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RINGS WHOSE ADDITIVE ENDOMORPHISMS

ARE N-MULTIPLICATIVE

SHALOM FEIGELSTOCK

Sullivan’s problem of describing rings, all of whose additive endomorphisms are multi-
plicative, is generalised to the study of rings R satisfying ¢(ay ...an) = ¢(a1)...¢(an)
for every additive endomorphism ¢ of R, and all a,...,an € R, with n > 1 a
fixed positive integer. It is shown that such rings possess a bounded (finite) ideal A
such that [R/A]" = 0 ([R/A]’"‘1 = 0). More generally, if f(Xi, ..., X¢) is a ho-
mogeneous polynomial with integer coefficients, of degree > 1, and if a ring R satis-
fies p[f(a1, ..., at)] = fle(ar), ..., ¢(a:)] for all additive endomorphisms ¢, and all
a1, ..., a¢ € R, then R possesses a bounded ideal A such that R/A satisfies the poly-

nomial identity f.

Notation.
Z(n) a cyclic additive group of order n.
R a ring.
Rin] {z € R | nz = 0}, n a positive integer.
R* the additive group of R.
R,  the torsion part of R*.
R, the p-primary component of R, p a prime.
Rp @ R,, P a set of primes.
pEP
ap the p-primary component of a € R, p a prime.
P, {p a prime | n = 1(mod p — 1)}, n a positive integer.
End (R*)  the ring of endomorphims of R*.
End (R) the semigroup of ring endomorphisms of R.

Sullivan (4] asked for a description of the rings R satisfying End (R) = End (R*).

Kim and Roush (3] classified the finite rings satisfying Sullivan’s property. In [1] the
torsion rings satisfying End(R) = End (R*) were completely described, and very re-
strictive necessary conditions were obtained for a general ring to satisfy this property.
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In this note, the following generalisation of Sullivan’s problem will be considered.
Let n > 1 be a positive integer. Which rings R satisfy ¢(a;...a,) = ¢(a1)...p(a,)
for all ¢ € End(R*) and all a1,...,an € R? More generally, for f(Xy,..., X;)
a polynomial with integer coefficients, which rings R satisfy ¢[f(a1,..., a)] =
fle(as), .., o(a;)] for all ¢ € End(R™"), and all a;,...,a, € R? Rings satisfy-
ing the polynomial identity f clearly satisfy this property. It will be shown that for f

a homogeneous polynomial the converse is “almost” true.

DEFINITION: Let n > 1 be a positiveinteger. A ring R is said to be an AFE,,-ring,
(additive endomorphisms are n-multiplicative), if ¢(ay...a,) = ¢(a;)...¢(a,) for all
v € End(R%), and all a4, ...,a, € R.

The proof of the following lenuna is due to Muskat (through personal communica-
tion).

LEMMA 1. Let n > 1 be a positive integer. A prime q satisfies q | p™ — p for all
primes p if and only if ¢ € P, .

PROOF: Suppose that ¢ € P,, thatis n = 1{mod ¢ —1). For p an arbitrary
prime p9~! —1|p"~1 —1. Clearly it may be assumed that p # ¢. By the Little Fermat
Theorem p?~! = 1(mod g), that is ¢ | p?~! — 1, which implies that ¢ | p"~! — 1, which
in turn yields that ¢ | p™ — p.

Conversely, suppose that the prime ¢ ¢ P,, that is n # 1(mod ¢—-1). Let g
be a primitive root of the congruence X! = 1(mod ¢q). By Dirichlet’s Theorem the
sequence {g+kg| k=1, 2, ...} contains a prime p # ¢q. Since ¢—1 { n—1, it follows
that p™~! # 1(mod ¢), and so ¢ + p(p"~" - 1). |

THEOREM 2. Let R be an AE,,-ring. Then R* C @ R[p].

pEPn

PROOF: Let p be a prime. The map Rt — R* via z — pz belongs to End (R"),
so for all a1, ..., an € R, the equation paj...a, = p"a;...a, is satisfied, that is
(p" —p)R™ = 0. It follows from Lemma 1 that R" C Rp,. Let a € R}, p a
prime. Then p(p™~! — l)a = 0. Since p § p®! — 1, it follows that pa = 0, and
so R*C @ R[p]. R

pEPL

LEMMA 3. Let R be an AE,,-ring, and let H be a direct summand of R*. Then
REHR™ *1C H foral 0 < k<n—1.

PROOF: Suppose that Rt = H @ I{. Let mx be the natural projection of R*
onto K along H. For aj, ..., an_1 € R,and h € H, the fact that mx € End(RY)
yields that

mr(ay ... axharyr .. an_y) = mrc(ay).. (e )mx (R)mrc(k41) - - T (@n—1).
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Since mc(h) = 0, it follows that my (REHR""*~1) =0, thatis RFHR**1C H. A

Since P, is a finite set of primes, Theorem 2 implies that an AFE,-ring R is
nilpotent modulo a bounded ideal in R. Actually, if R is AF,, then R is nilpotent

modulo a finite ideal in R.

THEOREM 4. Let R be an AE,-ring, and let P = {p € P, | R} = Z(p)}. Then

R 1 C Rp.
PROOF: It may be assumed that R?*"~1 £ 0. Let a;,..., a3,_1 € R such that
a = 2ﬁlai # 0. Let b = ﬁ a;, and ¢ = 'zrﬁl a;. It follows from Theorem 2
that I;::l Z;D b, with [by] :n;lor |bp] = 0 fo;zgﬁlp € P,. Let p € P, such that
pPEPR

a, # 0. Suppose that b, has nonzero p-height, that is b = pb' for some b' € R
and a = pb'c. Since b'c € R", it follows that (b'c), € R[p] by Theorem 2. Hence
ap = p(b'c), = 0, a contradiction. Therefore R* = (b,)® H with (bp) the cyclic group
of order p generated by b,, (2, Proposition 27.1]. Let d € R*, with |d| = p, and let
¢: R* — R* be the endomorphism induced by the maps b, + d, and h — 0 for all

h € H. Then d = p(b) = ﬁ ¢(a;). Since ¢(a;) # 0, it follows that ¢(a;) = k;d,

=1

with 1 < k; < p—-1forall 1 <i<n. Hence d = kd® with k£ = [] k;. Since
i=1

p 1 k it follows that (d®) = (d), thatis, d" = md, with 1 < m < p—-1. If d
has nonzero p-height, then d = pd' for some d' € R,, and d" = p™(d')" = 0 by
Theorem 2, a contradiction. Therefore every element d of order p in R generates a
cyclic direct summand of R*, and d” = md, with 1 < m < p— 1. This implies that
Rt = @I(a;) ® K with |a;| = p, o = mya; with 1 < m; < p-~1forall i€, and
i€
K,=0.1If [I| >1, then R* = (a;)®(az)® L with 1,2 € I. Let ¥: Rt — R* be the
endomorphism induced by the maps a; +— ay for t = 1,2, and z — 0 for € L. Then
¥Y(ay az) = a} = myay # 0. However, a7 'az € [(a1)R" '] U[R*~!(qz)]. Lemma
3 yields that (a;)R™' C (a1), and R""!(a2) C (a3), that is, a} 'a; = 0, and so
¥(ar~a;) =0, a contradiction. n

A slight modification of the proof of Theorem 2 yields:

THEOREM 5. Let f(X,,..., X;) be a homogeneous polynomial of degree n > 1

with integer coeflicients, and let m be the greatest common divisor of the coefficients of
f-Ifp{f(ay, ..., a)] = fle(ar), ..., (ay)] for all ¢ € End(R") and all a4, ..., a, €

R, then
R/I{ D Rirle P Rb*1o P Rlp**)}
pEPn Pﬁpn pEPy
ptm plm pim
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satisfies the polynomial identity f, where each p is a prime, and p*? is the greatest
power of p dividing m.

If S is a set of homogeneous polynomials satisfying the conditions of Theorem 5,
then there exists a torsion ideal A < R such that R/A satisfies all the polynomial
identities f € S. If S is finite, then the ideal A obtained is bounded.

The following example shows that the homogeneity condition in Theorem 5 cannot

be eliminated.

Example 6. Let G be a non-torsion additive group, and let R be the zeroring with
R* = G, thatis, R? = 0. Then ¢(a®—a) = [p(a))?> — p(a) = —¢p(a) for all ¢ €
End(R'), and all a € R. However R/R, clearly does not satisfy the polynomial
identity z? — z.

Any polynomial with integer coeflicients and possessing a nonzero linear summand
provides a counterexample to Theorem 5, similar to Example 6. If f(X;,..., X;) is a
sum of monomials each with integer coeflicient and degree > 1, and ¢[f(ay, .., at)] =
fle(ar)y -« -, p(ar)] for all p € End(R?) and all ay, ..., a; € R, does R/R, satisfy
the polynomial identity f7?
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