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PARTITIONING INTERVALS, SPHERES A N D 
BALLS INTO CONGRUENT PIECES 

BY 

S T A N L E Y W A G O N 

ABSTRACT. We survey results on partitioning some common sets 
into m congruent pieces, and prove that a ball in Rn cannot be so 
partitioned if 2 < m < n. 

A recent problem in this journal [1] discussed the question of partitioning an 
interval (or ball) into two congruent pieces. In fact, this problem has an 
interesting history which we survey in this note, together with a proof of a 
conjecture in [1] and some further questions. 

If a group G acts on X, let us say that X is m-divisible w.r.t. G if X may be 
partitioned into m pieces which are pairwise congruent via G For any finite m, 
it is clear that a half-open interval, or the circumference of a circle, is 
m-divisible w.r.t. translations, resp. rotations. The first nontrivial result is 
Vitali's classical construction of a non-Lebesgue measurable set, which shows 
that a circle is N0-divisible w.r.t. rotations. This result does not easily transfer to 
a half-open interval because of the necessity of using addition modulo one (in 
the case of [0, 1)). Von Neumann, responding to a question of Steinhaus (see 
[6, p. 8]) proved in [13] that, nevertheless, all half-open intervals are K0-
divisible w.r.t. translations; see [9] for a simplified proof. The chart below 
summarizes further results related to divisibility of intervals, spheres and balls 
in Rn (Sn denotes (the surface of) the unit sphere in Rn+1). The result of [1] 
regarding 2-divisibility of intervals is a special case of work done by Gustin [5]; 
he not only proved the negative results for open and closed intervals men
tioned in the chart, but also showed that each piece in a partition witnessing 
the finite divisibility of a half-open interval w.r.t. isometries must be a finite 
union of intervals. Special cases of Gustin's negative results (m = 2, 3) were 
rediscovered by Sierpiiiski [12, p. 63] and Schinzel (see [9]). Generalizations of 
these results to the case where m is an infinite cardinal have been provided by 
Mycielski [9] and Ruziewicz [11] (see [12, p. 64]). 

The results on spheres are interesting because they are derived from work 
(Robinson [10]) aimed at minimizing the number of pieces in a Banach-Tarski 
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duplication of the sphere. Robinson proved that S2 is m-divisible using 
rotations for any finite m > 3 (2-divisibility of any S2k is impossible because all 
rotations of such spheres have fixed points), and this result can be combined 
with the obvious splittings of S1 to yield the m-divisibility of all higher 
dimensional spheres when ra>3. For, given n, we may write n + 1 as 2/4- 3k 
and represent a point PeSn as (w1? u1?. . . , up vp xl7 yl5 z1?. . . , xk, yk, zk). 
Choose partitions of S1 and S2 witnessing m-divisibility and consider the first 
of the pairs (u, v) or triples (x, y, z) that has at least one nonzero coordinate, 
normalizing it by dividing by its length. Then place P in the ith piece of a 
partition of Sn if this (normalized) pair or triple lies in the ith piece of the 
partition of S1 or S2. The resulting subsets of Sn are congruent by rotations 
obtained by pasting together the rotations used to witness the congruences in 
S1 or S2; precisely, use the embedding of SO^xSO^, into SOn+1 given by the 
formation of a direct sum, i.e., use a block diagonal matrix in SOn+1. Note that 
if n is odd then the antipodal lies in Sn's rotation group, SOn+1, and so Sn is 
2-divisible. Extensions of the results on S2 (and hence also higher dimensional 
spheres) to the case of infinitely many pieces were given, independently, by 
Dekker and de Groot [2, 3] and Mycielski [7]. 

Robinson's result, which is based on the techniques of the Banach-Tarski 
paradox, uses the Axiom of Choice. Mycielski [8,9] asked whether the 
3-divisibility of S3 using rotations could be proved without appealing to that 
axiom. By modern consistency results of Solovay, the necessity of Choice 
would follow if it could be shown that S2 cannot be split into 3 rotationally 
congruent pieces, each of which is Lebesgue measurable, but it is even 
unknown whether a splitting into three congruent Borel sets is possible. 

Finally, we consider the situation for balls in R2 and beyond. The results of 
the theorem below for m = 2 was conjectured by Cater [1]. After I mentioned 
to R. M. Robinson that this conjecture could be proved by a method which he 
had used [10, p. 257], he pointed out the proof below, which extends the 
result to all m satisfying 2 < m < n. 

THEOREM. A closed or open ball in Rn is not m-divisible w.r.t. isometries if 
2 < m < n. 

Proof. Consider first the case of a closed ball B, assumed to be centered at 
the origin. Suppose that B is partitioned into A l 5 . . . , Am and crj is an isometry 
of Rn mapping Al onto A;. Let S denote the surface of B. We may assume that 
0 lies in Ax. Then for / > 1, o-j(O) 7̂  0, so o-j(B) ̂  B, and it follows that there is a 
closed hemisphere of S disjoint from ory(B). Since A7 ç BPlor^B), A];fl S lies 
within an open hemisphere of S. Similarly, AjCia^S) lies in an open hemi
sphere of o-j(S), which implies that A j f lS lies in an open hemisphere of S. 
Since AjU • • • U A m 2 S , this yields a covering of the surface S by m open 
hemispheres, which, since m < n, is impossible. For if one passes a hyperplane 
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through the poles of all the hemispheres then one end of the perpendicular 
diameter will be at a distance at least 90° from all the poles. Alternatively, that 
is easily proved by induction, since the boundary of a hemisphere in Rn is a 
sphere in Rn_1 . This same proof works for an open ball provided we let S be, 
instead of B's surface, the surface of a sphere centered at 0 with a radius 
strictly between j(l — 82) and 1, where 8 is the minimum distance from 0 to 
<x7(0), / = 2 , . . . , m. 

The question of m-divisibility of a ball in Rn when m > n > 2 remains 
unresolved. In particular, is a disc in the plane 3-divisible w.r.t. isometries? 

M. Edelstein [4] has recently investigated the question of 2-divisibility of the 
unit ball in Banach spaces, showing that the ball is not 2-divisible provided the 
Banach space is strictly convex and reflexive. 
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