subseteq[0,1]$. Since $\sigma_{e}(B) \subseteq \sigma(B)$, this completes the proof.

Remark. As shown in Proposition 2, B cannot have isolated eigenvalues of finite multiplicity in $[0,1]$. We conjecture that neither A nor B has an eigenvalue in $[0,1]$.

References

1. M. D. Choi, Tricks or treats with the Hilbert Matrix, Amer. Math. Monthly 90 (1983), 301-312.
2. P. Ghatage, On the spectrum of the Bergman-Hilbert-matrix, Linear Algebra and Its Applications 97 (1987), 57-63.
3. G. Hardy, J. Littlewood, G. Pólya, Inequalities, Cambridge University Press (1934).
4. T. Kato, On positive eigenvectors of positive matrices, Communications on Pure and Applied Mathematics 11 (1958), 573-586.
5. R. Rochberg, Decomposition theorems for Bergman spaces and their applications, Operators and function theory, NATO ASI Series C, 153, 225-277.
6. H. Wilf, Finite Sections of Classical Inequalities, Springer-Verlag, New York, 1970.

Department of Mathematics
University of Toronto
Toronto, Ontario
Canada M5S 1AI

Department of Mathematics
Cleveland State University
Cleveland, Ohio 44115
U.S.A.

[^0]: Received by the editors May 3, 1988 and, in final revised form, February 16, 1989.
 AMS Subject Classification Numbers: 15A48, 44A15, 47A10, 47A20, 47G05.
 This work was done while the second author was visiting The University of Toronto and was supported by NSERC Grant A7169.
 © Canadian Mathematical Society 1988.

