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AVERAGING FORMULA FOR NIELSEN NUMBERS OF
MAPS ON INFRA-SOLVMANIFOLDS OF TYPE (R)

JONG BUM LEE and KYUNG BAI LEE

Abstract. We prove that the averaging formula for Nielsen numbers holds for

continuous maps on infra-solvmanifolds of type (R): Let M be such a manifold

with holonomy group Ψ and let f : M → M be a continuous map. The

averaging formula for Nielsen numbers

N(f) =
1

|Ψ|

X

A∈Ψ

|det(A∗ − f∗)|

is proved. This is a workable formula for the difficult number N(f).

§1. Introduction

Let M be a closed manifold and let f : M → M be a continuous map.

In order to study the fixed points of f , the Lefschetz number L(f) and

Nielsen number N(f) are associated to f . These numbers are homotopy

invariants. The Nielsen number gives more precise information concerning

the existence of fixed points than the Lefschetz number, but its computation

when compared with that of the Lefschetz number is in general much more

difficult.

Therefore, there have been attempts to find some relations between

these two numbers. In [3], Brooks, Brown, Pak and Taylor show that for a

continuous map f on a torus, |L(f)| = N(f). Anosov [1] extended this to

nilmanifolds. However, such an equality does not hold on infra-nilmanifolds

as shown in [1]: there is a continuous map f on the Klein bottle for which

N(f) 6= |L(f)|. IfM is an infra-nilmanifold, and f is homotopically periodic

or more generally virtually unipotent, then it is known in [13], [18] that
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L(f) = N(f). Other interesting investigations on the relation |L(f)| =

N(f) were made for flat Riemannian manifolds and Anosov diffeomorphisms

f in [4] and for infra-nilmanifolds in [5].

The following averaging formula for Lefschetz numbers is well-known

[9, Theorem III.2.12]:

L(f) =
1

[π : K]

∑

ᾱ∈π/K
L(ᾱf̄).

For Nielsen numbers, the averaging formula does not always hold. Instead,

the following inequality holds [11, Theorem 3.1]:

N(f) ≥
1

[π : K]

∑

ᾱ∈π/K
N(ᾱf̄).

It is proved in [11] that if X is an infra-nilmanifold, the above inequality be-

comes the equality. Furthermore, in [14], we offered algebraic and practical

computation formulas for the Nielsen and Lefschetz numbers of a continu-

ous map on an infra-nilmanifold in terms of the holonomy of the manifold.

The purpose of this work is to extend these results from infra-nilmanifolds to

infra-solvmanifolds of type (R), thereby showing that the deviation from the

equality N(f) = |L(f)| can be measured by the holonomy of the manifold.

§2. Infra-solvmanifolds

Let G be a Lie group, let Aut(G) be the group of continuous automor-

phisms of G and let Endo(G) be the group of continuous endomorphisms of

G. The affine group of G is the semi-direct product Aff(G) = G ⋊ Aut(G)

with the multiplication (a,A)(b,B) = (aA(b), AB). It has a Lie group struc-

ture and acts on G by (a,A) · x = aA(x) for all x ∈ G. Suppose that G is

connected and has a linear connection defined by left-invariant vector fields.

It turns out that Aff(G) is the group of connection preserving diffeomor-

phisms of G.

We recall from [6], [8], [12] some definitions about solvable Lie groups

and give some basic properties which are necessary for our discussion. A

connected solvable Lie group S is called of type (NR) (for “no roots”) [12] if

the eigenvalues of Ad(x) : S → S are always either equal to 1 or else they are

not roots of unity. Solvable Lie groups of type (NR) were considered first in

[12]. A connected solvable Lie group S is called of type (R) (or completely

solvable) if ad(X) : S → S has only real eigenvalues for each X ∈ S.
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A connected solvable Lie group S is called of type (E) (or exponential) if

exp : S → S is surjective. Some important properties of such groups related

to our paper are listed below. See [6], [8] for more details.

(1) Abelian =⇒ Nilpotent =⇒ type (R) =⇒ type (E) =⇒ type (NR).

(2) (Rigidity of Lattices) Let S and S′ be connected and simply connected

solvable Lie groups of type (R), and let Γ be a lattice of S. Then any

homomorphism from Γ to S′ extends uniquely to a homomorphism of

S to S′.

Let S be a connected and simply connected solvable Lie group and H

be a closed subgroup of S. The coset space H\S is called a solvmanifold.

We shall deal with compact solvmanifolds only. Let π be the fundamental

group of the solvmanifold M = H\S. Then π = H/H0 where H0 is the

identity component of H. Such a group is known to be a Mostow-Wang

group or a strongly torsion-free solvable group, i.e., π contains a finitely

generated torsion-free, nilpotent normal subgroup with torsion-free abelian

quotient group of finite rank.

A discrete subgroup Γ of S is a lattice of S if Γ\S is compact, and in this

case, we say that Γ\S is a special solvmanifold. Let π ⊂ Aff(S) be a torsion-

free finite extension of Γ. Then π acts freely on S, and the manifold π\S
is called an infra-solvmanifold. The group Ψ = π/Γ is the holonomy group

of π or π\S. It sits naturally in Aut(S). Thus every infra-solvmanifold is

finitely covered by a special solvmanifold. An infra-solvmanifold M = π\S

is of type (R) if S is of type (R).

First we generalize Lemma 3.1 of [14], in which the existence of a

fully invariant subgroup of finite index in an almost Bieberbach group is

proved. The proof consists merely of straightforward adaptation of that of

[14, Lemma 3.1] to this more general, but very analogous situation.

Lemma 2.1. Let S, S′ be connected and simply connected solvable Lie

groups, and let π, π′ ⊂ Aff(S) be finite extensions of lattices Γ, Γ′ of S,

S′, respectively. Then there exist fully invariant subgroups Λ ⊂ Γ, Λ′ ⊂ Γ′

of π, π′, respectively, which are of finite index, so that any homomorphism

θ : π → π′ maps Λ into Λ′.

Next we state the following, which generalizes [16, Theorem 1.1] from

almost crystallographic groups to finite extensions of lattices of a simply
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connected solvable Lie group of type (R), and [17, Theorem 3.1] from iso-

morphisms to homomorphisms. The crucial point is our Lemma 2.1 and

the rigidity of lattices of simply connected solvable Lie groups of type (R).

Then we just follow the argument of [16, Theorem 1.1] or [17, Theorem 3.1].

Theorem 2.2. Let S be a connected and simply connected solvable Lie

group of type (R). Let π, π′ ⊂ Aff(S) be finite extensions of lattices of

S. Then any homomorphism θ : π → π′ is semi-conjugate by an “affine

map”. That is, for any homomorphism θ : π → π′, there exist d ∈ S and

a homomorphism D : S → S such that θ(α) ◦ (d,D) = (d,D) ◦ α, or the

following diagram is commutative

S
(d,D)
−−−−→ S





y

α





y

θ(α)

S
(d,D)
−−−−→ S

for all α ∈ π.

Proof. By Lemma 2.1, there exist lattices Λ, Λ′ of S so that the ho-

momorphism θ : π → π′ restricts to a homomorphism θ : Λ → Λ′. Consider

the homomorphism Λ → Λ′ →֒ S, where the first map is the restriction of

θ. Since Λ is a lattice of S, by the rigidity of lattices ([20], [21], [23], cf. [8,

Theorem 2.2]), any such a homomorphism extends uniquely to a continuous

homomorphism C : S → S. Thus θ|Λ = C|Λ; and hence θ(z, I) = (Cz, I) for

all z ∈ Λ (more precisely, (z, I) ∈ Λ ⊂ Aff(S)). Let us denote the composite

homomorphism π → π′ → S ⋊ Aut(S) → Aut(S) by θ̄; and define a map

f : π → S by

θ(w,K) = (Cw · f(w,K), θ̄(w,K)).

Using exactly the same method employed in the proof of [17, Theorem 3.1],

we can show that f and θ̄ factor through Q = π/Λ. We still use the

notation f and θ̄ to denote the induced maps Q → S and Q → Aut(S),

respectively. Furthermore, we can show that, with the Q-structure on S via

θ̄ : Q → Aut(S), f : Q → S is a “principal” crossed homomorphism. In

other words, there exists d ∈ S such that

f(w,K) = d · θ̄(w,K)(d−1).

Denoting by τd−1 the conjugation by d−1, we write D = τd−1 ◦ C, and we

check that θ is “semi-conjugation” by (d,D) = (d, τd−1 ◦ C).
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§3. Linearization of maps on solvmanifolds

In this section we will restate the main result of [12]. This restate-

ment, Theorem 3.1, makes possible to prove our crucial Corollary 3.2 and

Lemma 3.3, and their proofs become simple.

For the restatement, first we need to understand the solvmanifolds. In

[15] (cf. [18] also), we exploited the fundamental group structure of solv-

manifolds and produced, using Seifert fiber space constructions, a fibration

structure on the solvmanifold over a torus, with a nilmanifold as a base. Let

M = H\S be a solvmanifold. Then there is an exact sequence of groups

1 −→ Γ −→ π −→ Z
s −→ 1,

where

• Γ is a fully invariant subgroup of π, and

• Γ is a finitely generated torsion-free nilpotent group.

Let G be the Malćev completion of Γ. Doing the Seifert construction, one

obtains a Seifert fibering with typical fiber the nilmanifold Γ\G. The π

action on G × R
s is properly discontinuous, and free since π is torsion-

free. Hence the Seifert fiber space π\(G× R
s) is a closed smooth manifold.

This manifold has a bundle structure over the torus Z
s\Rs with fiber the

nilmanifold Γ\G:

Γ\G −→M ′ = π\(G × R
s)

q
−→ Z

s\Rs = T s.

Note also that the given solvmanifold M is homotopic to the Seifert fiber

space M ′. Let α : M → M ′ be a homotopy equivalence with a homotopy

inverse β. Let f : M → M . Consider f ′ = α ◦ f ◦ β : M ′ → M ′. The

homotopy commutative diagram

M
f

−−−−→ M




y

α





y

α

M ′ f ′
−−−−→ M ′

implies that N(f) = N(f ′). Thus we may assume that M is the total space

of the bundle Γ\G→M
q
→ T s. That is, M = π\(G×R

s), and f : M →M .

Consider a lifting f̃ : G×R
s → G×R

s of f : M →M . Then it induces

a homomorphism ϕ : π → π defined by ϕ(α) ◦ f̃ = f̃ ◦ α for all α ∈ π.
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Since Γ is a fully invariant subgroup of π, ϕ induces a homomorphism

ϕ′ = ϕ|Γ : Γ → Γ, and in turn induces a homomorphism ϕ̄ : Z
s → Z

s

so that the following diagram is commutative:

1 −−−−→ Γ −−−−→ π
ψ

−−−−→ Z
s −−−−→ 1





y
ϕ′





y

ϕ





y

ϕ̄

1 −−−−→ Γ −−−−→ π
ψ

−−−−→ Z
s −−−−→ 1

Now ϕ̄ : Z
s → Z

s extends uniquely to a homomorphism F̄ : R
s → R

s, which

induces a map φF̄ : T s → T s so that the induced homomorphism on the

group of covering transformations, Z
s, is exactly ϕ̄. Since ϕ̄ψ = ψϕ, we

have a homotopy ht : q ◦ f ≃ φF̄ ◦ q. By the Homotopy Lifting Property

of the fibration M → T s, there exists a lifting homotopy Ht : M → M

of ht such that H0 = f . Let f ′ = H1. Then q ◦ f ′ = φF̄ ◦ q, and f ′ is

fiber-preserving and homotopic to f . Moreover, f ′ : M → M induces the

map φF̄ : T s → T s which is a homomorphism.

We recall the definition of the linearization of the solvmanifold [12].

There exists a finite descending central series of Γ:

Γ = Γ1 ⊃ Γ2 ⊃ · · · ⊃ Γc ⊃ {1}

such that

• each Γi := Γ ∩ γi(G) is a fully invariant subgroup of Γ,

• each Λi := Γi−1/Γi is torsion-free abelian,

• Γ acts trivially on each Λi, and

• there is a well-defined action of Z
s on each Λi. We denote its action

homomorphism by Ai : Z
s → Aut(Λi).

Then the collection {Λi, Ai} is called the linearization of the solvmanifold

M .

Recall that ϕ′ : Γ → Γ extends uniquely to a homomorphism F ′ :

G→ G. Then F ′ induces homomorphisms γi(G) → γi(G) and then in turn

induces homomorphisms

ϕ′
i = ϕ′|Γ : Γi = Γ ∩ γi(G) −→ Γi.

Therefore, there are induced homomorphisms

ϕ̂′
i : Λi −→ Λi.
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Furthermore the above commutative diagram produces the following equal-

ity: for each i and λ ∈ Z
s,

ϕ̂′
i ◦ Ai(λ) = Ai(ϕ̄(λ)) ◦ ϕ̂′

i.

We shall say that the linearization of the map f : M →M is the collection of

homomorphisms {ϕ̂′
i, ϕ̄}, or simply, the pair (F ′, F̄ ) of the homomorphisms

F ′ : G → G and F̄ : R
s → R

s. Notice that the differential F ′
∗ : G → G can

be expressed as a matrix of the form











ϕ̂′
1 ∗ · · · ∗

0 ϕ̂′
2 · · · ∗

...
...

. . .
...

0 0 . . . ϕ̂′
c











by choosing a suitable basis of G.

Therefore, the main result of [12] can be restated as follows:

Theorem 3.1. ([12, Theorem 3.1]) If f : M →M is a self-map on the

solvmanifold of type (NR) with linearization (F ′, F̄ ), then

L(f) = det(I − F̄∗) det(I − F ′
∗), N(f) = |L(f)|.

Corollary 3.2. Let M = Γ\S be a special solvmanifold of type (NR).

If a homomorphism D : S → S induces a map φD : M →M , then L(φD) =

det(I −D∗) and N(φD) = |L(φD)|.

Proof. It is easy to see that the homomorphism ϕ : Γ → Γ induced

by the lifting D of φD is exactly ϕ = D|Γ. Thus we have the commutative

diagram

1 −−−−→ [Γ,Γ] −−−−→ Γ −−−−→ Γ/[Γ,Γ] = Z
s −−−−→ 1





y

D|[Γ,Γ]





y

D|Γ




y
D̄|Zs

1 −−−−→ [Γ,Γ] −−−−→ Γ −−−−→ Z
s −−−−→ 1

Thus a linearization of φD is (D|[Γ,Γ], D̄|Zs), and hence

L(φD) = det(I −D|[Γ,Γ]∗) det(I − D̄|Zs∗) = det(I −D∗).

This proves our claim.
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The following slightly generalizes [14, Lemma 3.2] from simply con-

nected nilpotent Lie groups to simply connected solvable Lie groups.

Lemma 3.3. Let S be a connected and simply connected solvable Lie

group. For any g ∈ S and D ∈ Endo(S),

det(Ad(g) −D∗) = det(I −D∗).

Proof. For g ∈ S, τg denotes the conjugation by g so that τg(x) =

gxg−1. Let Ŝ = [S, S], S̄ = S/[S, S]. Consider the exact sequence 1 →

Ŝ → S → S̄ → 1. Then the endomorphisms D and τg on S induce endo-

morphisms D̂ and τ̂g on Ŝ and hence, induce endomorphisms D̄ and τ̄g on

S̄. Note that τ̄g = idS̄ . Thus the left hand side diagram commutes, which

implies that the right hand side diagram commutes.

Ŝ −−−−→ S −−−−→ S̄

D̂





y

τ̂g D





y

τg D̄





y
id

Ŝ −−−−→ S −−−−→ S̄

,

Ŝ −−−−→ S −−−−→ S̄

D̂∗





y
Âd(g) D∗





y

Ad(g) D̄∗





y
id

Ŝ −−−−→ S −−−−→ S̄

Thus we can find a basis of S so that D∗ and Ad(g) are of the form

D∗ =

[

D̂∗ ∗
0 D̄∗

]

, Ad(g) =

[

Âd(g) ∗
0 I

]

.

Now since [S, S] is nilpotent, by [14, Lemma 3.2], we have

det(Âd(g) − D̂∗) = det(I − D̂∗).

Hence

det(Ad(g) −D∗) = det(Âd(g) − D̂∗) det(I − D̄∗)

= det(I − D̂∗) det(I − D̄∗)

= det(I −D∗).

This finishes the proof of our claim.
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§4. Averaging formula for Nielsen numbers

To state and prove the main result, we shall briefly explain some neces-

sary facts about the mod K Nielsen fixed point theory. Let f : X → X be a

self-map on a compact connected space X, and let K be a normal subgroup

of π = π1(X) of finite index. Suppose f∗(K) ⊂ K. For the fixed liftings

f̃ : X̃ → X̃ and f̄ : K\X̃ → K\X̃ of f , we have homomorphisms

ϕ̄ : π/K → π/K defined by f̄ ᾱ = ϕ̄(ᾱ)f̄ ,

ϕ : π → π defined by f̃α = ϕ(α)f̃ ,

so that ϕ′ = ϕ|K : K → K and the following diagram is commutative:

1 −−−−→ K
i

−−−−→ π
q

−−−−→ π/K −−−−→ 1




y
ϕ′





y

ϕ





y

ϕ̄

1 −−−−→ K
i

−−−−→ π
q

−−−−→ π/K −−−−→ 1

Let p : X̃ → X, p′ : X̃ → K\X be covering maps. The fixed point classes

of f are the subsets p(Fix(αf̃)) (α ∈ π) of the fixed point set Fix(f) of f .

For each α ∈ π, the fixed point classes of ᾱf̄ are the subsets p′(Fix(kαf̃))

(k ∈ K) of the fixed point set Fix(ᾱf̄) of ᾱf̄ .

We denote the subgroup of π fixed by a homomorphism ψ : π → π by

fix(ψ) = {α ∈ π | ψ(α) = α}.

Then the following diagram

1 −−−−→ K
i

−−−−→ π
q

−−−−→ π/K −−−−→ 1




y
ταϕ′





y

ταϕ





y

τᾱϕ̄

1 −−−−→ K
i

−−−−→ π
q

−−−−→ π/K −−−−→ 1

is commutative, and the following sequence of groups

1 −→ fix(ταϕ
′)

i
−→ fix(ταϕ)

q
−→ fix(τᾱϕ̄)

is exact. With the above notation, we have
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Theorem 4.1. ([11, Theorem 3.1]) Let f : X → X be a self-map on a

compact connected space X, and let K be a normal subgroup of the funda-

mental group π of X with finite index such that f∗(K) ⊂ K. Then

N(f) ≥
1

[π : K]

∑

ᾱ∈π/K
N(ᾱf̄),

and equality holds if and only if for each k ∈ K and α ∈ Π with p(Fix(kαf̃))

an essential fixed point class, |q(fix(τkαϕ))| = 1.

We will show that the equality in the above theorem holds for infra-

solvmanifolds of type (R). Thus we generalize the averaging formula for

Nielsen numbers for continuous maps on infra-nilmanifolds [11, Theorem

3.5] to infra-solvmanifolds of type (R). With Theorem 2.2, our proof requires

a straightforward adaptation of the proof of [11, Theorem 3.5].

Theorem 4.2. Let M be an infra-solvmanifold of type (R) and f :

M →M be any self map. Suppose that N is a regular covering of M which

is a solvmanifold with fundamental group K. Assume that f∗(K) ⊂ K.

Then

N(f) =
1

[π : K]

∑

N(f̄),

where the sum ranges over all the liftings f̄ of f onto N . In particular,

N(f) ≥ |L(f)|.

Proof. Let M = π\S be the infra-solvmanifold. Then K ⊂ π ∩ S and

N = K\S. Now we fix a lifting f̃ : S → S of f : M →M . Then f̃ induces a

homomorphism ϕ = f∗ : π → π on the group π of covering transformations

of p : S → M . Namely, for any α ∈ π, ϕ(α)f̃ = f̃α. Since ϕ : π → π

induces ϕ′ : K → K, there is a continuous map f̄ : N → N which makes

the following diagram

S
f̃

−−−−→ S

p′




y





y
p′

N
f̄

−−−−→ N

p̄





y





y

p̄

M
f

−−−−→ M
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commutative.

By Theorem 2.2, there exists an affine map (d,D) on S such that

ϕ(α) · (d,D) = (d,D) · α

for all α ∈ π. This implies that the map (d,D) : S → S induces a map

Φ(d,D) : M → M , and furthermore, Φ(d,D) and f induce exactly the same

homomorphism ϕ on π. Since M is a K(π, 1)-manifold, Φ(d,D) and f are

homotopic. Similarly, (d,D) induces a map φ(d,D) : N → N so that φ(d,D)

and f̄ are homotopic. By the homotopy invariance of the Nielsen number,

we can replace f̃ , f̄ and f in the diagram by (d,D), φ(d,D) and Φ(d,D),

respectively, in the following discussion.

The formula above reads ϕ(k)·(d,D) = (d,D)·k for α = k ∈ K. Noting

that k ∈ K acts on S as a left translation, this yields ϕ(k) = d ·D(k) · d−1.

That is, ϕ = τd ◦ D on K. Recall that for any lattice K in a solvable

Lie group S of type (R), any endomorphism of K extends uniquely to an

endomorphism of S. This means that the equality ϕ = τd ◦D extends to S.

Write E = τd ◦D ∈ Endo(S). Then we have

ϕ′(k) = ϕ(k) = E(k) for all k ∈ K (and also k ∈ S).

Thus the map E : S → S yields a map φE : N → N on the solvmanifold N

of type (R). Moreover, for any k ∈ K,

ϕ(k) ◦ E = E ◦ k,

where k and ϕ(k) are left translations. This implies f̄ ≃ φE . By Theo-

rem 3.2, N(f̄) = |det(I−E∗)|, where E∗ is the linear map on the Lie algebra

of the Lie group S induced by E. Since det(I −E∗) = det(I − Ad(d)D∗) =

det(I−D∗) (Lemma 3.3), N(f̄) = |det(I−D∗)|, and hence N(f̄) 6= 0 if and

only if fix(D∗) = {0} if and only if Fix(D) = {e}.
Now we observe the following: Let F : S → S be any homomorphism

on S and g ∈ S. For (g, F ) ∈ S ⋊ Endo(S), if Fix((g, F )) 6= ∅, then

there is a one-to-one correspondence between Fix((g, F )) and Fix(F ). Let

h ∈ Fix((g, F )). Then (h, I)−1(g, F )(h, I) = (e, F ) = F and thus k ∈
Fix((g, F )) 7→ h−1k ∈ Fix(F ) is the required correspondence. Therefore,

Fix((g, F )) = h · Fix(F ).

Let α = (a,A). Since f̃ = (d,D), we have kαf̃ = (k, I)(a,A)(d,D) =

(k · a ·A(d), AD), ᾱf̄ = φ(k·a·A(d),AD) and N(ᾱf̄) = |det(I −A∗D∗)|. There-

fore if N(ᾱf̄) 6= 0, the above observation implies that for all k ∈ K,

Fix(kαf̃) has only one point.
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Let g ∈ fix(τkαϕ) ⊂ π and x̃ ∈ Fix(kαf̃). Then

kαf̃(g · x̃) = kα(ϕ(g)f̃ )(x̃)

= ((kα)ϕ(g)(kα)−1)kαf̃(x̃)

= (τkαϕ)(g)(x̃) (since x̃ ∈ Fix(kαf̃))

= g · x̃ (since g ∈ fix(τkαϕ))

so that g · x̃ ∈ Fix(kαf̃ ). This implies g · x̃ = x̃. Since g ∈ π, g = 1. It

follows that fix(τkαϕ) = {1} and so |q(fix(τkαϕ))| = 1 for all k ∈ K.

On the other hand, ifN(ᾱf̄) = 0, then the fixed point class p′(Fix(kαf̃))

of ᾱf̄ is inessential. By [11, Remark 2.7], the fixed point class p(Fix(kαf̃))

of f is also inessential. Hence our result follows from Theorem 4.1.

We now explain how a continuous map f : M → M on the infra-

solvmanifold M = π\S of type (R) induces an endomorphism of the Lie

algebra, f∗ : S → S, naturally. The continuous map f : M → M induces

a homomorphism ϕ : π → π. Let Λ be a fully invariant subgroup of π in

Lemma 2.1. Note that Λ is a lattice of S. Then, the induced homomorphism

ϕ : π → π restricts to a homomorphism ϕ′ = ϕ|Λ : Λ → Λ, which extends to

an endomorphism of the Lie group S in a unique way. See [8, Theorem 2.2].

The differential of this map is an endomorphism of the Lie algebra, f∗ :

S → S.

In all, we can prove our main result which computes the Lefschetz

number L(f) and the Nielsen number N(f) of any continuous map f on

an infra-solvmanifold M of type (R) in terms of the holonomy of the man-

ifold. Thus we generalize the algebraic computation formula for Nielsen

numbers for continuous maps on infra-nilmanifolds [14, Theorem 3.4] to

infra-solvmanifolds of type (R). Our proof requires a straightforward adap-

tation of the proof of [14, Theorem 3.4]. Namely,

Theorem 4.3. Let f : M → M be any continuous map on an infra-

solvmanifold M of type (R) with the holonomy group Ψ. Then

L(f) =
1

|Ψ|

∑

A∈Ψ

det(A∗ − f∗)
detA∗

,

N(f) =
1

|Ψ|

∑

A∈Ψ

|det(A∗ − f∗)|.
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Proof. Let Λ be a fully invariant subgroup of π as in Lemma 2.1. Let

N = Λ\S be the special solvmanifold. With K = Λ as in the proof of

Theorem 4.2, we have the following homotopy commutative diagram

S
(d,D)
−−−−→ S

p′




y





y
p′

N
φE−−−−→ N

p̄





y





y

p̄

M
Φ(d,D)
−−−−→ M

where E = τd ◦ D. Here, we recall that (d,D) : S → S stands for the

affine map defined by (d,D)(x) = d · D(x) for x ∈ S. Recall also that, as

mentioned in the proof of Theorem 4.2, (d,D), φE and Φ(d,D) are homotopic

to f̃ , f̄ and f , respectively. By Corollary 3.2, we have

L(f̄) = L(φE) = det(I − E∗),

N(f̄) = N(φE) = |det(I − E∗)|.

Let α ∈ π/Λ. Choose a preimage (a,A) ∈ π of α under the quotient

map π → π/Λ. Then α becomes a covering transformation of Λ\S via the

following commutative diagram:

S
(a,A)
−−−−→ S





y





y

Λ\S
α

−−−−→ Λ\S

This means that α is the map induced by (a,A) : S → S, i.e., α = φ(a,A).

Moreover, α∗ = (τa ◦A)∗ = ad(a) ◦A∗ on S. Consequently,

L(α−1 ◦ f̄) = det(I − (α−1
∗ ◦ E∗))

= det(I −A−1
∗ ad(a−1)E∗)

= det(I − ad(a−1)E∗A
−1
∗ )

= det(I − E∗A
−1
∗ ) by Lemma 3.3

=
det(A∗ − f∗)

detA∗
.
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Recalling that φ(a,A) induces an isomorphism of the lattice Γ, we have

|detA∗| = 1, and N(α−1 ◦ f̄) = |L(α−1 ◦ f̄)| = |det(A∗−f∗)|
|detA∗| = |det(A∗ − f∗)|.

Therefore, by [9, Theorem III.2.12, (p. 52)] and by Theorem 4.2, we have

L(f) =
1

[π : Λ]

∑

α∈π/Λ
L(α−1 ◦ f̄)

=
1

|Ψ|

∑

A∈Ψ

det(A∗ − f∗)
detA∗

,

N(f) =
1

[π : Λ]

∑

α∈π/Λ
|det(A∗ − f∗)|

=
1

|Ψ|

∑

A∈Ψ

|det(A∗ − f∗)|.

This finishes the proof of Theorem.

Example 4.4. The solvable Lie group Sol is one of the eight geometries

that one considers in the study of 3-manifolds [22]. One can describe Sol as

a semi-direct product R
2

⋊ϕ R where t ∈ R acts on R
2 via the map

ϕ(t) =

[

et 0
0 e−t

]

.

Its Lie algebra sol is given as sol = R
2

⋊σ R where

σ(t) =

[

t 0
0 −t

]

.

The Lie group Sol can be embedded into Aff(3) as








et 0 0 x
0 e−t 0 y
0 0 1 t
0 0 0 1









where x, y and t are real numbers, and hence its Lie algebra sol is isomorphic

to the algebra of matrices








t 0 0 a
0 −t 0 b
0 0 0 t
0 0 0 0









.
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Since Sol is of type (R), it is of type (NR). We denote the general

element of Sol by {x, y, t}. Let Γ be the subgroup of Sol which is generated

by
{

1√
5
,− 1√

5
, 0

}

,
{√

5−1
2
√

5
,
√

5+1
2
√

5
, 0

}

,
{

0, 0, ln 3+
√

5
2

}

.

Then Γ is isomorphic to the group Z
2

⋊φ Z where

φ =

[

2 1
1 1

]

is an element of SL(2,Z) with eigenvalues 3±
√

5
2 , and in fact Γ is a lattice of

Sol.

Let a =
{

0, 0, 1
2 ln 3+

√
5

2

}

∈ Sol and A : Sol → Sol be the automorphism

of Sol given by

A({x, y, t}) = {−x,−y, t}.

Then A has period 2, and (a,A)2 =
({

0, 0, ln 3+
√

5
2

}

, I
)

∈ Sol ⋊ Aut(Sol),

where I is the identity automorphism of Sol. The subgroup

π = 〈Γ, (a,A)〉 ⊂ Sol ⋊ Aut(Sol)

generated by the lattice Γ and the element (a,A) is discrete and torsion

free, and Γ is a normal subgroup of π of index 2. Thus π is a torsion-free

finite extension of the lattice Γ, and π\Sol is an infra-solvmanifold, which

has a double covering Γ\Sol → π\Sol by its holonomy group, Ψ = π/Γ =

{1, A} ∼= Z2.

Let D : Sol → Sol be the automorphism of Sol given by

D({x, y, t}) = {my,mx,−t}

where m is any nonzero integer (cf. [7, Proposition 2.3]). Then DA = AD

and the conjugation by ({0, 0, 0},D) ∈ Sol ⋊ Aut(Sol) maps π into π (and

Γ into Γ). Thus, the affine map ({0, 0, 0},D) : Sol → Sol induces φD :

Γ\Sol → Γ\Sol and ΦD : π\Sol → π\Sol so that the following diagram is

commutative:

(π,Sol)
({0,0,0},D)
−−−−−−−→ (π,Sol)





y





y

(π/Γ,Γ\Sol)
φD−−−−→ (π/Γ,Γ\Sol)





y





y

π\Sol
ΦD−−−−→ π\Sol
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We take an ordered (linear) basis for the Lie algebra of Sol as follows:

e1 =









0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0









, e2 =









0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0









, e3 =









1 0 0 0
0 −1 0 0
0 0 0 1
0 0 0 0









.

With respect to this basis, the differentials of A and D are

A∗ =





−1 0 0
0 −1 0
0 0 1



 , D∗ =





0 m 0
m 0 0
0 0 −1



 .

Therefore by Theorem 4.3, the Lefschetz number and the Nielsen number

of the map ΦD : π\Sol → π\Sol are:

L(ΦD) =
1

2

(

det(I −D∗)
det(I)

+
det(A∗ −D∗)

det(A∗)

)

=
1

2

(

2(1 −m2) + 2(1 −m2)
)

= 2(1 −m2),

N(ΦD) =
1

2
(|det(I −D∗)| + |det(A∗ −D∗)|)

=
1

2

(

|2(1 −m2)| + |2(1 −m2)|
)

= 2|1 −m2|.
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