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1. Introduction. We shall consider a space S, a <r-algebra M of subsets 
of 5, a measure \i defined on M, and the ^-integrals of certain /i-integrable 
functions/. To each point x of a certain set E of 5 we associate certain ones of 
the sets F £ M and form the quotients j vf(x)dfx(x)/iJl(V) for each such set V. 
In case these quotients tend to f(x) as the sets V converge to x in accordance 
with a definition we adopt in §2, then we say that the integral of/is differentiable 
or derivable at x. It is of interest to assert conditions that ensure the differenti­
ability of a given integral or class of integrals at /x-almost all points of E. 

The authors of (1; 2; and 5) considered questions of differentiability of 
Lebesgue integrals in Euclidean space with respect to Lebesgue measure. The 
sets V they associated with a point x consisted of all closed intervals containing 
x, with sides parallel to the coordinate axes, and convergence to x was taken 
with respect to their diameters tending to zero. The corresponding derivatives, 
when they exist, are known as strong derivatives. These writers expressed various 
kinds of halo conditions for the strong differentiability of certain classes of 
Lebesgue integrals ; cf. §2. Their results depend in an essential way on the special 
nature of Euclidean space and Lebesgue measure (e.g., their proofs made use 
of similar figures and the fact that their measures are proportional). Here we 
propose to allow 5, M, ju, and the subfamily of M associated with a point of 
E C S to be quite general. We shall show that a form of the halo condition 
mentioned above is sufficient to ensure the differentiability of a certain class of 
^-integrals at /z-almost all points of a set £ C S. Because of the generality of the 
hypotheses, our results are somewhat less sharp than those obtained in (1; 2; 
and 5 ). A comparison is made at the end of §3 showing the nature of the gap that 
exists between the results obtained in (5) and those that follow from the general 
considerations of the present paper when applied to the situation considered in (5 ). 

2. Setting, fundamental definitions, and terminology. We employ the 
symbols W, P\, KJ, f\ C» and D with their customary set-theoretical meanings. 
If A and B are sets, then by A — B we shall mean the set of those points 
belonging to A but not to B ; and we define A AB = (A — B) \J (B — A). 

We let 5 denote a fixed non-empty set, M a fixed non-empty cr-algebra of 
subsets of S, and ju a fixed measure defined on M. We assume that /x is totally 
(T-finite; cf. (3, p. 31). We let JJL* denote the outer measure defined on the class S 
of all subsets of 5 by the relation 

H*(A) = inlA C M Ç M M W 
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for any set A C S; as is well known, /x* agrees with / ionM. We let N denote the 
class of those members of M that are of /x-measure zero, and we let N* denote 
the family of subsets of S that are of /x*-measure zero. It is well known that N* 
consists of the class of all subsets of members of N. We agree to write A (Z B 
(mod N) or (mod N*) if and only if p(A - B) = 0 or »*(A - B) = 0. 
respectively; A = B (mod N) or (mod N*) if and only if A C B and B C A 
(mod N) or (mod N*), respectively; equivalently, /x(A A B) = 0 or 
y*(A AB) = 0, respectively. 

It is well known that if A is any set, then there exists a set i f Ç M such 
that A C M and no other set M' belonging to M and containing A has smaller 
/x-measure than IJL(M). Such a set M is called a ix-cover of 4̂ ; it need not be 
unique, but if Mr is any other /x-cover of A, then JJL(M A M') = 0. We shall 
let À denote any one /x-cover of A. 

We let 93 denote a derivation basis (4) defined as follows. We assume that 
to each point x of a fixed subset E oî S there correspond sequences, in the sense 
of Moore-Smith, of sets of finite positive /x-measure (and so belonging to M) 
that are said to converge to x; a typical sequence may be denoted by {ML(x)\. 
We assume that every cofinal subsequence of an x-converging sequence also 
converges to x. The family of all the sequences {M t(x)}, x G E, is the derivation 
basis 93. The set E is called the domain of 93; the family D consisting of all 
sets occurring in the totality of these sequences is called the spread of 93. 

If X is a numerical-valued function defined on D and x G E, then we define 

n w x r r A(Mt(*))~| 
E>^ A(x) = sup lim sup , , , . . XN , 

where the expression in brackets denotes the limit superior for any one x-con-
verging sequence {ikft(x)}, and the supremum is taken among all sequences 
converging to x. In exactly similar fashion we define 

Z) X ( x ) - i n ( l i m i n f ^ ^ l . 
* w L t /z(Mt(*0)J 

We call D*\(x) and D*\(x) the upper and lower ^-derivatives of X at x, 
respectively. If Z>*X(x) = Z)*X(x) (finite or infinite), then we say that the 
$8-derivative Z)X(x) = D*\(x) = D*\(x) exists at x. In case X is the /x-integral 
of a /x-measurable function/and D\(x) exists and coincides with jf(x), we shall 
say that 93 differentiates X at x or X is ^-differentiable at x. If K is any class of 
/x-integrals, we shall say that S differentiates K if and only if 93 differentiates 
each member of K at ju-almost all points of E. In particular, if 93 differentiates 
the /x-integrals of the characteristic functions of all M-sets, then we say that 93 
possesses the ^-density property. 

93* is said to be a subbasis of 93 if and only if 93* is a subfamily of 93 that con­
tains all the cofinal subsequences of each of its sequences and that associates 
each of its sequences with the same points as 93 does itself. It follows that the 
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domain and spread of 33* are subsets of the domain and spread of 33, respec­
tively. The spread of any subbasis 33* of 33 whose domain E* contains X 
(mod N*) is called a $8-fine covering ofX. A 33-fine covering of X may be equally 
well denned as any subfamily V of the spread of 33 that contains, for //-almost 
all x Ç X, the sets belonging to at least one sequence {Mt(x)}. If V is such a 
subfamily of the spread of 33 that for //-almost all x Ç X and each sequence 
{Mt(x)} in 33 there exists an index i! such that Mt(x) £ V whenever L > i', 
then we say that V is a. full $5-fine covering of X. It is easily seen that the inter­
section of a 33-fine covering of X and a full 33-fine covering of X is again a 
33-fine covering of X. 

Henceforth we let 33 denote a derivation basis with domain E C S. 

3. Halo conditions that ensure 33-differentiability of classes of 
^-integrals. If M Ç M, 0 < a < 1, and ^ is a non-negative //-integral A (that 
is, \p is the indefinite //-integral of some non-negative //-measurable function), 
then we define H (a, M, ^) as the family of all sets Fin the spread of B for which 
ifr(Vr\M) > afx(V) and S (a, M, tf) = U H (a, M, i). We call S (a, M, if) a 
\p-halo of M (this differs slightly from the definition given in (4, §2.5). We note 
that S (a, M, \f) may fail to be //-measurable. In case \p coincides with //, we 
agree to abbreviate these expressions to H (a, M) and S (a, M), respectively. 
It is readily seen that H (a, M,t) C H (a', M\ t) and S(a, M, </0 C S(a', M', }) 
whenever 0 < a < a < 1, M Q M' £ M, and \p is one of the admissible 
integrals. 

For a given family of sets F, we define PF(x) as the number of members of F 
to which x belongs, where x denotes an arbitrary point of 5; we define eF(x) = 
PF(X) ~~ 1 f° r each such x. We also define #F as the set of points in S belonging 
to more than one member of F ; thus 

0F = {x: PF(x) > 1} = {x: fF(x) > 1}. 

If \P is an integral of the type just described, then we say that 33 possesses the 
Vitali ^-property if and only if for each set X C E of finite //*-measure, each 
33-fine covering V of X, and each e > 0, there exists a countable subfamily 
F of V such that, putting T = VJF, 

(i) n(X-Xr\T)< e; 
(ii) +(T -TC\X) < e; 

(hi) JT€F(x)dfM(x) = J*0FeF(x)d/z(x) = LTreFiÊ(F) ~ t(T) < e. 
We say that a //-integral $ is ^-finite if and only if $(M) is finite whenever 

M G M and //(M) is finite. 
The following is proved as (4, Theorem 1.43) and so is stated here without 

proof. 

3.1. THEOREM. If ^ is a non-negative ^-finite \x-integral and 33 possesses the 
Vitali -^-property, then 33 differentiates $ at n*-almost all points of E. 

If xp is such a //-integral that 0 < to(M) < ^ (M) holds for each set M £ M, 
then we say that \p dominates t£o- The following is an immediate consequence of 
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Theorem 3.1 and the obvious fact that if 93 possesses the Vitali \t-property, 
then it possesses the Vitali ^-property in case ^ dominates ^0. 

3.2. COROLLARY. If ^ is a non-negative \x-integral and 93 possesses the Vitali 
\£-property, then 93 differentiates each ̂ -finite ^-integral dominated by ̂  at ^-almost 
all points of E. 

3.3. COROLLARY. If \p0 is a ^-finite n-integral such that ipo(M) = J M / O O ^ M O O 

for each M Ç M, $(M) = JM \f(x)\dn(x) for each such M, and 93 possesses the 
Vitali -^-property, then 93 differentiates ^o at ^-almost all points of E. 

Proof. Clearly \p is a /x-finite /x-integral, and ^ dominates each of the integrals 
obtained by integrating the positive and negative functions corresponding to / . 
Thus 93 differentiates each of these integrals, and so their difference i/% at 
^-almost all points of E. 

If ^ = /z, we have the following special result. 

3.4. COROLLARY. If 93 possesses the Vitali ^-property, then 93 differentiates the 
class of fjL-integrals of all bounded measurable functions. 

Proof. From an inspection of (i), (ii), and (iii) above it is obvious that if 93 
possesses the Vitali ju-property and 0 < k < oo , then 93 possesses the Vitali 
^jit-property. If ^0 is the ju-integral of a bounded function/, then 0 < \f(x)\ < k 
holds for some k, whenever x £ S, whence kfi dominates the At-integral of |/ | 
and Corollary 3.3 applies. 

If ^ is a non-negative //-finite //-integral, then we shall say that 93 possesses 
the vanishing \f-halo property if and only if whenever e > 0 , 0 < a < 1, and 
Mo is an M-set of finite //-measure, there exists r\ > 0 such that 

M*(S(a, M,t)) < e 

whenever Mo Z) M G M and /x(ikf) < rj (this is similar to the halo evanescence 
property 0/ (4, §2.5)). 

3.5 THEOREM. If 93 possesses the Vitali jjL-property and the vanishing \f-halo 
property, then 93 possesses the Vitali \p-property. 

Proof. We take an arbitrary set X C E of finite //*-measure, any 93-fine 
covering V of X, and any e > 0. By hypothesis, 93 possesses the Vitali //- property, 
so that for each positive integer n, there exists a countable family ¥n C V such 
that if Sn = U F n , then 

M(x - x n sn) < 2-\ ix(sn -snnx) < 2-\ 
JSn eFn(x)dfi(x) = T,veFn»(V) - A*(5») < 2-n. 

We let 

00 

Dn = 0¥n, Mo = U S». 
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Since eFn(x) > 1 whenever x 6 Dn and Dn C Sn C M0 for n = 1, 2, . . . , it 
follows from the third inequality of (1) that 

(2) /*(£») < JSn eFH(x)dv(pc) < 2 -

for w = 1,2, . . . . From the second inequality of (1) we see that 

n(Sn) < M ( X ) + 2 -
for n = 1 ,2 , . . . , whence 

(3) M(MO) < M ( X ) + 1 < » . 

We choose any positive number a such that a < e/(n(X) + 1). For w = 1, 
2, . . . we let Kn denote the subfamily of ¥n such that F G Kn if and only if 
^(FPiDrc) < a)u(F), and we let Kn = U K n . From the properties of eKn, 
PK n , and (1) we now obtain 

( 4 ) JKn *K» (* W ( * ) = UKn *K« (* )<ty 0 ) < jK0n ^ K n (* W 0 ) 

< afa(Sn) + 2-») < a(/i(X) + 2-+i) < e. 

We let G„ = Fw — Kw, G„ = UGB, note that G„ C H (a, Dm ^) and hence 
Gn C 5(a, £>n, ^ ) , use the fact that Sn = Gn VJ Kn and the relations (1) to see 
that (X - X H Kn) C (X - X H Sn) U G», and infer that for w = 1, 2, . . . , 

(5) ix{X - X C\ Kn) < M(X - X H S,) + M(GW) < 2-* + M*(5(a, Dn, tf )) ; 

M(x« - x s n i ) < M (5, - 5 s n i ) < 2-» 
Recalling (3) and the definition of the vanishing ^-halo property, we may 

determine 77 > 0 so that if M0 D M G M and n(M) < 77, then n*(S(a, M, 
\f)) < e/2. Since ip(M0) < 00 because of (3) and our assumptions concerning 
$, we may suppose that 77 is chosen small enough so that 0 < ^(M) < e for 
each set I f such that M 0 D M G M and fx(M) < 77. 

We now select a positive integer N so large that 2~N < 77 and also 2~N < t /2. 
From (2) and (5) it follows that n(X - X Pi i ^ ) < t and 

i(KN- KNC\X) < e. 

Combining these relations with (4) it is clear that KN is a subfamily of V 
satisfying the conditions required for 33 to possess the Vitali ^-property, as we 
wished to prove. 

At this point we introduce fixed functions <j> and a taking non-negative values 
on the set of all non-negative real numbers. We assume that there exists a non-
negative number to such that <j> and a both increase strictly on {t: to < t < °o }, 
and we assume additionally the existence of a number X > 1 and a positive 
integer N such that X^ > to and 

î>»/«r(X") 
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converges; finally, we assume for convenience t h a t <j>{t) = <j(t) = 0 whenever 

0 < t < to. I t will be apparen t later t h a t the behaviour of 0 and a on 

{/: 0 < t < to} 

does not affect the results we achieve; they would be equally valid provided 
merely t h a t 4> and o enjoy appropr ia te Borel measurabil i ty properties on 
{t: 0 < t < to} and are bounded on t h a t set. 

We now define L as the class of /^-integrals of all those /^-measurable functions 
/ f o r which J M cj)((r(\f(x)\))dfjL(x) and f M\f(%)\dii(x) are finite whenever M Ç M 
a n d j u W < oo. 

3.6. T H E O R E M . Let 33 possess the Vitali n-property and assume additionally 
the following: if MQ is any M-set of finite ^-measure, there exists a constant 
C > 1 such that ii*(S(a, M)) < C<j>{l/a)ii(M) whenever 0 < a < 1 / (C + to), 
Mo D M G Mandn(M) < 1/C. 

Then 33 differentiates the class L. 

Remark. This halo condition is similar to t h a t introduced in (5, p . 226). 
There , however, the condition was shown to be necessary ra ther than sufficient 
for the differentiability of certain integrals. T h e theorem proved there utilized 
special properties of Euclidean space and Lebesgue measure. 

T h e conditions on a and Care imposed simply to bring 1/a within the pa r t of 
the domain of 4> where <j> is positive-valued. T h e condition on the halo is the 
impor tan t th ing; if it holds for some positive value of C, then it holds for 
any larger value, and we have simply taken a value sufficiently large for our 
purposes. 

Proof. By vir tue of Theorems 3.5, 3.1, and Corollary 3.3, it is sufficient to 
show t h a t for each non-negative member ^ of L, S3 possesses the vanishing 
^-halo property . Accordingly, we take an arb i t ra ry member \f, of L, an a rb i t ra ry 
M-set Mo of finite /x-measure, and an arb i t rary positive number e. We determine 
a non-negative measurable function / such t h a t \p(X) = fxf(x)dfji(x) whenever 
X G M and select a constant C in accordance with the hypotheses above. 
Since ^ G L, there exists a cons tant t\ > 0 such t h a t 

(1) JMcl>(a{f(x)))d^x) < e/2C 

whenever M0 D M G M and n(M) < y\ . 
We consider an arbi t rary number a, 0 < a < 1. We have to show tha t there 

exists r] > 0 such t h a t /x*(S(a, M,\j,)) < € whenever M0 D M £ M and 
n(M) < rj. Since, as was noted earlier, S (a', M, ^ ) C S (a, M, \p) whenever 
0 < a < a' < 1, it is clearly sufficient for us to prove t h a t ju*(.S(a, M, \p)) < e 
under the assumption t h a t 0 < a < 1/(C + to). 
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We now choose X > 1 and a positive integer N in accordance with the 
properties of a; we may evidently select a positive integer K > N so that 

oo 

(2) £ (X"A(X")) < «/2X. 
n=K+l 

We let 77" denote the smaller of the two numbers 1/C and e/2C<j>(2\K/a). 
Clearly 0 < a/2\K < a < 1/(C + to); consequently it follows from our hypo­
theses that 

(3) /i*(5(a/2XiC
l M)) < C<t>(2\K/a)ix{M) < e/2 

whenever M0 3 M £ M and /*(Jlf) < 77". We now let 77 be the smaller of 77' 
and 77", take an arbitrary M-set M C -Mo with y(M) < 77, and observe that (1) 
and (3) both hold. 

Now we define 

M'o = i n {x:0 <f(x) < A*}, 

M'n = MC\ {x : \n < / ( * ) < XW+1K 

and an = l/<r(An) 

for n = i£ + 1, K + 2, . . . . From the strictly increasing nature of <f> and <r 
on {£ : £0 < t < 00 } it follows that 

(4) M'n = MC\ {x : <Ka(\n)) < <t>{*(j{x)) < 0 (a(X^))} 

îor n = K + 1, K + 2, . . . . From (2) it follows easily that for each such n, 
0 < an < a < 1/(C + to); consequently from (4) and our hypotheses we 
obtain 

»*(S(an, M'n)) < C<t>(a(Xn))„(M'n) < CJW(«(«*)))<*/*(*) 

for M = X + 1, K + 2 , . . . . Thus, with the help of (2) we see that 
oo oo | 

(5) E M*(S(are, M'n))< C £ , <t>(<r(f(x)))dn(x) 
n=K+l n=K+l *> M n 

< C f <t>(<7(f(x)))dv(x) < e/2. 

We define x so that xC^O = fx-at'0f(x)dn(x) whenever X £ M. Thus 

(6) v(*) = fCX" - M'o) + iKXn M'0) < x( i ) + \ M * n M'0) 
for each such set X. 

We consider next any set V belonging to the spread of 93 such that 
V d H (a», M'„) lorn = K + l,K + 2,.... Then 

M ( M ' n n F) < « „ M ( F ) = (l/a(X»))M(7) 

and therefore 

X"+V(M'„n TO . _X^1 
^ j M(T0 <Kxn) 

https://doi.org/10.4153/CJM-1966-102-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-102-0


1022 C. A. HAYES, JR. 

for n = K + 1, K + 2 , . . . . Using (7) and (2) we obtain 

x(M D V) _j(M-M'»)(\vf(x)dii(x) 
»(V) AI (TO 

- V §M'nr\vf{x)dy(x) ^ A V —— <- -
n iku M(T0 «SÉH *(XB) ^ 2 ' 

From this, we conclude that V £ H (a/2, M, x). Hence if F 6 H (a/2, if, x ) , 
then F G H(aw., Af'n) for some positive integers > i£ + 1 ; consequently, 

CXI 

5(a/2 ,M, X ) C U S(an,M'n) 
n=K+\ 

and so from (5) it follows that 

(8) / i * ( 5 ( a / 2 , ¥ , x ) ) < e/2. 

If V is any set belonging to H (a, M, ^ ) , then we see from (6) that either 
V G H (a/2, M, x) or F G H(a /2 \* , M) ; therefore, 

S(a, M, tf) C S(a/2, M, x) U S(a/2A*, M). 

From (3) and (8) we conclude that /**(£(«, iW, t/0) < e. This proves that 33 
possesses the vanishing ^-halo property, as required. 

It is of some interest to apply the present theory to the situation studied in 
(5), and to compare the results obtained. The authors of (5) took for 5 a unit 
hypercube in Euclidean space of r dimensions, and for /* they had Lebesgue 
measure L in that space. Their derivation basis 33 associated with each point 
x Ç S the family of all closed intervals containing x, with sides parallel to the 
coordinate axes, and convergence to x was taken with respect to the diameters 
tending to zero. For this basis 33, they showed that for any a, 0 < a < 1, and 
any L-measurable set M, 

(I) L(S(a, M)) = L*(S(a, M)) < C<t>{l/a)L{M) 

where <j>{t) = /(log+O r - 1 for each t > 0, and that 33 differentiates the integrals 
of all Z-measurable functions/ such that |/| (log+|/| ) r~l is L-summable over 5. 

If we take <r(t) = t(log+t)p for / > 0, where p is any constant greater than 1, 
it is easily checked that 

S xMA(xre) 

converges for any X > 1, so that a satisfies the requirements of this section. It is 
well known that $8 possesses the L-Vitali property (which is equivalent to the 
L-density property) ; because of (I) /Theorem 3.6 ensures the 33-differentiability 
of the integral of any L-measurable function/such that </>(cr(|/|)) is Z-summable 
over S. In this particular case, it is easily confirmed by routine computation 
that this includes all functions/such that |/| (log+\f\)T~1+p is L-summable over S. 
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Thus Theorem 3.6 falls somewhat short of the result obtained in (5), which is 
the best possible at all; however, that result depends on the special properties 
of Lebesgue measure and similar figures in Euclidean space. 
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