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REPRESENTATIONS OF FINITE GROUPS AND
CUNTZ-KRIEGER ALGEBRAS

M.H. MANN, JAIN RAEBURN AND C.E. SUTHERLAND

We investigate the structure of the C *-algebras O, constructed by Doplicher and
Roberts from the intertwining operators between the tensor powers of a repre-
sentation p of a compact group. We show that each Doplicher-Roberts algebra is
isomorphic to a corner in the Cuntz-Krieger algebra Q4 of a {0,1}-matrix A = A4,
associated to p. When the group is finite, we can then use Cuntz’s calculation of
the K-theory of O4 to compute K.(0,).

Doplicher and Roberts have recently developed a duality theory for compact sub-
groups of SU(n,C) in which the dual object consists of a simple C *-algebra Og and
an endomorphism of O¢ [3, 4]. The construction of Qg is based on the concrete rep-
resentation p of G in SU(n,C) rather than the abstract group G, so we prefer to call
it O,; our work originated in an attempt to find out how the structure of O, depends
on the choice of representation. To this end we have computed the K-theory of O,
for finite G, by embedding it as a corner in a Cuntz-Krieger algebra (0,4, and using
Cuntz’s calculation of K.(©O4) [1]. One conclusion is that different representations of
the same finite group can give algebras which have quite different K-theory, and hence
are not even stably isomorphic or Morita equivalent.

The algebra O, is constructed from the spaces of intertwining operators between
the different tensor powers p™ of p, and its structure is determined by the decompo-
sitions of p™ into irreducibles, and hence by the decompositions of 7 ® p for 7 € G.
The combinatorics of the situation can be summed up in a bipartite graph with G
as vertices, and our main observation is that these combinatorics are similar to those
involved in Cuntz and Krieger’s construction of a C *-algebra O 4 from a {0,1}-matrix
A. When G is compact, A is infinite, and there are technical problems in transferring
this combinatorial similarity to the C*-algebra level; indeed, we need to appeal to both
(2] and [3] to do it. For finite groups, we can prove directly that O, is a cornerin Oy,
and the simplicity of O, therefore follows from [2] alone. We shall go as far as we can
in full generality, since we are optimistic that one can extend the results of [1] to cover
infinite A, and use them to compute K,(O,) for compact G along similar lines.

Received 6th September, 1991

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/92 $A2.00+0.00.

225

https://doi.org/10.1017/50004972700011862 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700011862

226 M.H. Mann, I. Raeburn and C.E. Sutherland (2]

We begin with a discussion of the two Doplicher-Roberts algebras °0,, O, asso-
ciated to a finite-dimensional representation p: %0, is a *-algebra, and O, its C*-
enveloping algebra. In Section 2, we associate a {0,1}-matrix A, to p, and show how
%@, can be canonically mapped into the Cuntz-Krieger algebra O4,; in Section 3, we
prove that, when G is finite, this mapping induces an isomorphism of O, onto a corner
PO4,P in Oy,. Since O4,, is known to be simple [2], this implies that O, is Morita
equivalent to O4,, and in particular has the same K-theory. In our final section, we
compute K,(O,) for a few examples of finite groups, using methods which should work
whenever we have a character table for G.

One could also hope to investigate the structure of Doplicher-Roberts algebras
by realising them as the C *-algebras of locally compact groupoids whose unit spaces
are path spaces associated to the infinite diagram of Section 1, and exploiting general
properties of groupoid C*-algebras, as done for AF-algebrasin [7]. At present, though,
it is not clear whether the appropriate groupoids for the Cuntz-Krieger algebras of
infinite {0,1}-matrices are locally compact, and hence the present approach may be
more easily adapted to compact groups. In [6], we gave a brief discussion of the groupoid
approach, and the problems involved in it.

We stress that many of the ideas and results in this paper are either well-known
or implicit in the work of Doplicher-Roberts and Cuntz-Krieger. For example, our
comments in Section 4 on computing K,(O4) are surely known to all experts. However,
we do hope a detailed presentation of this circle of ideas in a technically-straightforward
special case will be informative and useful.

This research was supported by the Australian Research Council.

1. DOPLICHER-ROBERTS ALGEBRAS

Let p be afinite-dimensional representation of a locally compact group, and for n €
N, let p™ be the n-fold tensor power of p, acting in H,®---Q H, = H} . For each pair
m,n € N, we denote by (p™,p") the space of intertwining operators T : H} — H*;
we have chosen this notation so that the composition SoT of § € (p™,p"),T € (p™, p?)
lies in (p™,p?). There is a natural embedding T — T®1 of (p™,p") in (p™*1,p"+?),
and we denote the direct limit li_r_r.l(p?,p"'”‘) by °Oﬁ . The direct sum °0, = @z 00’;

is a *-algebra in which the product of § € (p™,p") and T € (p?,p?) is
(S®1,-a)0T € (p""+("""),pq) fp>n
50(T®1lap) € (p™,p** " P)) if p>n,

and the adjoint of S € (p™,p") is S* € (p™,p™).
We shall refer to either °O,, orits C *-enveloping algebra O, as a Doplicher- Roberts
algebra; of course, it is not immediately obvious that °0O, has a C *-enveloping algebra,
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since a priori
\T|| = sup {||=(T)|| : 7 is a *-representation of °O,}

could be infinite. To settle this, we shall describe a natural basis for each (p™,p"),
which is parametrised by paths in an infinite graph associated to p, and which will be
important in our later constructions.

We first let R be the set of (equivalence classes of) irreducible summands of the
tensor powers p™, (adding in the trivial representation ¢, if necessary), and to each
element of R we associate a specific representation = : G — U(H.). We define a
bipartite graph with R as the set of vertices, and the number of edges joining ; at
the top level to 7, at the lower level equal to the multiplicity of w; in 7; ® p. Thus,
for example, if m; occurs with multiplicity 2 in m ® p, and multiplicity 1 in 73 ® p,
the graph contains

n n b
“ .2 .3
[ o o

1 2

If z is an edge from m; above to m; below, we write s(z) = m; and r(z) = 7z, and we
let E denote the set of all edges. We now assign to each edge z an isometric intertwiner
T, : Hy(zy = Hy;) ® H,, in such a way that, for each ,

H.®H,= P T.T}(H.®H,)
{z:8(z)=7}

—in other words, such that the edges out of w give a specific decomposition of H, @ H,
into irreducibles. Next we consider the infinite graph obtained by sticking infinitely
many copies of the bipartite graph below the original. We note that a sequence
z1,Z2,...,2, of edges in the original graph combines to form a vertical path in the
infinite graph if and only if 7(z;) = s(zj+1) for all j. Each path z = {z;,23,...2.}
represents an intertwiner

T, = (Tzl ® 111—1) O(Tzz ®1n—2) O~ oTzn : Hr(z,,,) - H:,

where 1, denotes the identity operator on H}, and the paths z with s(z;) =« provide
an explicit decomposition of H} into irreducibles:

Hp = &b T.T; (H?).

{paths z with s(z1)=:}
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PROPOSITION 1.1. The family

{T.T; : |lz| = m|y| = n,8(21) = 8(y1) = ¢,7(2m) = 7(ya)}

is a basis for (p™,p™), and each basis element T.T,; is a partial isometry.

ProoF: Each pair of paths =, y with |z| = m, |y| = n and s(z1) = ¢ = s(y1)
determines a pair of irreducible summands T, (H,(Zm)), T, (H,.(yn)) of H*, HF; the
space of intertwiners of these representations is 0 unless 7(z,,) = 7(yn), and then
is the l-dimensional space spanned by T.T;. Hence every intertwiner in (r™, p™)
can be uniquely expressed as a linear combination of the T,T;, as claimed. Because
each T is isometric, T is a partial isometry with range space H.,(y,), and, whenever

7(2m) = 7(yn), TxT; is also a partial isometry. 0
COROLLARY 1.2. Forevery T €°0,,

IIT|| = sup {||=(T)|| : 7 is a *-representation of °0O,}

is finite.

PROOF: As every element of °0, is a finite sum of elements of °O%, and each

)
of these is a direct limit, we may as well suppose that T € (p™, p"), a.n(f hence that
T can be uniquely written as a linear combination E,\,,yTzT; . Now an operator
S € (p™,p™) is a partial isometry if and only if § = §5*S as operators on H}, and
hence, by definition of the *-algebra structure on °Q,, if and only if § = $5*S in °0,.

Thus W(T,T;) is a partial isometry for every representation 7 of °0,, and

ITH <D Pl 7 (TT)] <D 1Aels

which gives the Corollary. ]

REMARK. Although we have not insisted that the group G be compact, as Doplicher
and Roberts do, the extra generality is spurious: if p is finite-dimensional, the intertwin-
ing spaces for the identity representation tx of the compact group K = p(G) C U(H,)
are exactly the same as those of p, and hence O,, = O,. However, there are
non-compact groups with lots of finite-dimensional representations — for example,
SL(2,Z) = Z; » Z3, and the integer Heisenberg group — and there could possibly
be interesting interplay between the combinatorics of the representation, the algebra
O,, and the underlying non-compact group.

2. REPRESENTING A DOPLICHER-ROBERTS ALGEBRA IN A CUNTZ-KRIEGER ALGEBRA

Again let p be a finite-dimensional representation of a locally compact group, and
resume the notation of the previous section. Define a (possibly infinite) {0,1}-matrix
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A,, indexed by the set E of edges in the bipartite graph associated to p, as follows:

1 if r(z) = s(y)

0 otherwise.

(2.1) Ap(z,y) = {

THEOREM 2.1. Let p be a finite-dimensional representation of a locally compact
group, and use the notation of Section 1. Let {S; : z € E} be a family of non-zero
partial isometries satisfying

518 =Y Au(z,)5,5;,

yEE

let B be the *-algebra generated by {S.}, and let

P= ) 8.5

{z€E:s(z)=1}

Then there is a *-homomorphism of the Doplicher-Roberts algebra °O, onto the corner
PBP.

The idea is that paths in the infinite diagram of Section 1 have interpretations
in the Cuntz-Krieger algebra C*(S;), as well as the Doplicher-Roberts algebra °0,.
A sequence z;,23,...,%, of edges in the original graph combines to form a vertical
path in the infinite graph if and only if r(z;) = s(¢;4+1) for all 7, hence if and only if
Ay(zj,zj41) =1 for all j, and hence exactly when the the product S, = Sz, Sz, ... S-,
is non-zero [2, p.252]. And, parallel to Lemma 1.1, every element of B is a linear
combination of operators S,,S; with 7(zm) = 7(yn).

We now define ¢m 1 : (p™,p") = B by ¢pmn(T.T;) = S.S;. Notice that, since
s(z1) = 8(y1) = ¢, we have

5287 = Sz, 8%, (5:5;) 5, 5;, = P(S=,5z,)(5:=5;)(Sy, S, )P = PS.S; P,
and hence ¢ n : (p™,p") = PBP. We claim that the maps ¢, , are compatible with
the bonding maps (p™,p") — (p™*+?,p"*!), in the sense that

(2.2) Smt1,n+1 ((TzT;) ®1) = dmn (TzT;).
To see this, we note that

Hy . ®H,= @ T.T; (Hr(z,,) ® H,),
{z€E:s(2)=7r(zm)}
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so that

T,T: ®1= 3 (T: ® (T T;)(T; ®1)
{z:8(z)=r(zm)=r(yn)}

= E (Tzz)(Tyz)*;
{z:8(z)=r(zm)="(yn)}
on the other hand,

S8y = 85:(53,.52m)5;

=S, (Z A(:cm,z)S,S:) sy

z€E

= > 8.(5.5)S;
{z:5(2)=r(zm)}

= Z (822)(Sy2)",
{z2(2)=r(zm)}

and (2.2) follows.

We can now define ¢ = ®¢*, at least as a linear map, and we have to verify that
¢ is a *-homomorphism. Well,

Smn(TT;)" = (8:5,)" = 5,5, = ¢n (T, T2);

so ¢ is certainly *-preserving. To check that ¢ is multiplicative, consider T>T, €
(p™,p"), TwT; € (p?,p?), and suppose for the sake of argument that p > n. Then

$(TTY)TWT;)) = ¢ ™D ((L.T5) ® 1p-n) 0 (TuT))-

The product (T; ® lp_ﬂ)Tw is by definition the composition

(T;, ®1p-a) © (T;n—l ® 1?‘"“) 00 (T ®1lp-1) o (Tw; ®1p-1) 00Ty,

Since

0 unless w; =y
T;l T‘qu = { . ) 1 1
Ty; Ty1 =1 if w1 = Y1,

and we know y is a path, T ((T;1 Tyl) ® 1) = Ty,; thus we can omit the two middle

terms in (T; ® 1)Tw . By induction, we deduce that the composition is 0 unless y; = w;
for 1 €1 € n, and then equals

(T’-"n-{-l ® ]-P—ﬂ—l) 0--+0 Twn = Tw',
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say. Thus

(T: ®1p-n)o Ty oT; fyi=wiforl<ig<n

0 otherwise,

(T=T}) ® 1p-n) TuT; = {

{Tzw:T: fyy=wiforl<i<n

0 otherwise.

But this is precisely the rule for cancelling S;S.:

S.(S35.)8: = { 52 (85, 50a)SwS; iy =wifor1<i<n

otherwise
{ 5:855; Hyi=w;forl<i<n

0 otherwise,

since *(zm) = 7(yn). Hence ¢ is multiplicative, as claimed.

The algebra B is spanned by the elements of the form §,S;, which is non-zero
only if there exists z with A(zm,2z) = A(yn,2z) = 1, that is, only if 7(zm) = 7(ya).
Since

S.5; if s(z1) =1 and s(y1) =

0 otherwise,

PS,,S;P = {
it follows that

PS,SIP = { S.S: if s(z1) = ¢ = s(y1) and r(em) = 7(yn)

0 otherwise,

_ { ¢m,n(TzT;) if 8(z1) = ¢ = s(y1) and r(z,) = 7(yn)

0 otherwise.

Thus the non-zero operators of the form PS,S;P are all in the range of ¢, and since
they span PBP, the homomorphism ¢ maps onto PBP.
This completes the proof of Theorem 2.1. 0

COROLLARY 2.2. Thereis a surjective homomorphism of the Doplicher-Roberts
algebra O, onto the corner PC*(S;)P.

ProoF: The algebra O, is the C *-enveloping algebra of the *-algebra °Q,, so the
homomorphism ¢ : °O, — PBP C PC*(S.)P is by definition continuous, and extends
to a homomorphism of O, into PC*(S,)P. Since ¢ maps °O, onto PBP, which is
dense in PC*(S.)P, and homomorphisms between C *-algebras have closed range, the
Corollary follows.
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COROLLARY 2.3. Suppose p is a representation of a compact group G in
SUn(C), for some n > 1. If {S,}, P are as in Theorem 2.1, then O, is isomorphic to
PC*(S:)P.

PRroOF: By Theorem 2.12 of 3], there is a unique C *-seminorm on *0,, which is
actually a C*-norm. Since pulling back the operator norm along the homomorphism
of °O, onto PBP induces such a seminorm, we deduce that the homomorphism is iso-
metric, and extends to an isomorphism of @, onto the closure PC*(S,)P of PBP. 0

REMARK 2.4.. When the group is finite, the matrix A, is finite, and it follows from
(2] that C*(S.) = O4, is simple (see Lemma 3.1 below). As the corner O, is then
necessarily full, we can deduce from [3, Corollary 2.3], and [2] that K.(O,) = K.(O4,)
(we shall prove this again in Section 3 without appealing to [3] or requiring p(G) C SU).
In principle, we can similarly deduce from [3] and [2] that K.(O,) & K.(O,4,) when
G is compact and p(G) C SU, although some care will be needed in applying [2]
because A4, is infinite if G is. However, since the calculation of K,(O4) in [1] does not
obviously apply to infinite A, further work is needed before this result can be useful,
and we defer it for now.

3. DOPLICHER-ROBERTS ALGEBRAS OF FINITE GROUPS

Our goal here is to prove that, when G is finite, the complete Doplicher-Roberts
algebra O, is isomorphic to a corner in the corresponding Cuntz-Krieger algebra Oy, .
Before we can state our theorem, we need to check that the {0,1}-matrix 4, is one for
which O4, can be uniquely defined, up to isomorphism, as the C*-algebra generated
by a family of non-zero partial isometries {S, : z € E} satisfying

(3.1) 515 =Y A,(2,9)5,5;.
yeF

Cuntz and Krieger gave a sufficient condition (I) on the {0,1}-matrix A, [2, p.254;
Theorem 2.13], and showed that if in addition A, is irreducible, then O4, is simple (2,
2.14]. Both these properties of 4, reduce to standard facts about the representation
theory of finite groups:

LEMMA 3.1. If p is a representation of a finite group and 1 < dimp < oo, then
A, is irreducible and satisfies the Cuntz-Krieger condition (I).

ProoF: We may as well suppose p is faithful: if not, replace the group G by
G/ ker p. Then every irreducible representation of G is contained in some tensor power
of p [5, (4.3) and (2.9)], and hence R = G; equivalently, for each m € G there is a
path in the infinite diagram starting at ¢ and finishing at 7. If #. is the contragredient
representation s — (7r,-1)t, then ¢ is a summand of 7 ® m, (since the corresponding
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characters satisfy x», = X, this follows from [5, p.48 and (2.9)]), and hence for any
7 € G thereis a path from 7 to ¢. Putting these last two observations together gives
a path joining : to itself passing through any given w, and hence paths joining any
given m; to any other m,. Now given z,y € E, we can use a path from r(z) to s(y) to
produce a path starting with z and finishing with y, and thus A, is irreducible. To see
that A, satisfies (I) we just have to produce two different paths starting and finishing
with the same edge z: for then the irreducibility of A, implies that we can connect
any other y € E to z. But if 7 has maximal dimension, dim p > 2 implies that 7 ® p
must have at least two irreducible summands, and hence that there are at least two
edges y,z with = = s(y) = s(z). Now we take z to be any edge with »(z) = 7, and
joining »(y) and r(2) to s(z) gives two distinct paths starting and ending at z. I

REMARK 3.2. The result always fails if dimp = 1. For then p is an isomorphism of
G/ ker p onto a finite cyclic subgroup of T, the map ¥ — 7p is an automorphism of
(G/ ker p)~, and the matrix A, is a permutation matrix, which never satisfies condition
(I). However, since p(G) is cyclic, sois G/ kerp, p must generate (G/ ker p)~, and the

permutation matrix is irreducible.

We now fix a family {S, : ¢ € E} of non-zero partial isometries on a Hilbert space
H satisfying (3.1), view Oy, as C*(S, : ¢ € E), and let

P= Y S5

{z€B:s(z)=1}

Our main result is:

THEOREM 3.3. Let p be a representation of a finite group with 1 < dimp < oo.
Then O, is isomorphic to the corner POy, P.

We first have to establish the algebraic version. For it, we resume the notation of
Sections 1 and 2.

LEMMA 3.4. Suppose G is finite and 1 < dimp < co. Then the homomorphism
¢ of Theorem 2.1 is an isomorphism of °0O, onto PBP.

PROOF: We begin by letting

B =5p {55y : |z| =m, ly| = n,7(zm) = 7(3n)},

so that by definition ¢, maps (p™,p") onto PB,, P (recall that PS.S;P=5.5,
or 0,50 PBp, nP is spanned by those S,S; where s(z1) = 8(y1) =¢). In fact we claim
that the generators S,S; for Bp,n are linearly independent, so that ¢, is a linear
isomorphism. To see why, suppose Y. Aey8:.5;,=0in B. i |w|=m,|z| =n

fzl=m,ly|=n
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then S,,S: = 6:,wS;, Sz, (2, 2.1], and hence

s;,( 3 ,\,,ys,s;)s,=,\.,,_,s;msw,,,s;"s,,,.

[z|l=m,lyl=n

Thus Ay,; = 0 whenever |w| = m,|z| =n and r(wm) = r(za), and the 5.5y in B
are independent, as claimed.

The direct limit of the isomorphisms {¢m n} is an isomorphism

¢* - °OF = lim (p?, p***) - PB*P = lim PB, ;4P = | J PBpp+4 P,
p

and to show the direct sum ¢ = @¢* is an isomorphism, it is enough to show that
the range PBP is the (algebraic) direct sum of the subspaces PB*P. This is a highly
nontrivial property of the algebra 04, = C*(S:), essentially established by Cuntz and
Krieger in {2, 2.8, 2.9], and is only true because the matrix A, satisfies condition (I)
by Lemma 3.1.

As shown in {2, bottom of p.255], every X in B can be written in the form

i (> SzXz)+Xo+§:(Z X,5;),

k=—M |z|=]k| k=1 |y|l=k
where Xo, Xz, X, are all linear combinations of elements 5, S; with |[w| = [z|. Since,
for example, > X,S; € B*, and the recipe given in [2] shows that XS, lies in

lyl=k
PB*P when X € PBP, our problem is to show that this expression is unique. So

suppose we have written 0 as a sum
N -1 N
Yo=Y (X sz)+2+3 (X 4s).
k=-M k=—-M |z|=|k| k=1 |y|=k

If Z denotes the formal sum on the right-hand side, then Z = 0 implies Z*Z =0, and
hence, by [2, 2.8], that the homogeneous term (Z*Z), € B® vanishes. But this term is

-1

z;s;s,,z,,) + 220 + f:( 3 zys;)'( D z,,,s;,)

=M lz|=[El=2] k=1 =k W=k
-1 N .
= S (Y zsisz)+ 22+ 3 (Y 2.5) (X 2.5;)
k=—M lzl=lk| k=1 Jyi=k lvl=*
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Because the sum of positive operators can be 0 only if each term is 0, we can deduce
from this that Zy = 0 and S;Z; = 0 for each z, and hence that Z; = 0 for k < 0. The
same argument using ZZ* = 0 gives Z,S; = 0 for each y, so that Zy =0 for £ > 0.
We have shown that, algebraically at least, B = @z B* and PBP = @, PB*P,
and it follows that ¢ = @¢* is an isomorphism, as required.

Proor oF THEOREM 3.3: Cuntz and Krieger prove the uniqueness of 04 by
showing that the *-algebra B generated by the partial isometries has a unique C*-
norm ||-|| g, namely that coming from its action on H. Since we know from the Lemma
that °0, is *-isomorphic to PBP, our problem is to show that the enveloping C*-
norm ||-||g« on PBP coincides with |||z on PBP. We certainly have ||-||g < ||-]lg+,
so it will be enough to show that, for any *-representation m of PBP, there is a
*_-representation 7 of B such that ||7(Y)|| < ||7(Y)|| for Y € PBP; if so, then

1Yllg = llid © r(Y)|| = sup{||Y]|p, | 7(¥)I}

forces 1Yl ge = sup{||n(Y)|| : 7 is a *-representation of PBP}

< sup{||7(Y)|| : 7 is a *-representation of B}

<IYlg-
Given 7, we intend to write down a formula for such a 7, but we need to do some
background work first.

For each edge z, we choose a path az) starting at the vertex ¢ and ending at

z: if s(x) = ¢, we insist that a(z) consists of the single edge #. We then define
R, = S,,S;(z), so that if s(z) = ¢, we have R, = 5,52, and in general, R. is a partial
isometry with initial projection R;R, < P. For single edges w,z we have §3S5, =0

unless w = z, and therefore

S:S;S,,S, = S;‘(Zw Ay, w)SwS5L)S:
= A(y,2)S.S?,

which is 0 or §.57; since we know a(z) is a path, So(;) # 0 and cancellation from

the centre out shows

R.R; =S, (S: T S;(z)j o S;(t)l) (S“(”)1 e S"‘(’)J o ST) 5
= §,(5:5.)S2
=5.5,.

Thus we have

(3.1) 1=)"5.5;=) R.R;.

z€FE z€E
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We now define 7 : B — B(HF) = Mg(B(H)) by letting 7(Y) be the E x E matrix
with (z,y)-entry 7(Y), . = w(R;Y R;); because both R;R, and R;R, are dominated
by P, R;Y R, liesin PBP, and we can legitimately apply m to it. We claim r is a
*-homomorphism: it is clearly linear, equation (3.1) implies that it is multiplicative:

(T(Y)T(Z))z,z = Zy"(R:YRy)W(R;ZRZ)
=(R:Y (3, R, R;) ZR.)
=m(R;(YZ)R.)
= T(Yz)z,z’

and it is easily seen to preserve adjoints:
(7)), = (7(¥),.) = n(R}YR.)" = n(RY*R,) = 7(¥"), ..

Finally, note that because R, = S.S; when z € I = { € F : s(z) = ¢}, we have P =

> R, = Y R:, and hence for Y € PBP
zel z€l

m(Y)= Y w(RYR,).
z,yel

Since the ranges of the partial isometries Ry are mutually orthogonal, the norm of this
sum is equal to the norm of the I x I matrix

(w(RY Ry)), yer € Mi(B(H));
but this is a submatrix of the £ x E matrix 7(Y), and hence

(V)] = |((R2Y R, ye| < I,

as required. 1]

COROLLARY 3.5. For any representation p of a finite group satisfying 1 <
dimp < o0, O, is a simple C *-algebra which is Morita equivalent to the corresponding
Oa,-

ProoOF: We have already shown that A = A, is irreducible and satisfies condition
(I), so O4 is simple by [2, Theorem 2.14]. Thus the corner PO4P is full — there is
no nontrivial ideal which can contain it. This implies that the 04— PO 4P bimodule

@4 P is an imprimitivity bimodule with the inner products
(XP,YP)po,p=PX'YP,
o,{(XPYP)=XPY"

the fullness of PO 4P says precisely that the span of the range of the O 4-valued inner
product is dense in O 4. Thus the result follows from the Theorem. 0
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4. THE K-THEORY OF DOPLICHER-ROBERTS ALGEBRAS

We want to compute the K-theory of a Doplicher-Roberts algebra O, using Cuntz’s
computation of K,(04,), which is isomorphic to K,.(O,) because the C*-algebras are
Morita equivalent. The key result is [1, Proposition 3.1], which asserts that Kg(O4)
and K;(0,) are, respectively, the cokernel and kernel of the map 1 — A* : ZF — ZF.
Now when we constructed A, from the bipartite graph, we chose to use the set E of
edges rather than the set R of vertices as our index set. This has the advantage that
A, is always a {0,1}-matrix, as opposed to an integer matrix, but the disadvantage
that E is usually a lot bigger than R, which makes calculations messier. So we want
to first show that either matrix can be used in our calculation of K-theory. In fact this
is quite generally true: if A, B are the two matrices associated to any bipartite graph,
then 1— A%, 1 — B* have the same kernel and cokernel, and if both are {0,1}-matrices,
they give isomorphic Cuntz-Krieger algebras. These facts are surely well-known — for
example, they are implicit in the way Cuntz and Krieger handle general integer matrices
(2, 2.16] — but we do not know where the details have been written down.

Suppose, then, that we have a bipartite graph with vertices V , edges E and range,
source maps 7,8 : £ — R. We define

B(i,j) = #{z € E : 5(z) = i,7(z) = j}
Az,y) = { 1 if r(z) = s(y)

0 otherwise.

ProposITION 4.1. (1) If B is a {0,1}-matrix satisfying (I), then A satisfies
(I) and Ogp = 0y4.

(2) There are isomorphisms

ker (1 — B*) : ZV — ZV) = ker ((1 - A?) : ZF — ZF)
zV/(1- B*)(2V) = 2F/(1 - A%)(2Z").

PRroOOF: If B has entries in {0,1}, paths of vertices are essentially the same as

paths of edges, and the first assertion is essentially clear. For the second, suppose $;
are partial isometries satisfying

§:8:=")_ B(i,5)S;5;,
jev

and define T, = S4(2)Sr(z)Sr(z)- Then certainly each T is a partial isometry in C*(S;),
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and

S = 8:5185: =Y B(3,7)5:5;S;

jev

= ). 8S;85;
{3:B(i,j)=1}

= Z Sl(z)Sr(z)S:(z):
{z:8(z)=i}

since B(i,7) =1 if and only if there s is an edge z from i to j. Thus C*(S;) = C*(T:).
We now verify that the T, generate O4. On the one hand,

2
S AL = Y Sun(SwSin) Siw
yEE {y:s(y)=r(2)}

= r(z)( Y. Suw ;'(,,))S’:(,)
{wa(y)=r(2)}

= r(z)( Z SjS;) S22)
{i:B(r(z)i)=1}

= r(z)(S:(z)Sr(=)>S:(=)

= Ip(z) :(:))

on the other, since the §; have mutually orthogonal ranges, we also have
T;T: = Suz) :(,)(S,*(,)S,(,)) Sr(z)Sx(z)

= r(z)S:(z)( > Sjs;)S,(,) )
{5:B(s(=),j)=1}
= r(z)S:(z)7

so the T, do satisfy the Cuntz-Krieger relations for 4. Thus by the Cuntz-Krieger

uniqueness theorem we have
Op = C*(S,') = C*(Tz) = g,

giving (1).
To establish (2), we use the source and range maps to define V x F and E xV

1 ifs(z)=1
S(i,z):{o (=)

otherwise

ifr(z)=1
R(:c,i):{(l) (=)

otherwise.

madtrices:
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We have
(RS)(z,y) = 3°; R(=,%)S(3,v),

and since each summandis 0 or 1,
R(z,7)S(i,y) =1 & R(z,i) =1 = S(i,y)
& r(z) =1 =s(y).

For each fixed pair (z,y), this can happen for exactly one i, and hence we can deduce
that RS = A. Similarly,

(SR)(i,3) = X, 8(i,2) R(z,5)
=#{z € E: S(i,z) =1 = R(z,7)}
=#{z € E: s(z) =1,7() = 5},

and SR = B. Of course, we also have R!S® = B* S'R' = A*, and hence the following

standard lemma gives what we need:

LEMMA 4.2. Suppose R,S are V x E,E x V matrices with entries in {0,1},
and B = RS € My(Z), A = SR € Mg(Z). Then the transformation S : ZvV — ZF
induces isomorphisms of ker ((1 — B) : Z¥ — ZV) onto ker (1 — A), and coker(1 — B)
=2V /(1 - B)(ZV) onto coker(1 — A).

PROOF: We first observe that, for each A # 0, §: RY — RF is an isomorphism

of the eigenspace
E® = {veRY:Bv =X}

onto E{f C R¥®, with inverse given by A™'R. Since both R, S have integer entries, it
follows that S restricts to an isomorphism of ker (1 — B) = EENZY onto ker (1 — 4) =
E{ N ZF with inverse R. Next, we note that if z € im(1 — B), say z = (1 — B)v,
then

Sz=5(1 - RS)v =(1— SR)Sv = (1 — A)(Sv),

so § does map im(l — B) into im(1 — A), and induces a homomorphism ¢ of
coker(1 — B) into coker(l1 — A). In the same way, R induces a homomorphism %
of coker(1 — A4) into coker(1 — B), which we claim is an inverse for ¢. For

Y og(v + im(1 — B)) = SRv+ im(1 — B)
=v—(v— SRv)+ im(1 — B)

=wv + im(1 — B),
and similarly ¢ o is the identity on coker (1 — A). 0
This lemma completes the proof of Proposition 4.1. 0
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EXAMPLE 4.3. G = S3. The character table of S5 is

e (12) (123)

L 1 1
o 1 -1
™ 2 0 -1

The obvious representation to take for p is the 2-dimensional representation w: it is
faithful because

kerw = {s € G : xx(s) = xx(e) =2} = {e}
[5, (2.19)]. We trivially have (2 =¢, 1 Q0 =7, t @ T ~ 7, and 0% = ¢; the characters

of the other tensor products are given by

Xo®r = XoX® = X= and
2
Xm®r = (X'lr) =X+ Xo + X

and since the decomposition of the character determines the decomposition of the rep-
resentation [5, (2.9)], we have o @ 7 ~ 7 and 72 ~ 1 @ 7 b 0. We therefore have

010 1 -1 0
B,=|11 1) and 1-B:=[-1 0 -1].
010 0 -1 1

Since det (1 — Bt) = 2, ker(1 — B%) =0 and K1(Ox) = K1(Op,) = 0. However, for
(m,n,p) € Z3, the unique solution v of (1 — B*)v = (m,n,p) in R3? is

m-—-n—p —m—n—p —-m—n+p
v 2 ' 2 ' 2 ’

which lies in 2° if and only if m + n + p € 2Z. Thus
(m,n,p) = (m+n+p) +22

induces an isomorphism of Ko(Ox) = Ko(Op,) = Z°/(1 — B%)(Z*) onto Z,.
If we take for p the faithful representation 7 @ ¢, we have instead

110 0 -1 0
B,=|1 2 1] and 1-B;=|-1 -1 —1).
011 0 -1 0
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Thus for this choice of p,
Kl(O,,) = K] (OBF) = ker (1 - B;) = Z,
and the map (m,n,p) — m — p induces an isomorphism
Ko(0,) = Ko(0B,) = Z*/(1 - B})(2°) = Z.
Alternatively, if p = 7 @ o, we have
1 -1 -1
1- B; =] -1 -1 —1)
-1 -1 1
Here det (1 — B!)= —4, 50 K,(0,) =0, but (1 - Bt)v = (m,n,p) has solution

m—-n —m-—
v= ( 9 ’_2—p)P - n) ’
and (m,n,p) — (m — n,—m — p) induces an isomorphism of coker (1 — B:,) > Ko(O,)
onto Zz X Z2 .

EXAMPLE 4.4. G = As = PSL(2,5) = SL(2,4). It is important in the work of
Doplicher and Roberts that the representation p is faithful and special unitary, and we
shall now discuss an example where there are several irreducible representations of this
kind — indeed, since this group has only the trivial one-dimensional representation,
8 — detm(s) is always identically 1, and any representation is special unitary. We
write m; (1 <4 < 5) for the irreducible representations, with m; = ¢, and x; for the
corresponding characters. Then the character table for Ay is:

1 2 3 53 52

X1=1L: 1 1 1 1 1
X2 : 4 1 -1 -1
X3 : 5 1 -1 0 0
X4 - 3 -1 0 23} 7]
Xs : 3 -1 0 as a

where a; = (1 + \/5) /2, az = (1 - \/3) /2. Calculating as in the previous example
with p = 7, gives

01000 1 -1 0 0 0
11111 -1 0 -1 -1 -1
B,=|01 211 and 1-Bj=| 0 -1 -1 -1 -1
01101 0 -1 -1 1 -1
01110 6 -1 -1 -1 1
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The rank of 1 — B} is 4, with
K1(Ox,) 2 ker (1 — B3) = {(n,n,—n,0,0)} = Z.

Given m = (m,n,p,q,r) € Z°, the equation (1 — Bf)v = m has a solution in R® only
if p = n 4+ m, and then the solution space in RS is

—q—7 q—p Tr—p
{t(l,l,—1,0,0)+(m,0, 9 "9 ' g )},

it follows that
(m,n,p,q,7) = (m +n—p,g — pmod 2,7 — pmod 2)

induces an isomorphism of Ko(Ox,) = 2°/(1 — B)(Z®) onto Z x Z; x Z,.
Next we take p = m4. This time

00010 1 0 0 -1 0
01101 0 0 -1 0 -1
Bs=|0 11 11 and 1-Bi=| 0 -1 0 -1 -1
1 0-110 -1 0 -1 0
011 0 0 0 -1 -1 0 1

We have det (1 — B) = 4, so ker(1 — Bf) = 0 = K1(Ox,), and if m = (m,n,p,q,r),
then (1 — B:)v = m has unique solution

r—p—3¢g+m+2n —r—p+q+m —r4+p—q—m—2n
4 ’ 2 ’ 4 ’
r—p—3¢q—-3m+2n r—p+qg+m—2n
4 ’ 4

which lies in Z° if and only if 7 — p — 3¢ + m + 2n € 4Z; thus
Ko(Oxr,) = Ko(Op,) = Z°/(1 — B3)(2°) = Z/4Z.

In particular, the K-groups of O, and O, are quite different, even though both 4
and m; are faithful, irreducible, special unitary representations of As.
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