GENERALIZED MATRICES

FRIEDRICH ROESLER

Introduction. Similar to the multiplication of square matrices one can define multiplications for three dimensional matrices, i.e., for the "cubes" of the vector space

$$
\mathcal{W}(I, K):=\left\{\mathcal{A}=\left(\alpha_{x y z}\right)_{x, y, z \in I} ; \alpha_{x y z} \in K\right\}
$$

where I denotes a finite set of indices and K is any field. The multiplications shall imitate the matrix multiplication: To obtain the coefficient $\gamma_{x y z}$ of the product $\left(\gamma_{x y z}\right)=\left(\alpha_{x y z}\right)\left(\beta_{x y z}\right)$, all coefficients $\alpha_{x i j}, i, j \in I$, of the horizontal plane with index x of ($\alpha_{x y z}$) are multiplied with certain coefficients $\beta_{h g z}$ of the vertical plane with index z of $\left(\beta_{x y z}\right)$ and the results are added:

$$
\begin{equation*}
\gamma_{x y z}:=\sum_{i, j \in I} \alpha_{x i j} \beta_{h(x y z i j), g(x y z i j), z} \tag{M}
\end{equation*}
$$

where the mappings $h, g: I^{5} \rightarrow I$ determine the multiplication rule (M) in detail.
The aim of this paper is to construct and to interpret all possible multiplications of type (M) on $\mathcal{W}(I, K)$ which are associative with unit element

$$
\mathcal{E}=\left(\delta_{x, y} \delta_{y, z}\right)_{x, y, z \in I}
$$

and to determine the K-algebra structure on $\mathfrak{W}(I, K)$.
Section 1 deals with the construction. The key result is Proposition 4: Every associative multiplication on $\mathcal{W}(I, K)$ with unit element \mathcal{E} induces a natural group structure G on I. This allows one to construct all associative multiplications on $\mathcal{W}(I, K)$ in the following way:

- First impose any group structure G on I.
- Then take any mapping $f: G^{3} \rightarrow G$ such that $f(x, y, z)$ is bijective with respect to y and

$$
f(e, y, e)=y^{-1}, \quad f(x, e, e)=e, \quad f(x, x, x)=e .
$$

(There are $(n!)^{n^{2}-1} n^{2-2 n}$ possibilities to choose f, where $n=|G|$.)

- Finally define the multiplication (M) with the mappings

$$
\begin{aligned}
& h(x, y, z, i, j)=j \\
& g(x, y, z, i, j)=f^{*}\left(j, f(x, i, j)^{-1} f(x, y, z), z\right)
\end{aligned}
$$

Received September 12, 1988.
where f^{*} denotes the inverse of f with respect to its second argument.
(Proposition 1 and Theorem 6.) Theorem 7 describes the structure of $\mathcal{W}(I, K)$ as a tensor product: If G is the group induced on I by the multiplication on $\mathcal{W}(I, K)$, then

$$
\mathcal{W}(I, K) \cong K[G] \otimes_{K} M(I, K)
$$

where $M(I, K)$ is the algebra of square matrices $\left(\alpha_{x y}\right)_{x, y \in I}$ over K.
Section 2 deals with an algebraic interpretation of the cubes. Matrices give a description, by matrix multiplication, of linear mappings between spaces of column vectors. With this in mind one can interpret the cubes $\mathcal{A} \in \mathcal{W}(I, K)$ (via cube multiplication) as linear mappings \mathcal{A}^{ϕ} between spaces of matrices:

$$
\phi: \mathcal{W}(I, K) \rightarrow \operatorname{End}_{K}(M(I, K)), \quad \mathcal{A} \mapsto \mathcal{A}^{\phi}
$$

then becomes an embedding of the $|I|^{3}$-dimensional algebra of cubes into the $|I|^{4}$-dimensional algebra of endomorphisms of $M(I, K)$, with $\mathcal{A}^{\phi} \circ \mathcal{B}^{\phi}=(\mathcal{A B})^{\phi}$ being a consequence of the associative law in $\mathcal{W}(I, K)$. To characterize the cubes completely one has to impose $K[G]$-module structures on $M(I, K)$ (via the regular representation of G) and on $\mathcal{W}(I, K)$. The restricted ϕ,

$$
\phi: \mathcal{W}(I, K) \rightarrow \operatorname{End}_{K[G]}(M(I, K))
$$

then is an isomorphism (Theorem 11), and \mathcal{A} is invertible in $\mathcal{W}(I, K)$ if and only if the (twisted) vertical planes of \mathcal{A} form a $K[G]$-basis of $M(I, K)$ (Corollary 12); exactly as in the case of square matrices, which are invertible if and only if their columns form a basis of the column space. Finally $\mathcal{W}(I, K)$ is embedded into $M\left(I^{2}, K\right)$ (Theorem 14), which allows one to transfer the theory of eigenvalues from the matrices to the cubes. For instance (Proposition 15): $\mathcal{A} \in \mathcal{W}(I, K)$ is diagonalizable if and only if $M(I, K)$ is the sum of the eigenspaces of \mathcal{A}.

I am grateful to Prof. A. Leutbecher for his suggestion that $\mathcal{W}(I, K)$ can be represented as a tensor product.

1. Proposition 1. If the multiplication (M) on $\mathcal{W}(I, K)$ is associative with unit element \mathcal{E}, then $h(x, y, z, i, j)=j$.

Proof. Comparing corresponding entries on both sides of $\mathcal{B E}=\mathcal{B}, \mathcal{B}=$ $\left(\beta_{x y z}\right)_{x, y, z \in I}$, gives

$$
\begin{equation*}
\sum_{\substack{i, j \in I \\ h(x y i j)==g(x y z i j)=z}} \beta_{x i j}=\beta_{x y z} \tag{1}
\end{equation*}
$$

for all $x, y, z \in I . \mathcal{B E}=\mathcal{B}$ for all $\mathcal{B} \in \mathcal{W}(I, K)$ then shows that $\beta_{x y z}$ has to be the only summand of the left hand sum in (1), hence

$$
\begin{equation*}
h(x, y, z, y, z)=g(x, y, z, y, z)=z \tag{2}
\end{equation*}
$$

for all $x, y, z \in I$. The associative law

$$
\left(\mathcal{E}_{x i j} \mathcal{B}\right) \mathcal{C}=\mathcal{E}_{x i j}(\mathcal{B C})
$$

with

$$
\mathcal{E}_{x i j}=\left(\delta_{x, u} \delta_{i, v} \delta_{j, w}\right)_{u, v, w \in I} \quad \text { and } \quad \mathcal{C}=(1)_{u, v, w \in I}
$$

reads in components as

$$
\sum_{r, s} \beta_{h(x r s i j), g(x r s i j), s}=\sum_{r, s} \beta_{h(x y z i j), r, s} .
$$

This being valid for all $x, y, z, i, j \in I$ and all $\beta_{x y z} \in K$ implies that both sums must contain the same β 's. Now the first β-index shows

$$
\begin{equation*}
h(x, r, s, i, j)=h(x, y, z, i, j) \tag{3}
\end{equation*}
$$

for all $r, s \in I$, and hence

$$
\begin{aligned}
j & =h(x, i, j, i, j) \quad \text { by } \\
& =h(x, y, z, i, j)
\end{aligned}
$$

by (3), for all $x, y, z, i, j \in I$.
Proposition 1 shows that (M) can be simplified to
(M^{\prime})

$$
\gamma_{x y z}:=\sum_{i, j \in I} \alpha_{x i j} \beta_{j, g(x y z i j), z}
$$

with $g: I^{5} \rightarrow I$. If such a mapping g is given, $\mathcal{W}(g, K)$ will denote the vector space $\mathcal{W}(I, K)$ together with the multiplication $\left(\mathrm{M}^{\prime}\right)$ on $\mathcal{W}(I, K)$.

Let $\mathcal{G}(I)$ be the set of all mappings $g: I^{5} \rightarrow I$ such that the multiplication on $\mathcal{W}(g, K)$ is associative with unit element \mathcal{E}. To survey all these multiplications entails an analysis of the set $\mathcal{G}(I)$. The next proposition gives a first characterisation for the elements of $\mathcal{G}(I)$:

Proposition 2. $g \in \mathcal{G}(I)$ if and only if
(G1) $g(x, y, z, *, z): I \rightarrow I$ is bijective,

$$
\begin{equation*}
g(x, y, z, i, j)=g(l, g(x, y, z, k, l), z, g(x, i, j, k, l), j) \tag{G2}
\end{equation*}
$$

$$
\begin{equation*}
g(x, x, x, x, x)=x \tag{G3}
\end{equation*}
$$

Corollary 3. (G1)-(G3) imply
(G4) g is bijective in its second and its fourth argument,

$$
\begin{array}{ll}
\text { (G5) } & g(x, y, z, y, z)=z \tag{G5}\\
\text { (G6) } & g(x, y, z, x, x)=y .
\end{array}
$$

Proof. Eq. (1) in the proof of Proposition 1 shows that \mathcal{E} is a right unit if and only if
(4) $\quad g(x, y, z, i, z)=z$ is equivalent to $i=y$.

Similarly,

$$
\mathcal{E}\left(\beta_{x y z}\right)=\left(\beta_{x, g(x y z x), z}\right)_{x, y, z}
$$

shows that \mathcal{E} is a left unit if and only if

$$
\begin{equation*}
g(x, y, z, x, x)=y \tag{5}
\end{equation*}
$$

for all $x, y, z \in I$. The associative law holds in $\mathcal{W}(I, K)$ as soon as one has

$$
\left(\mathcal{E}_{x i j} \mathcal{B}\right) \mathcal{C}=\mathcal{E}_{x i j}(\mathcal{B C})
$$

for all $x, i, j \in I$ and all $\mathcal{B}, \mathcal{C} \in \mathcal{W}(I, K)$, and this reads in components as

$$
\begin{align*}
& \sum_{r, s} \beta_{j, g(x r s i j), s} \gamma_{s, g(x y z r s), z} \tag{6}\\
& =\sum_{r, s} \beta_{j r s} \gamma_{s, g(j, g(x y z i j), z, r, s), z}
\end{align*}
$$

First we prove that $g \in \mathcal{G}(I)$ implies (G1)-(G3): (4) with $x=y=z=i$ yields (G3).

Both sums in (6) must contain the same β 's. Hence for all $x, s, i, j \in I$ the mappings $r \mapsto g(x, r, s, i, j)$ are one-to-one, i.e., g is bijective in its second argument, and one can substitute $g(x, r, s, i, j)$ for r in the right hand side of (6). Comparing the second γ-index proves (G2).

Suppose that there are indices x, y, z, i_{1}, i_{2} in I such that

$$
g\left(x, y, z, i_{1}, z\right)=g\left(x, y, z, i_{2}, z\right)=: u
$$

Then by (G2) for $\nu=1,2$

$$
g\left(x, i_{2}, z, y, z\right)=g\left(z, g\left(x, i_{2}, z, i_{\nu}, z\right), z, u, z\right) .
$$

The bijectivity of g in its second argument and (4) yield

$$
g\left(x, i_{2}, z, i_{1}, z\right)=g\left(x, i_{2}, z, i_{2}, z\right)=z .
$$

But then $i_{1}=i_{2}$ by (4), which shows (G1).
Now we prove the corollary: (G2) with $j=z$ is

$$
g(x, y, z, i, z)=g(l, g(x, y, z, k, l), z, g(x, i, z, k, l), z) .
$$

The left hand side is bijective in i by (G1) and hence the right hand side is it, too. This implies that g must be bijective in its second argument.

Suppose that there are indices x, i, j, z, k_{1}, k_{2} in I such that

$$
g\left(x, i, j, k_{1}, z\right)=g\left(x, i, j, k_{2}, z\right)=: w .
$$

(G2) with $l=z$ is

$$
g(x, y, z, i, j)=g(z, g(x, y, z, k, z), z, g(x, i, j, k, z), j) .
$$

The left hand side is independent of k, hence

$$
g\left(z, g\left(x, y, z, k_{1}, z\right), z, w, j\right)=g\left(z, g\left(x, y, z, k_{2}, z\right), z, w, j\right) .
$$

The bijectivity of g in its second argument implies

$$
g\left(x, y, z, k_{1}, z\right)=g\left(x, y, z, k_{2}, z\right)
$$

and (G1) yields $k_{1}=k_{2}$, i.e., g is bijective in its fourth argument. This proves (G4).

Choose in (G2) $i=y, j=l=z$, and k such that

$$
g(x, y, z, k, z)=z
$$

which is possible because of (G1). Then

$$
g(x, y, z, y, z)=g(z, z, z, z, z)=z
$$

by (G3), and this is (G5).
(G2) with $i=j=k=l=x, w:=g(x, y, z, x, x)$ and (G3) show

$$
w=g(x, w, z, x, x)
$$

for all $w \in I$, because $g(x, y, z, x, x)$ is bijective in y by (G4). This is (G6).
Conversely, we prove that (G1)-(G6) imply (4), (5), and (6): (4) is a consequence of (G1) and (G5). (5) is (G6). To prove (6) we substitute $g(x, r, s, i, j)$ for r in the right hand side of (6), which is admissible because of (G4), and then we use (G2) in the second γ-index.

Remarks. (1) (G1), (G2), (G3) are independent: $g(x, y, z, i, j)=j$ satisfies (G2) and (G3) but not (G1). $g(x, y, z, i, j)=i$ satisfies (G1) and (G3) but not (G2). And if $I=G$ is a group and $c \neq e$ is an element of its center, then

$$
g(x, y, z, i, j)=c y i^{-1} j
$$

satisfies (G1) and (G2) but not (G3).
(2) In particular (G4) implies that for all $x, y, z \in I$ the mappings

$$
I^{2} \rightarrow I^{2}, \quad(i, j) \mapsto(j, g(x, y, z, i, j))
$$

are bijective. Hence the coefficient

$$
\gamma_{x y z}=\sum_{i, j} \alpha_{x i j} \beta_{j, g(x y z i j), z}
$$

of $\mathcal{C}=\mathscr{A B}$ not only depends on all coefficients of the x th horizontal plane of \mathcal{A} (which is so by definition) but also on all coefficients of the zth vertical plane of \mathcal{B}; in accordance with the matrix multiplication.

Every associative multiplication g of type $\left(\mathrm{M}^{\prime}\right)$ on $\mathcal{W}(I, K)$ induces a natural group structure on the index set I, as the next proposition will show. Therefore we require that I contains an element e which will always become the unit element as soon as this group structure is imposed on I. Further, any multiplication of elements in I will be carried out in this group.

A mapping $\mu: I^{2} \rightarrow I$ will be called a group mapping for I, if I together with the multiplication $x y:=\mu(x, y)$ on I is a group with unit element e. Then we say that μ induces a group structure on I and denote this group by G_{μ}.

Proposition 4. For every $g \in \mathcal{G}(I)$

$$
\mu_{g}(x, y):=g(e, x, e, g(e, e, e, y, e), e)
$$

induces a group structure on I.
Corollary 5. $g(e, x, e, y, e)=x y^{-1}$.
Proof. (G2), (G5), and (G6) imply for

$$
\nu: I^{2} \rightarrow I, \quad \nu(x, y):=g(e, x, e, y, e):
$$

$\left(\mathrm{G} 2^{\prime}\right) \quad \nu(x, y)=\nu(\nu(x, z), \nu(y, z))$,
(G5') $\quad \nu(x, x)=e$,
$\left(\mathrm{G}^{\prime}\right) \quad \nu(x, e)=x$.

The multiplication on I, defined by μ_{g}, is

$$
x y:=\nu(x, \nu(e, y)) .
$$

Unit element:

$$
\begin{aligned}
e x & =\nu(e, \nu(e, x)) & & \\
& =\nu(\nu(x, x), \nu(e, x)) & & \text { by }\left(\mathrm{G}^{\prime}\right) \\
& =\nu(x, e) & & \text { by }\left(\mathrm{G}^{\prime}\right) \\
& =x & & \text { by }\left(\mathrm{G} 6^{\prime}\right) .
\end{aligned}
$$

Inverse:

$$
\begin{aligned}
\nu(e, x) x & =\nu(\nu(e, x), \nu(e, x)) \\
& =e \quad \text { by } \quad\left(\mathrm{G} 5^{\prime}\right) .
\end{aligned}
$$

Associative law:

$$
\begin{align*}
\nu[\nu(x, \nu(e, y)), y] & =\nu[\nu(x, \nu(e, y)), \nu(y, e)] & & \text { by } \quad\left(\mathrm{G}^{\prime}\right) \tag{7}\\
& =\nu[\nu(x, \nu(e, y)), \nu(e, \nu(e, y))] & & \text { by } \quad\left(\mathrm{G} 2^{\prime}\right),\left(\mathrm{G} 5^{\prime}\right) \\
& =\nu(x, e) & & \text { by } \quad\left(\mathrm{G}^{\prime}\right) \\
& =x & & \text { by }\left(\mathrm{G}^{\prime}\right) . \\
\nu[e, \nu(y, \nu(e, z))] & =\nu[\nu(\nu(e, z), \nu(e, z)), \nu(y, \nu(e, z))] & & \text { by }\left(\mathrm{G}^{\prime}\right) \\
& =\nu[\nu(e, z), y] & & \text { by } \quad\left(\mathrm{G} 2^{\prime}\right) .
\end{align*}
$$

Hence

$$
\begin{aligned}
(x y) z & =\nu[\nu(x, \nu(e, y)), \nu(e, z)] & & \\
& =\nu[\nu[\nu(x, \nu(e, y)), y], \nu[\nu(e, z), y]] & & \text { by }\left(\mathrm{G} 2^{\prime}\right) \\
& =\nu[x, \nu[e, \nu(y, \nu(e, z))]] & & \text { by }(7),(8) \\
& =x(y z) . & &
\end{aligned}
$$

And concerning the corollary:

$$
\begin{array}{rlrl}
g(e, x, e, y, e) y & =\nu(x, y) y & & \\
& =\nu[\nu(x, y), \nu(e, y)] & \\
& =\nu(x, e) & & \text { by }\left(\mathrm{G} 2^{\prime}\right) . \\
& =x & & \text { by }\left(\mathrm{G} 6^{\prime}\right) .
\end{array}
$$

The group structure $G=G_{\mu_{g}}$ on I, induced by the group mapping $\mu_{g}, g \in$ $\mathcal{G}(I)$, plays the central part in the description of the set $\mathcal{G}(I)$. The group structure
itself deals with only two of the five dimensions of the domain I^{5} of g. The remaining three are taken care of by a mapping

$$
f: G^{3} \rightarrow G
$$

with the following simple properties:
(F1) $f(x, *, z): G \rightarrow G$ is bijective,
(F2) $f(e, y, e)=y^{-1}$,
(F3) $f(x, e, e)=e$,
(F4) $f(x, x, x)=e$.
Let $\mathcal{F}(I)$ denote the set of all pairs (μ, f) such that $\mu: I^{2} \rightarrow I$ is a group mapping for I and $f: G_{\mu}^{3} \rightarrow G_{\mu}$ satisfies (F1)-(F4). $\mathcal{F}(I)$ represents all associative multiplications (M) on $\mathcal{W}(I, K)$:

Theorem 6. For $g \in \mathcal{G}(I)$ define

$$
f_{g}: G_{\mu_{g}}^{3} \rightarrow G_{\mu_{g}}
$$

by

$$
\begin{align*}
f_{g}(x, y, z) & =g(z, g(x, e, e, y, z), e, e, e) . \\
f(x, y, z) & =f(x, i, j) f(j, g(x, y, z, i, j), z) \tag{i}
\end{align*}
$$

holds for $f=f_{g}$. This equation reflects exactly the position of the indices in the cube multiplication $\left(\mathrm{M}^{\prime}\right)$.
(ii) $\quad \Phi: \mathcal{G}(I) \rightarrow \mathcal{F}(I), \quad \Phi(g):=\left(\mu_{g}, f_{g}\right)$
is bijective.
(iii) In particular if $(\mu, f) \in \mathcal{F}(I)$ is given, then Eq . $\left(\mathrm{M}^{\prime \prime}\right)$, to be read in G_{μ}, determines $g=\Phi^{-1}((\mu, f))$ uniquely.

Proof. (i) Let

$$
\omega(x, y):=g(x, y, e, e, e) .
$$

Then
(9) $\quad g($ zyeie $)=g[e, g($ zyeee $), e, g($ zieee $), e]$ by (G2)

$$
=\omega(z, y) \omega(z, i)^{-1}
$$

by Corollary 5 , and hence

$$
\begin{align*}
\omega(x, y) & =g(\text { xyeee }) \tag{10}\\
& =g[z, g(x y e i z), e, g(\text { xeeiz }), e] \quad \text { by } \quad(\mathrm{G} 2) \\
& =\omega(z, g(x y e i z)) \omega(z, g(\text { xeeiz }))^{-1}
\end{align*}
$$

by (9). This shows

$$
\begin{aligned}
f_{g}(x y z) & =\omega[z, g(x e e y z)] & & \\
& =\omega[z, g[j, g(x e e i j), e, g(x y z i j), z]] & & \text { by }(\mathrm{G} 2) \\
& =\omega[j, g(x e e i j)] \omega[z, g[j, e, e, g(x y z i j), z]] & & \text { by }(10) \\
& =f_{g}(x i j) f_{g}(j, g(x y z i j), z) . & &
\end{aligned}
$$

(ii) First we show that f_{g} satisfies (F1)-(F4):
(F1) is an immediate consequence of (G4).
(F2):

$$
\begin{aligned}
f_{g}(\text { eye }) & =g(e, g(\text { eeeye }), e, e, e) & & \\
& =g(\text { eeeye }) & & \text { by }(\mathrm{G} 6) \\
& =y^{-1} & & \text { by Corollary } 5 .
\end{aligned}
$$

(F3):

$$
\begin{aligned}
f_{g}(\text { xee }) & =g(e, g(\text { xeeee }), e, e, e) & & \\
& =g(\text { xeeee }) & & \text { by }(\mathrm{G} 6) \\
& =e & & \text { by }(\mathrm{G} 5) .
\end{aligned}
$$

(F4):

$$
\begin{array}{rlrl}
f_{g}(x x x) & =f_{g}(x, g(x x x x x), x) & & \text { by (G3) } \\
& =f_{g}(x x x)^{-1} f_{g}(x x x) & & \text { by (M') } \\
& =e .
\end{array}
$$

Hence $\left(\mu_{g}, f_{g}\right) \in \mathcal{F}(I)$ for every $g \in \mathcal{G}(I)$.
Now we show that Φ is injective: Assume that there are $g_{1}, g_{2} \in \mathcal{G}(I)$ such that

$$
\mu_{g_{1}}=\mu_{g_{2}}=: \mu \quad \text { and } \quad f_{g_{1}}=f_{g_{2}}=: f
$$

Then ($\mathrm{M}^{\prime \prime}$) yields

$$
\begin{aligned}
\mu\left[f(x i j), f\left(j, g_{1}(x y z i j), z\right)\right] & =f(x y z) \\
& =\mu\left[f(x i j), f\left(j, g_{2}(x y z i j), z\right)\right] .
\end{aligned}
$$

μ is injective in its second argument because it is a group mapping, and f is injective in its second argument by (F1). Hence $g_{1}=g_{2}$.

To prove that Φ is surjective, take any $(\mu, f) \in \mathcal{F}(I)$. We will define $g \in \mathcal{G}(I)$ in the group G_{μ} such that $\Phi(g)=(\mu, f)$. By definition of $\mathcal{F}(I), f: G_{\mu}^{3} \longrightarrow G_{\mu}$ satisfies (F1)-(F4). In particular, (F1) implies that the equation
$\left(\mathrm{M}^{\prime \prime \prime}\right) \quad f(j, g(x y z i j), z):=f(x i j)^{-1} f(x y z)$
determines a mapping $g: I^{5} \rightarrow I$. Now we show that
(I) g satisfies (G1)-(G3), and hence $g \in \mathcal{G}(I)$,
(II) $\mu_{g}=\mu$,
(III) $f_{g}=f$.
ad (I): The definition of g in $\left(\mathrm{M}^{\prime \prime \prime}\right)$ shows that (F1) implies (G1).

$$
\begin{aligned}
& f[j, g[l, g(x y z k l), z, g(x i j k l), j], z] \\
& =f(l, g(x i j k l), j)^{-1} f(l, g(x y z k l), z) \quad \text { by }\left(\mathbf{M}^{\prime \prime \prime}\right) \\
& =\left[f(x k l)^{-1} f(x i j)\right]^{-1}\left[f(x k l)^{-1} f(x y z)\right] \quad \text { by }\left(\mathbf{M}^{\prime \prime \prime}\right) \\
& =f(x i j)^{-1} f(x y z) \\
& =f[j, g(x y z i j), z]
\end{aligned}
$$

by $\left(\mathrm{M}^{\prime \prime \prime}\right)$, and the injectivity of f in its second argument yields (G2).

$$
\begin{aligned}
f(x, g(x x x x x), x) & =e \quad \text { by } \quad\left(\mathbf{M}^{\prime \prime \prime}\right) \\
& =f(x x x)
\end{aligned}
$$

by (F4), hence with (F1), $g(x x x x x)=x$, i.e., (G3).
ad (II): We have to show $\mu_{g}(x, y)=x y$ in G_{μ} with μ_{g} as defined in Proposition 4.

$$
\begin{aligned}
\mu_{g}(x, y)^{-1} & =f\left(e, \mu_{g}(x, y), e\right) & & \text { by }(\mathrm{F} 2) \\
& =f[e, g[e, x, e, g(e e e y e), e], e] & & \text { by definition of } \mu_{g} \\
& =f(e, g(\text { eeeye }), e)^{-1} f(\text { exe }) & & \text { by }\left(\mathrm{M}^{\prime \prime \prime}\right) \\
& =\left[f(\text { eye })^{-1} f(e e e)\right]^{-1} f(\text { exe }) & & \text { by }\left(\mathrm{M}^{\prime \prime \prime}\right) \\
& =f(\text { eye }) f(\text { exe }) & & \text { by }(\mathrm{F} 4) \\
& =y^{-1} x^{-1} & & \text { by }(\mathrm{F} 2) .
\end{aligned}
$$

ad (III): We have $g \in \mathcal{G}(I)$ by (I). Hence (i) shows that in $G_{\mu_{g}}$ Eq. (M ${ }^{\prime \prime}$) holds for f_{g}, and further $G_{\mu_{g}}=G_{\mu}$ as shown in (II).

$$
\begin{align*}
f_{g}(\text { xye }) & =f_{g}(\text { xee })^{-1} f_{g}(x y e) & & \text { by }(\mathrm{F} 3) \tag{11}\\
& =f_{g}(e, g(\text { xyeee }), e) & & \text { by }\left(\mathrm{M}^{\prime \prime}\right) \\
& =g(\text { xyeee })^{-1} & & \text { by }(\mathrm{F} 2) \text { for } f_{g} \\
& =f(e, g(\text { xyeee }), e) & & \text { by }(\mathrm{F} 2) \text { for } f \\
& =f(\text { xee })^{-1} f(x y e) & & \text { by }\left(\mathrm{M}^{\prime \prime \prime}\right) \\
& =f(x y e) & & \text { by }(\mathrm{F} 3) .
\end{align*}
$$

Now finally

$$
\begin{aligned}
f_{g}(x i j)^{-1} f_{g}(x y e) & =f_{g}(j, g(x y e i j), e) \quad \text { by }\left(\mathrm{M}^{\prime \prime}\right) \\
& =f(j, g(x y e i j), e) \quad \text { by }(11) \\
& =f(x i j)^{-1} f(x y e)
\end{aligned}
$$

by ($\mathrm{M}^{\prime \prime \prime}$), and (11) yields

$$
f_{g}(x i j)^{-1}=f(x i j)^{-1}
$$

hence $f_{g}=f$.
The proof of (iii) is contained in the proof of (ii).
Remarks. (1) Theorem 6 shows that all associative multiplications of type $\left(\mathrm{M}^{\prime}\right)$ on $\mathcal{W}(I, K)$ with unit element \mathcal{E} can be constructed by

- first imposing any group structure G on I,
- then taking any mapping $f: G^{3} \rightarrow G$ which satisfies (F1)-(F4),
- finally calculating $g: I^{5} \rightarrow I$ out of $\left(\mathrm{M}^{\prime \prime}\right)$.
(2) Examples. Let G be a finite group. The following table lists all mappings $f: G^{3} \rightarrow G$ of the form

$$
f(x, y, z)=\prod_{1 \leqq m \leqq 4} X_{m}^{\epsilon_{m}}, \quad X_{m} \in\{x, y, z\}, \epsilon_{m} \in\{0,1,-1\}
$$

which satisfy (F1)-(F4). The column beside it contains the corresponding mappings g :

$$
\begin{array}{rl}
f(x, y, z) & g(x, y, z, i, j) \\
y^{-1} z & y i^{-1} j \quad(" \text { "standard example } \mathcal{W}(G, K) \text { ") } \\
z y^{-1} & y z^{-1} j i^{-1} z \\
z^{-1} y^{-1} z^{2} & y z j^{-1} i^{-1} j^{2} z^{-1} \\
z^{2} y^{-1} z^{-1} & y z^{-2} j^{2} i^{-1} j^{-1} z^{2} \\
x y^{-1} x^{-1} z & j^{-1} x y i^{-1} x^{-1} j^{2} \\
z x^{-1} y^{-1} x & j x^{-1} y x z^{-1} j x^{-1} i^{-1} x z j^{-1} \\
x^{-1} y^{-1} x z & j x^{-1} y i^{-1} x \\
z x y^{-1} x^{-1} & j^{-1} x y x^{-1} z^{-1} j x i^{-1} x^{-1} z j \\
x y^{-1} z x^{-1} & z j^{-1} x z^{-1} y i^{-1} j x^{-1} j \\
x^{-1} z y^{-1} x & j x^{-1} y z^{-1} j i^{-1} x j^{-1} z \\
x^{-1} y^{-1} z x & z j x^{-1} z^{-1} y i^{-1} j x j^{-1} \\
x z y^{-1} x^{-1} & j^{-1} x y z^{-1} j i^{-1} x^{-1} j z \\
x z x^{-1} y^{-1} & y x z^{-1} j x^{-1} i^{-1} j z j^{-1} \\
y^{-1} x^{-1} z x & j^{-1} z j x^{-1} z^{-1} x y i^{-1} x^{-1} j x \\
x^{-1} z x y^{-1} & y x^{-1} z^{-1} j x i^{-1} j^{-1} z j \\
y^{-1} x z x^{-1} & j z j^{-1} x z^{-1} x^{-1} y i^{-1} x j x^{-1}
\end{array}
$$

(3) An easy calculation shows that for a group G of order n there exist $(n!)^{n^{2}-1} n^{2-2 n}$ different mappings $f: G^{3} \rightarrow G$ satisfying (F1)-(F4). The next theorem shows that the corresponding K-algebras $\mathcal{W}(g, K)$ are all isomorphic:

Theorem 7. Let $g \in \mathcal{G}(I), \Phi(g)=(\mu, f), G=G_{\mu}$, and let $f^{*}: G^{3} \rightarrow G$ denote the inverse of f with respect to its second argument, i.e., $f^{*}(x, f(x, y, z), z)=y$.

$$
\begin{aligned}
\Psi: \mathcal{W}(g, K) & \rightarrow K[G] \otimes_{K} M(G, K), \\
\Psi\left(\left(\alpha_{x y z}\right)\right): & =\sum_{y \in G} y \otimes\left(\alpha_{x, f f^{*}(x y z), z}\right)_{x, z \in G}
\end{aligned}
$$

is a K-algebra isomorphism from $\mathcal{W}(g, K)$ onto the tensor product of the group algebra of G over K and the algebra of square matrices $\left(\beta_{x z}\right)_{v, z \in G}$ over K.

Proof. Ψ is K-linear and bijective, for f^{*} is bijective in its second argument by definition. It only remains to prove the multiplicativity of Ψ :

$$
\begin{gathered}
\Psi(\mathcal{A}) \Psi(\mathcal{B})=\left(\sum_{u} u \otimes\left(\alpha_{x, f^{*}(x u z), z}\right)_{x, z}\right)\left(\sum_{v} v \otimes\left(\beta_{x, f^{*}(x r z), z}\right)_{x, z}\right) \\
=\sum_{u, v} u v \otimes\left(\sum_{j} \alpha_{x, f^{*}(x u j), j} \beta_{j, f^{*}(j v z), z}\right)_{x, z} \\
=\sum_{y} y \otimes\left(\sum_{i, j} \alpha_{x, f^{*}(x i j), j} \beta_{j, f^{*}\left(j, i i^{*} y, z, z\right), z}\right)_{x, z} . \\
\begin{aligned}
\Psi(\mathcal{A B})= & \Psi\left(\left(\sum_{i, j} \alpha_{x i j} \beta_{j, g(x y z i j), z}\right)_{x, y, z}\right) \\
= & \sum_{y} y \otimes\left(\sum_{i, j} \alpha_{x i j} \beta_{j, g\left(x, f f^{*}(x y z), z, i, j\right), z}\right)_{x, z} \\
= & \sum_{y} y \otimes\left(\sum_{i, j} \alpha_{x, f^{*}(x i j), j} \beta_{j, g\left(x, f^{*}(x y z), z, f *(x i j), j\right), z}\right)_{x, z} .
\end{aligned}
\end{gathered}
$$

And, by definition of f^{*} :

$$
\begin{aligned}
f\left(j, f^{*}\left(j, i^{-1} y, z\right), z\right) & =i^{-1} y \\
& =f\left(x, f^{*}(x i j), j\right)^{-1} f\left(x, f^{*}(x y z), z\right) \\
& =f\left[j, g\left[x, f^{*}(x y z), z, f^{*}(x i j), j\right], z\right]
\end{aligned}
$$

by ($\mathrm{M}^{\prime \prime}$), which, by (F 1), yields

$$
f^{*}\left(j, i^{-1} y, z\right)=g\left(x, f^{*}(x y z), z, f^{*}(x i j), j\right) .
$$

Corollary 8. For $g \in \mathcal{G}(I), \Phi(g)=\left(\mu_{g}, f_{g}\right)$, and $G=G_{\mu_{g}}$,

$$
\psi_{g}\left(\left(\alpha_{x y z}\right)_{x, y, z}\right)=\left(\alpha_{x, z} f_{k}(x y z)^{-1, z}\right)_{x, y, z}
$$

is a K-algebra isomorphism from the standard example $\mathcal{W}(G, K)$ onto $\mathcal{W}(g$, $K)$.

Proof. Concerning the standard example we have $f(x, y, z)=y^{-1} z$ and hence $f^{*}(x, y, z)=z y^{-1}$.

$$
\begin{aligned}
\Psi_{1}: \mathcal{W}(G, K) & \rightarrow K[G] \otimes M(G, K), \\
\Psi_{1}\left(\left(\alpha_{x y z}\right)\right) & =\sum_{y} y \otimes\left(\alpha_{x, z y^{-1}, z}\right)_{x, z}, \\
\Psi_{2}: \mathcal{W}(g, K) & \rightarrow K[G] \otimes M(G, K), \\
\Psi_{2}\left(\left(\alpha_{x y z}\right)\right) & =\sum_{y} y \otimes\left(\alpha_{x, f_{z}^{*}(x y z), z}\right)_{x, z}
\end{aligned}
$$

are isomorphisms by Theorem 7, and

$$
\Psi_{2}^{-1}\left(\sum_{y} y \otimes\left(\alpha_{x y z}\right)_{x, z}\right)=\left(\alpha_{x, f_{k}(x y z), z}\right)_{x, y, z} .
$$

Hence $\psi_{g}=\Psi_{2}^{-1} \circ \Psi_{1}$ is an isomorphism, too.
The cube multiplication (M^{\prime})

$$
\gamma_{x y z}=\sum_{i, j \in I} \alpha_{x i j} \beta_{j, g(x y z i j), z}
$$

was introduced as an imitation of the matrix multiplication

$$
\gamma_{x z}=\sum_{i \in I} \alpha_{x i} \beta_{g_{o}(x z i), z}, \quad g_{o}(x, z, i)=i .
$$

In fact $g_{o}(x, z, i)=i$ is the only mapping $I^{3} \rightarrow I$ which makes the matrix multiplication associative with unit element $E=\left(\delta_{x, z}\right)_{x, z}$. Uniqueness arises for the cube multiplication, too, when, in accordance with g_{o}, one demands that g is independent of its horizontal plane index x and its vertical plane index z. Then the resulting cube algebras are exactly the standard examples $\mathcal{W}(G, K)$.

Proposition 9. Let $g \in \mathcal{G}(I) . g(x, y, z, i, j)$ is independent of x and z if and only if

$$
g(x, y, z, i, j)=y i^{-1} j
$$

in $G_{\mu_{R}}$, i.e., if $\mathcal{W}(g, K)$ is the standard example $\mathcal{W}\left(G_{\mu_{g}}, K\right)$.

Proof. Assume that $g(x, y, z, i, j)$ is independent of x and z. Then

$$
\begin{aligned}
f_{g}(\text { xye }) & =g(e, g(\text { xeeye }), e, e, e) & & \text { by definition of } f_{g} \\
& =g(e, g(\text { eeeye }), e, e, e) & & \text { by assumption } \\
& =y^{-1} & & \text { by Corollary } 5 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
f_{g}(x y z) & =f_{g}(x y e) f_{g}(z, g(x y e y z), e)^{-1} & & \text { by } \quad\left(\mathrm{M}^{\prime \prime}\right) \\
& =y^{-1} g(x y e y z) & & \\
& =y^{-1} g(x y z y z) & & \text { by assumption } \\
& =y^{-1} z & & \text { by }(\mathrm{G} 5) .
\end{aligned}
$$

Finally, $\left(\mathrm{M}^{\prime \prime}\right)$ shows that

$$
f_{g}(x, y, z)=y^{-1} z
$$

implies

$$
g(x, y, z, i, j)=y i^{-1} j
$$

2. The matrices can be viewed as linear mappings between spaces of column vectors. Similarly we will interpret the cubes as linear mappings between spaces of matrices. Let $g \in \mathcal{G}(I), \Phi(g)=(\mu, f), G=G_{\mu}$, and $n=|G|$. For $u \in G$ one has the canonical (untwisted) embeddings and projections between the matrix algebra $M(G, K)$ and the standard example $\mathcal{W}(G, K)$:

$$
\begin{aligned}
\iota_{u}^{o}: M(G, K) & \longrightarrow \mathcal{W}(G, K), \\
\iota_{u}^{o}\left(\left(\beta_{x y}\right)_{x, y \in G}\right): & =\left(\beta_{x y} \delta_{u, z}\right)_{x, y, z \in G}, \\
p_{u}^{o}: \mathcal{W}(G, K) & \longrightarrow M(G, K), \\
p_{u}^{o}\left(\left(\beta_{x y z}\right)_{x, y, z \in G}\right): & =\left(\beta_{x y u}\right)_{x, y \in G} .
\end{aligned}
$$

They allow one to define an operation of $\mathcal{A} \in \mathcal{W}(g, K)$ on $M(G, K)$ via the multiplication in $\mathcal{W}(g, K)$ exactly as $M(G, K)$ operates on K^{n} :

$$
\mathcal{A}(B):=p_{u}^{o}\left(\mathcal{A} \iota_{u}^{o}(B)\right), \quad B \in M(G, K)
$$

But computing coefficients shows

$$
\mathcal{A}(B)=\left(\sum_{i, j} \alpha_{x i j} \beta_{j, g(x y u i j)}\right)_{x, y \in G}
$$

hence this operation may depend on the choice of $u \in G$, if one does not take the standard multiplication

$$
g(x, y, z, i, j)=y i^{-1} j
$$

on the underlying set $\mathcal{W}(I, K)$. To avoid this one has to use twisted embeddings and projections, and the adequate twist is the isomorphism ψ_{g} of Corollary 8:

$$
\begin{aligned}
\iota_{u}: M(G, K) & \rightarrow \mathcal{W}(g, K), \\
\iota_{u} & :=\psi_{g} \circ \iota_{u}^{\prime}, \\
\iota_{u}\left(\left(\beta_{x y}\right)\right) & =\left(\beta_{x, 2 f(x y z)} \delta_{u, z}\right)_{x, y, z}, \\
p_{u}: \mathcal{W}(g, K) & \rightarrow M(G, K), \\
p_{u}: & =p_{u}^{o} \circ \psi_{g}^{-1}, \\
p_{u}\left(\left(\beta_{x y z}\right)\right) & =\left(\beta_{x, f^{*}\left(x, y-y^{-} u, u\right), u}\right)_{x, y},
\end{aligned}
$$

where as in Theorem $7 f^{*}$ is the inverse of f with respect to its second argument. If $\mathcal{W}(g, K)=\mathcal{W}(G, K)$ is a standard example, then $\iota_{u}=\iota_{u}^{o}$ and $p_{u}=p_{u}^{o}$ and the twist disappears.

The twisted embeddings and projections have the usual properties: Let

$$
\mathcal{E}_{u}:=\left(\delta_{x, u} \delta_{y, u} \delta_{z, u}\right)_{x, y, z}, \quad u \in G,
$$

denote the canonical idempotents of $\mathcal{W}(g, K)$ and $\mathcal{W}_{u}:=\mathcal{W}(g, K) \mathcal{E}_{u}$ the corresponding left ideals. Then

$$
\begin{align*}
\mathcal{E}_{u} \mathcal{E}_{v} & =\delta_{u, v} \mathcal{E}_{u}, \quad \sum_{u \in G} \mathcal{E}_{u}=\mathcal{E}, \tag{12}\\
p_{u} \circ \iota_{v} & =\delta_{u, v} \mathrm{id}_{M(G, K)}, \tag{13}\\
\left(\iota_{u} \circ p_{u}\right) \mid \mathcal{W}_{v} & =\delta_{u, v} \mathrm{id}_{\mathcal{W}_{v}}, \tag{14}\\
\sum_{u \in G} \iota_{u} \circ p_{u} & =\mathrm{id}_{\mathcal{W}_{(g, K)}} \tag{15}
\end{align*}
$$

Now we define the operation of $\mathcal{A} \in \mathcal{W}(g, K)$ on $M(G, K)$ by

$$
\mathcal{A}^{\phi}(B):=\left(\sum_{i, j} \alpha_{x i j} \beta_{j, y f(x i j)}\right)_{x, y}
$$

This yields the desired independence of u and hence corresponds to the matrix situation.

Proposition 10. $\mathcal{A}^{\phi}(B)=p_{u}\left(\mathcal{A} \iota_{u}(B)\right)$ for all $u \in G$.

Proof.

$$
\begin{aligned}
p_{u}\left(\mathcal{A} \iota_{u}(B)\right) & =p_{u}\left(\left(\alpha_{x y z}\right)\left(\beta_{x, z f(x y z)^{-1}} \delta_{u, z}\right)_{x, y, z}\right) \\
& =p_{u}\left(\left(\sum_{i, j} \alpha_{x i j} \beta_{j, z f}(j, g(x y z i j), z)^{-1} \delta_{u, z}\right)_{x, y, z}\right) \\
& =\left(\sum_{i, j} \alpha_{x i j} \beta_{\left.j, u f \backslash j j, g\left(x, f^{*}\left(x, y^{-1} u, u\right), u, i, j\right), u\right\}^{-1}}\right)_{x, y} \\
& =\left(\sum_{i, j} \alpha_{x i j} \beta_{j, y f(x i j)}\right)_{x, y},
\end{aligned}
$$

for

$$
\begin{aligned}
y^{-1} u & =f\left(x, f^{*}\left(x, y^{-1} u, u\right), u\right) \\
& =f(x i j) f\left[j, g\left(x, f^{*}\left(x, y^{-1} u, u\right), u, i, j\right) u\right] \quad \text { by } \quad\left(\mathrm{M}^{\prime \prime}\right) .
\end{aligned}
$$

$\phi: \mathcal{W}(g, K) \rightarrow \operatorname{End}_{K} M(G, K), \mathcal{A} \mapsto \mathcal{A}^{\phi}$, is K-linear and injective into the endomorphism algebra of $M(G, K)$, and the multiplication in $\mathcal{W}(g, K)$ becomes the composition of mappings in $\operatorname{End}_{K} M(G, K)$:

$$
\begin{aligned}
\left(\mathcal{A}^{\phi} \circ \mathcal{B}^{\phi}\right)(C) & =\mathcal{A}^{\phi}\left(p_{u}\left(\mathcal{B} \iota_{u}(C)\right)\right) \\
& =p_{u}\left[\mathcal{A}\left(\iota_{u} \circ p_{u}\right)\left(\mathcal{B} \iota_{u}(C)\right)\right] \\
& =p_{u}\left[\mathcal{A}\left(\mathcal{B} \iota_{u}(C)\right)\right] \quad \text { by }(14) \\
& =p_{u}\left[(\mathcal{A B}) \iota_{u}(C)\right] \quad \text { by the associative law in } \mathcal{W}(g, K) \\
& =(\mathcal{A B})^{\phi}(C) .
\end{aligned}
$$

Thus $\mathcal{W}(g, K)$ can be viewed as a n^{3}-dimensional subalgebra in the K-algebra End $_{K} M(G, K)$ of dimension n^{4}. This subalgebra can be characterized by imposing $K[G]$-module structures on $M(G, K)$ and $\mathcal{W}(g, K)$: Let

$$
R: G \rightarrow M(G, K)^{\times}, \quad R(u):=\left(\delta_{x, u y}\right)_{x, y \in G}
$$

denote the regular representation of G. By

$$
B u:=B R(u), \quad B \in M(G, K), \quad u \in G
$$

and linear continuation $M(G, K)$ becomes a $K[G]$-module. Similarly

$$
\mathcal{R}: G \rightarrow \mathcal{W}(g, K)^{\times}, \quad \mathcal{R}(u):=\left(\delta_{z f\left(x y z z^{-1}, u\right.} \delta_{x, z}\right)_{x, y, z \in G}
$$

is an injective group morphism, and by

$$
\mathcal{B} u:=\mathcal{B R}(u), \quad \mathcal{B} \in \mathcal{W}(g, K), \quad u \in G
$$

and linear continuation $\mathcal{W}(g, K)$ becomes a $K[G]$-module, too.
A straightforward calculation shows that the $K[G]$-module structures on $\mathcal{W}(G, K)$ and $\mathcal{W}(g, K)$ are compatible with the isomorphism

$$
\psi_{g}: \mathcal{W}(G, K) \rightarrow \mathcal{W}(g, K)
$$

of Corollary 8 :

$$
\psi_{g}(\mathcal{B} u)=\psi_{g}(\mathcal{B}) u .
$$

Further, the $K[G]$-module structures on $M(G, K)$ and $\mathcal{W}(g, K)$ are compatible with the twisted embeddings and projections:

$$
\begin{align*}
\iota_{v}(B u) & =\iota_{v}(B) u, \tag{16}\\
p_{v}(\mathcal{B} u) & =p_{v}(\mathcal{B}) u . \tag{17}
\end{align*}
$$

Finally the mappings $\mathcal{A}^{\phi}, \mathcal{A} \in \mathcal{W}(g, K)$, respect the $K[G]$-module structure on $M(G, K)$:

$$
\mathcal{A}^{\phi}(B u)=\mathcal{A}^{\phi}(B) u .
$$

This turns out to be a consequence of the associative law in $\mathcal{W}(g, K)$:

$$
\begin{aligned}
\mathcal{A}^{\phi}(B u) & =p_{v}\left(\mathcal{A} \iota_{v}(B u)\right) & & \\
& =p_{v}\left(\mathcal{A}\left(\iota_{v}(B) \mathcal{R}(u)\right)\right) & & \text { by (16) } \\
& =p_{v}\left(\left(\mathcal{A} \iota_{v}(B)\right) \mathcal{R}(u)\right) & & \text { by the associative law in } \mathcal{W}(g, K) \\
& =p_{v}\left(\mathcal{A} \iota_{v}(B)\right) u & & \text { by (17) } \\
& =\mathcal{A}^{\phi}(B) u . & &
\end{aligned}
$$

Thus the cubes in $\mathcal{W}(g, K)$ can be interpreted as endomorphisms of the $K[G]-$ module $M(G, K)$.

Theorem 11. $\phi: \mathcal{W}(g, K) \rightarrow \operatorname{End}_{K[G]} M(G, K), \mathcal{A} \mapsto \mathcal{A}^{\phi}$, is a K-algebra isomorphism.

Corollary 12. Let $\left\{E_{u}:=\left(\delta_{u, x} \delta_{u, y}\right)_{x, y} ; u \in G\right\}$ denote the canonical $K[G]$ basis of $M(G, K)$. Then

$$
\mathcal{A}^{\phi}\left(E_{u}\right)=p_{u}(\mathcal{A}),
$$

i.e., the images of the canonical basis elements under \mathcal{A}^{ϕ} are the twisted vertical planes of \mathfrak{A}. In particular \mathcal{A} is invertible if and only if its twisted vertical planes form a $K[G]$-basis of $M(G, K)$.

Proof of Theorem 11. It only remains to show that ϕ is surjective. Take $\eta \in \operatorname{End}_{K[G]} M(G, K)$ and define for $u \in G$:

$$
\left(\alpha_{x y u}\right)_{x, y}:=\eta\left(E_{u}\right), \quad \mathcal{A}:=\left(\alpha_{x y z}\right) \in \mathcal{W}(G, K) .
$$

Then for $\psi_{g}(\mathcal{A}) \in \mathcal{W}(g, K)$,

$$
\begin{array}{rlr}
\left(\psi_{g}(\mathcal{A})\right)^{\phi}\left(E_{u}\right) & =p_{u}\left(\psi_{g}(\mathcal{A}) \iota_{u}\left(E_{u}\right)\right) \\
& =p_{u}\left(\psi_{g}(\mathcal{A}) \mathcal{E}_{u}\right) & \\
& =p_{u}\left(\psi_{g}\left(\mathcal{A} \mathcal{E}_{u}\right)\right) & \\
& \text { since } \psi_{g}\left(\mathcal{E}_{u}\right)=\mathcal{E}_{u} \\
& =p_{u}^{o}\left(\mathcal{A} \mathcal{E}_{u}\right) & \text { by definition of } p_{u} \\
& =\left(\alpha_{x y u}\right)_{x, y} & \\
& =\eta\left(E_{u}\right), &
\end{array}
$$

hence

$$
\psi_{g}(\mathcal{A})^{\phi}=\eta .
$$

Proof of Corollary 12.

$$
\mathcal{A}^{\phi}\left(E_{u}\right)=p_{u}\left(\mathcal{A} \iota_{u}\left(E_{u}\right)\right)=p_{u}\left(\mathcal{A} \mathcal{E}_{u}\right)=p_{u}(\mathcal{A}) .
$$

In the case of the standard example the analogy to the matrix situation becomes obvious.

Corollary 13. $\mathcal{A}=\left(\alpha_{x y z}\right) \in \mathcal{W}(G, K)$ is invertible if and only if the vertical planes $\left(\alpha_{x y z}\right)_{x, y \in G}, z \in G$, of \mathcal{A} form a basis of the right $K[G]$-module $M(G, K)$.

Remark. Similarly, one can define the embeddings ι_{u} and the projections p_{u} via the horizontal planes of the cubes. If then $\mathcal{B} \in \mathcal{W}(g, K)$ operates on $M(G, K)$ from the right side,

$$
(A)^{\phi} \mathcal{B}=p_{u}\left(\iota_{u}(A) \mathcal{B}\right),
$$

one can show that \mathcal{B} is invertible if and only if its (twisted) horizontal planes form a basis of $M(G, K)$ as a left $K[G]$-module.

Theorem 14. Let $g \in \mathcal{G}(I)$. Then for every $u \in I$

$$
\begin{aligned}
\iota: \mathcal{W}(g, K) & \rightarrow M\left(I^{2}, K\right) \\
\iota\left(\left(\alpha_{x y z}\right)_{x, y, z \in I}\right): & =\left(\alpha_{j, g(u v w i j), w}\right)_{(i, j),(v, w) \in I^{2}}
\end{aligned}
$$

is an injective K-algebra morphism.

Proof. ι is K-linear, and (G4) implies the injectivity.

$$
\begin{aligned}
\iota(\mathcal{E}) & =\iota\left(\left(\delta_{x, z} \delta_{y, z}\right)\right) \\
& =\left(\delta_{j, w} \delta_{g(u v w i j), w}\right)_{(i, j),(v, w)} \\
& =\left(\delta_{j, w} \delta_{g(u v w i w), w}\right)_{(i, j),(v, w)} \\
& =\left(\delta_{j, w} \delta_{i, v}\right)_{(i, j),(v, w)},
\end{aligned}
$$

for $g(u, v, w, i, w)=w$ if and only if $i=v$, by (G5) and (G1).

$$
\begin{aligned}
\iota(\mathcal{A B}) & =\iota\left(\left(\sum_{r, s} \alpha_{s r s} \beta_{s, g(x y z r s), z}\right)_{x, y, z}\right) \\
& =\left(\sum_{r, s} \alpha_{j r s} \beta_{s, g(j, g(u v w i j), w, r, s), w}\right)_{(i, j),(v, w)} \\
& =\left(\sum_{r, s} \alpha_{j, g(u r s i j), s} \beta_{s, g} \mid j, g(u v w i j), w, g(u r s i j), s, w\right) \quad \text { by } \quad(\mathrm{G} 4) \\
& =\left(\sum_{r, s} \alpha_{j, g(u r s i j), s} \beta_{s, g(u v w r s), w}\right)_{(i, j),\left(v, w^{\prime}\right)} \quad \text { by (G2) } \\
& =\left(\alpha_{j, g(u r s i l j), s}\right)_{(i, j),(r, s)}\left(\beta_{s, g(u v w r s), w}\right)_{(r, s),\left(v, w^{\prime}\right)} \\
& =\iota(\mathcal{A}) \iota(\mathcal{B}) .
\end{aligned}
$$

The injection ι can be used to transfer the eigenvalue theory from the square matrices to the cubes. Let us call the monic polynomial

$$
\chi_{\mathcal{A}}(X):=\operatorname{det}(X E-\iota(\mathcal{A})) \in K[X]
$$

of degree n^{2} the characteristic polynomial of $\mathcal{A} \in \mathcal{W}(g, K)$. It is invariant with respect to conjugation of \mathcal{A} :

$$
\chi_{\mathcal{B}-1} \mathfrak{A}_{\mathcal{B}}(X)=\chi_{\mathfrak{A}}(X) .
$$

The "eigenvalues" of \mathcal{A} are the roots of $\chi_{\mathcal{A}}(X)$. If $\lambda \in K$ is an eigenvalue of \mathcal{A}, then the eigenspace $E(\mathcal{A}, \lambda)$ of \mathcal{A}, consisting of the eigenmatrices corresponding to λ,

$$
E(\mathcal{A}, \lambda):=\left\{B \in M(G, K) ; \mathscr{A}^{\phi}(B)=\lambda B\right\}
$$

is a non-trivial $K[G]$-submodule of $M(G, K)$. Different eigenspaces of \mathcal{A} have intersection $\{o\}$. Further we call

$$
\operatorname{det} \mathcal{A}:=(-1)^{N^{2}} \chi_{\mathcal{A}}(o)=\operatorname{det}(\iota(\mathcal{A}))
$$

the determinant of \mathfrak{A}. Then \mathscr{A} is invertible in $\mathcal{W}(g, K)$ if and only if $\operatorname{det} \mathscr{A} \neq o$.
Proposition 15. $\mathcal{A} \in \mathcal{W}(g, K)$ is diagonalizable if and only if $M(G, K)$ is the sum of the eigenspaces of \mathcal{A}.

Proof. Suppose first that \mathcal{A} is diagonalizable, i.e., that

$$
\mathcal{B}^{-1} \mathcal{A B}=\sum_{z \in G} \lambda_{z} \mathcal{E}_{z}, \quad \lambda_{z} \in K,
$$

for some $\mathcal{B} \in \mathcal{W}(g, K)^{\times}$. Then

$$
\begin{aligned}
\mathcal{A}^{\phi}\left(p_{u}(\mathcal{B})\right) & =p_{u}\left(\mathcal{A}\left(\iota_{u} \circ p_{u}\right)(\mathcal{B})\right) \quad \text { by Proposition } 10 \\
& =p_{u}(\mathcal{R} \mathcal{B}) \\
& =p_{u}\left(\mathcal{B}\left(\sum_{z} \lambda_{z} \mathcal{E}\right)\right) \\
& =\lambda_{u} p_{u}(\mathcal{B})
\end{aligned}
$$

by (14), and the twisted vertical planes $p_{u}(\mathcal{B}), u \in G$, of \mathcal{B} form a $K[G]$-basis of $M(G, K)$ by Corollary 12 .

Conversely, if the matrices $B_{u}, u \in G$, form a $K[G]$-basis of $M(G, K)$ and

$$
\mathcal{A}^{\phi}\left(B_{u}\right)=\lambda_{u} B_{u}, \quad \lambda_{u} \in K, \quad u \in G,
$$

then with

$$
\begin{array}{rlrl}
\mathcal{B}: & =\sum_{u} \iota_{u}\left(B_{u}\right) \quad \text { and } \mathcal{D}:=\sum_{z} \lambda_{z} \mathcal{E}_{z}, & \\
& \mathcal{B D} & =\left(\sum_{u} \iota_{u}\left(B_{u}\right)\right)\left(\sum_{z} \lambda_{z} \mathcal{E}_{z}\right) & \\
& =\sum_{u} \iota_{u}\left(\lambda_{u} B_{u}\right) & & \text { by (A2) } \\
& =\sum_{u} \iota\left(\mathcal{A}^{\phi}\left(B_{u}\right)\right) & & \text { by Proposition 2 } \\
& =\sum_{u}\left(\iota_{u} \circ p_{u}\right)\left(\mathcal{A} \iota_{u}\left(B_{u}\right)\right) & & \text { by (A4) } \\
& =\sum_{u}\left(\iota_{u} \circ p_{u}\right)\left(\mathcal{A} \sum_{v} \iota_{v}\left(B_{v}\right)\right) & & \\
& =\mathcal{A B} &
\end{array}
$$

by (15), and

$$
p_{v}(\mathcal{B})=p_{v}\left(\sum_{u} \iota_{u}\left(B_{u}\right)\right)=B_{v}, \quad v \in G,
$$

is a $K[G]$-basis of $M(G, K)$, hence \mathcal{B} is invertible by Corollary 12 .
Technische Universität,
München, Germany

