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Introduction

The methods developed up to now in the theory of plates do not lend
themselves easily to the solution of problems in the case of plates of arbitrary
shape. Such methods lend themselves only to the solution of problems for
plates of certain special simple shapes. Moreover, because of the complicated
mathematical tools involved in these methods, the methods are not suitable
for engineers. Hence there arises the need for the formulation of an approx-
imate theory which may appear quite suitable for attacking problems on
plates of arbitrary shape. In the present paper the author develops a new
method which aims at the solution of the problem quite independently of
the shape of the plate.

It is well known that the usual methods for the approximate solution
of problems of bending of a plate are based upon the rough idea of the shape
of the deflected surface of the plate being physically compatible with the
type of fastening at the boundary, the nature of the surface loads and the
geometrical shape of the plate. In these methods, there arise the principal
difficulties of the satisfaction of all boundary conditions which practically
remained insurmountable for plates of arbitrary shape. The present method
aims at removing these difficulties. In this method, when an elastic plate
with clamped or supported boundary is bent under the action of external
pressure, the corresponding deflection surface of the plate may be described
by a family of curves which may be called 'Lines of Equal Deflection', i.e.,
lines which are obtained by intersecting the bent plate by planes parallel
to the original plane of the plate. In principle, it is always possible to deter-
mine the equation of such lines of equal deflection. In some cases, the equa-
tion of such lines of equal deflection can be known by symmetry considera-
tion or by intuition. The outstanding feature of this method is that it is
entirely independent of the shape of the plate; its success depends, however,
on the determination of the equation of the lines of equal deflection and,
consequently, on the type of loading. As illustrations of the procedure,
the method has been applied in Section 3 to the calculation of the deflections
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of an elliptic and a parabolic plate with uniformly distributed normal loads.
These examples show that the method of prescribing the lines of equal
deflection is quite suitable. All details of the method are explained in
Section 1. Several remarks close the paper.

1. An account of the method and derivation
of the new equations of equilibrium

The theory which is developed here is based upon the following as-
sumptions:

(i) the plate consists of homogeneous and isotropic material;
(ii) the material obeys Hooke's law;

(iii) the deflection of the plate is small compared with its thickness;
(iv) the thickness of the plate is small compared with its other dimen-

sions.

Taking the xoy-pla.ne as usual to be the middle plane of the plate and
directing the 2-axis perpendicular to that plane, we shall suppose that the
family of lines of equal deflection u = u(x, y) = Const, is known. Hence,
intersections between the deflection surface z — w(x, y) and the planes
z = Const, yield contours which, after projection on to the xoy plane,
are the lines of equal deflection u(x, y) = const. If the boundary of the
plate does not move in the direction perpendicular to the plane of the plate
(this case corresponds to elastically supported edges), then clearly the
contour of the plate belongs to the family of the lines of equal deflection and
we may consider this contour as u = o (Fig. 1). In particular, when the

Figure 1
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distribution of normal loading is such that it does not chanee sien anywhere
in the region of the plate, then clearly a line of equal deflection cannot
intersect the boundary and it cannot end at any point in the Diane of the
plate. Each line of equal deflection must, therefore, be a closed curve.
Moreover, two lines of equal deflection cannot intersect. In general.
however, the lines of equal deflection form a system of non-intersecting
closed curves, starting from the outer boundary as one of the lines. For
the symmetrically loaded circular plate, the lines of equal deflections are
concentric circles; for the clamped elliptic plate, they are a set of similar
concentric ellipses.

For the analysis of small deflections of laterally loaded Dlates, we shall
only consider the external forces perpendicular to the middle surface of the
plate and the distribution of moments along its edees. In Fie. 2. the distribu-

Figure 2

tion of the bending moment Mn along the contour of the plate, the distribu-
tion of a continuously transverse load of intensity q over the upper surface
of the plate and the distribution of transverse forces Vn which contain the
shearing force Qn and the portion of the edge reaction which is due to the
distribution along the edge of the twisting moment Mnt on the same contour
of the plate are shown. As in the classical theory, the shearing force Qt is
being neglected.

Let us consider the equilibrium of an element of the plate bounded by
any line of equal deflection. In Fig. 3, the interior portion of the plate
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Figure 3

bounded by a line u{x, y) = const, is shown, where (x0, y0) indicates a fixed
point on the contour, n and nQ denote the unit vectors normal to the line
« = const, at any arbitrary point (x, y) and at the fixed point (x0, y0),
~r and rj, denote the position vectors from the fixed point (x0, y0) to any
arbitrary point inside the contour and on the contour u = const., respec-
tively. We thus have the relations

(1.1) n =
u(x.v) — Const.

The conditions of equilibrium for the element of the plate require that
the sum of moments about the tangent line to the curve u(x, y) = const,
at any point (x0, y0) of all forces acting on the element and the sum of all
forces normal to the plane xoy are zero. We will not demand the vanishing
of the sum of moments about the normal to the curve u(x, y) = const.
at that point for the same reason that we will not seek the vanishing of the
twisting moment along the free edge of any plate. Therefore we obtain

(1.2) = »0 j Mjds+to j Vn?ods-%0 jjoqtdQ = 0,
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(1.3) ZZ

where the contour integrals are taken around a closed path u = const.
and the double integrals over the area bounded by the closed contour
M = const.

Let us now calculate the expressions for the moments and shearing
forces on any line of the family of equal deflection, using the well known
formulas [1]

(1.4)

( 82w 82w\ Vd2w „ „ dw
h/* 1 = —2) (ws~t~A*^v)H

( 82w 82w\ Yd2w dw 1
h ^ I = —D (Uy-\-flU2)-\ [uyy~\~ftUxx) '

82w Yd2w dw ~~\
7) I 1 I r\ I n i At _j /ii I

"o W — XJ \ " / ~i S" u'x"'v i 7 "'xv 'oxoy \_du* du J

8 (82w 82w\ rd3w d2w
I | | _ j ) (u34-u u )-) (3u u

dw
•uxyuv+uvyux)+j-

8 l82w 82w\ rd3w
= —D (t

) I '
8y\8x2 c

dw
du

where

w is the deflection of the plate,
D = Eh3l(12(l~/x2)) is the flexural rigidity of the plate,
E is Young's modulus,
ix Poisson's ratio,
h the thickness of the plate.

While deriving the above expressions, we make use of the relations

8w dw 8u dw 8w dw

8x du 8x du 8y du y'
(1.5)

82w d2w dw
. u u -\- u etc
8x8y du2 v du xv'

substituting the expressions (1.4) into the wellknown expressions for
Mn, Mnt, etc., and after several transformations, we finally obtain
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d2w dw
Mn = Mx cos2 ai-\-My sin2 <x—2MCT sin a cos a = P — - + 0 — ,

du2 du

dw
Mnt = Mxy(cos2 a—sin2 a )+ (Mx—Mv) sin a cos a = H — ,

(1.6) Mt = Mx sin2 a+M v cos2 a+2M_, sin a cos a = P ' —- +<?' ~r >
dul du

Qn = Qx COS a + <?v S i n a>
dw

os du3 du* du
where

P = -Dt,

Q = - j [uxxu%+uvyul+fxuvvul+fMxxul+2(l~fi)ux1)uxuy],

P' = -D/d,

Q' = - j luxxK+uvvutJr^xxul+[iuvyu\~2{l-[i)uxvuxuv\)

R = —DA,

F [3

(1.7) G = — -3-
fa

- 2 (1 -/*)«„ («««,««-«»««,-«««
+ (1 —fi) (««-«„,) {u^ul—u^ul)]

H :« [M«»(«I—«5)—«»«.("«

^ 2 / . dx dy ux
cos a = — > sm a = — , —- =

ds ds dx uy

Substituting the expressions for Mn and Vn from (1.6) and taking into
account that w and its derivatives with respect to u are constant on the
line u = const., we finally represent the equilibrium equations (1.2) and
(1.3) in the form
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d2W £ „ + dw
P d +

(1.8)

„ + dw £ ^ , ^ d3M> r -v ,
Pnds+n° Tu 9 Qnds+n° * ? 9 Rr°ds

i2z# £ . dw c _^ r f
+ n0 — <t> J%rfs + M0 — (t) Gr"orfs —»0

d3w c d2w c dw r rr
(1.9) —- <b i?is+ —- (h Frfs+ —- (b Gds— qdQ = 0.

^M3 J dw2 J & J JJfl

For the analysis of the deflection of a plate bent by a lateral load q, it is
sufficient to consider only one of the above two equilibrium equations.
For the sake of simplicity, we shall henceforth consider only the second
equation. It is to be noted here that when the equation u = u (x, y) appears
to be an exact equation for a line of equal deflection then the first of the
above two equations is satisfied identically with the help of the second
equation. Consequently, our problem reduces to that of finding out the
solution of the second equation giving the exact value for the function
u(x, y).

2. Boundary conditions

Typical boundary conditions for a plate of arbitrary shape are here
expressed in terms of the deflection w and its derivatives with respect to u.
However, the boundary conditions depend on the nature of fastening of
the edge of the plate which, in general, will be a curved boundary with
normal n.

(a) Clamped Edge. Along a clamped edge, the deflection and slope
normal to the boundary are zero, so that

o

where the denvative dwjdn is expressed in the form

dw dw .— dw ,- dw
(2.2) = _ (« cos a+wv sin a = Vul+u2

y — = Vt — .
on du du du

(b) Simply Supported Edge. Along a boundary which is simply sup-
ported the deflection and the moment per unit length, Mn, are zero, so that

w
(2.3)

+ Q —
du .-o

= 0.
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Still one more condition for both of these cases is obtained at the centre,
i.e., at the point of maximum deflection of the plate. The deflection of the
plate at the centre must be a finite quantity. For an axially symmetrical,
external load, the deflection surface of the plate will also have axial sym-
metry and, therefore, the tangent plane at the centre must be horizontal.

Thus we obtain three conditions (two at the boundary and one at the
centre) for transversely bent thin elastic plates. We see that the essence
of the method lies in the fact that it reduces to the integration of a third
order ordinary differential equation with three boundary conditions.
Consequently, with the exact equation of the lines of equal deflection,
the above method gives us an exact solution which can be verified in the
case of circular and clamped elliptic plates under symmetrical loading.
However, for cases where the preassigned equation of the lines of equal
deflection is not correct, we get an approximate solution and obviously
this approximation will be as close to the exact solution as the assigned
equation of the lines of equal deflection has been selected close to the exact
equation. So the crux of the problem is how to obtain the best selection
of the equation of the lines of equal deflection close to their exact equation.
This problem will be discussed in the next section.

Further, we note from (1.6) and (2.2) that along clamped edges the
twisting moment Mnt is always zero and, in conjunction with specified
boundary conditions, the bending moments Mn and Mt are given by

d 19)

Mn = -Z)(|+J)
(2.4)

CL IS)

Since d2w/du2 = const, on the contour which belongs to the family
of lines of equal deflection we have

(25) Mn

Mt

consequently, knowing the function u(x, y), we may readily detect the
critical point or points of bending moments on the contour, for which we
are required to determine the extremum of the function t — u2-\-u2 along
the boundary u = 0.

3. Illustration of the method

As illustrations, this method will be applied to a number of problems
of the determination of deflections in thin elastic plates. We shall see that
the above method enables us to arrive at an approximate solution of such
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problem, where the exact solution is unknown or is very inconvenient for
numerical calculations.

In cases where the exact equation of the line of equal deflection is not
known, we can find quite good approximations with the aid of an equation.
If the boundary of the plate is given by the equation F(x, y) = 0 and the
function F is different from zero within the region of the plate, the way
to use this equation is to assume a reasonable expression for u of the form

(3.1) u(x,y) =
m=0
n=0

where m and n are natural numbers and the coefficients Amn can be inter-
preted as coordinates, which determine the form of the deflection surface.
We shall now see how to obtain the solution when the boundary of the plate
has one or the other special form.

(a) Elliptic Plate with Simply Supported End.
As a first example of the above method, consider the case of a simply

supported, thin, elliptic plate subject to uniform normal pressure on the
upper surface. The exact solution of this classical problem in elliptic coor-
dinates was given by Galerkin [2]. Approximate solutions of this problem
have been given by several authors.

u=o

u=Const

Figure 4

Taking the coordinates as shown in Fig. 4, the equation of the rim of
the plate is

(3.2) ?_4-L_i = o.
a2 ¥•

At first, limiting ourselves to the first term of the series in (3.1) consider
the equation of the lines of equal deflection in the form
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(3.3) u(x, y) = Ac

without loss of generality, we can, for the sake of simplicity, set Aw = 1.
Thus the equation of the lines of equal deflection reduces to the form

x2 y2

(3.4) U{x,y) = l-~--;

of course, we know from symmetry that (3.4) is an exact equation of the
lines of equal deflection for the clamped elliptic plate under uniform
loading.

It is noted that u = 1 at the centre and « = 0on the boundary of
the plate. Calculating the values of the expressions in (1.7), we obtain

(3.5)

a«

^ = ^ 1 - ^ + 3 -

/ • " •

where

(3.6)

Substituting the above expression into (1.9), we obtain the equation

dBw p 1 . _ d2w C f l — u /x2 v2

(3.7)

1 dw C r i u [x2 «2\T
p 3 du2 J \_a2b2 \cfi b6/J

,
dw

a2b2 \a2 b2/du J \a* b*/

where the contour integrations are taken around the closed contour
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and the double integration extends over ellipse

a;2 y2

— -I- — = 1—u
a' + b*

The values of these integrals are found to be

9 Ts ds = TJ P3 4

§pds = 2nab,

dxdy = nab(\—u).
Q

With the help of (3.8), the differential equation (3.7) reduces finally to
the form

d3w 2 d2w a,

(3.9) Vl

where

(3.10)

du3 1—u du% 1—u
where

11 3«4+2a262+36* 2D

Thus the problem of bending of uniformly loaded elliptic plates reduces
to the solution of the ordinary third order differential equation (3.9) with
the solution

(3.11) w = ^ {1-uY+A log (l^u

where A, B and C are constants of integration. The constants A, B and C
are now to be determined from the conditions at the edges as well as at the
centre of the plate. These conditions are given by

(i) w = 0 for u = 0,
d?w dw

(3.12) (ii) P —- + Q — = 0 for u = 0,
duz du

dw
(iii) Vl—u — = 0 for u = 1;

du

further, clearly, dwjdu is finite for u = 1.
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The condition (iii) is here obtained from the consideration that the
slope of the deflected surface in the ^-direction or in the y-direction must be
zero at the centre. As we see, the boundary condition Mn = 0 may be
satisfied in this particular case only approximately, because the functions
P and Q in this equation are not functions of u alone. For example,

The dependence of P on x around the line of equal deflection u = const.
is shown in the Fig. 5. It is clear that the maximum value of P, as it varies

along the line u = const., is attained at the points A(aVl—u, 0) and
A^—aVl—u, 0) and the minimum value at the points 5(0, bVl—u) and
5x(0, — bVl—u) (Fig. 4). Therefore the mean value of P on the line
u — const, is given by

(3.14) Pss

Similarly, the mean value of Q on the line u = const, is given by

(3-15) Q = D[l+p) ( I + i )

Let us satisfy the condition Mn = 0 on the boundary using the mean values
of P and Q. Consequently, we have

, d2w 1+v dw
(1—«) -; ~ — == 0, for u = 0.v ' du2 2 du

(3.16)

With the help of the conditions (3.12) and (3.16), the equation (3.11) gives
the following expression for the deflection:

(3.17) w=.f±u(K ' 4 \ 1+ft
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The maximum deflection is at the centre of the plate and, by (3.17),

(3.18) wma /24 16 24\ 1+ju/24 16 24\

It is interesting to note that for a = b, the equation (3.17) reduces to

(3.19) w = ^L (a*-x*-y*)

which is the exact expression for the deflection of a uniformly loaded
circular plate with simply supported edge. I t is further interesting to note
that (3.17) exactly satisfies the biharmonic equation of Sophie Germain,
unlike other existing approximate solutions.

In order to estimate the accuracy of this approximate solution, let us
calculate the deflection at the centre of the plate (x = 0, y = 0) for various
values of the ratio a\b and JJ, = 0.3. Assuming a\b > 1, we represent the
deflection at the centre by the formula

qb*
(3-20) («0__o = « |

The numerical values of the constant factor a obtained from (3.18) as well as
those given by Galerkin are shown in the following table:

ajb

by (3.18)

following
Galerkin

1

0.70

0.70

1.1

0.83

0.83

1.2

0.95

0.96

1.3

1.07

1.07

1

1

1

.4

.16

.17

1

1

1

.5

.24

.26

2

1.

1.

51

58

0 0

1.86

2.28

On the basis of the numerical results in this table, it can be concluded that
the expression (3.1) for the lines of equal deflection gives a fairly good
solution even in first approximation. However, when necessary, we can
always increase the accuracy of the solution by increasing the number of
terms in the general expression (3.1). We may therefore, expect that for
other cases (at least in the case of uniform pressure) where the equation of
the lines of equal deflection is not predetermined, the method outlined
above for prescribing the equation of the lines of equal deflection may give
us a fairly good result. As we see, the practical importance of the above
method stems not so much from the fact that it constitutes an experimental
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verification for the determination of the lines of equal deflection, but from
the fact that it furnishes the basis for an intuitive, qualitative discussion of
the lines of equal deflection in cases where its exact determination is cumber-
some.

(b) Uniformly Loaded Parabolic Plate with a Clamped Edge.
As a second example of the above method, let us consider the case of

bending of a parabolic plate which is clamped at the rim and subject to
uniformly distributed vertical load. According to the Author, this technically
important problem has so far not been solved.

Figure 6

Let the contour of the plate be bounded by the parabola (Fig. 6).

x* = - (2a-y)(3.21)

and the line

(3.22) y = 0.

In agreement with the method outlined above, we will select for the equation
of the lines of equal deflection

(3.23) u(x, y) = y |J- (2a-y)-x^

Evidently this expression vanishes along the boundary of the plate. Cal-
culating the values of the expressions in (1.7) we obtain
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t = 4z2y2+xi+2ax2y+a?y2—2a2x2—2a3y+ai,
R = -Dt\,

D
F = - [24x2y3+(a2—ay—x2)2(3a+2y) — 16x2y(a2—ay-x2)+4ax2y2],

ti

G = -1[2(2~fi){a2-ay-x2)3+S(2fi-l)x2y2{a2-ay-x2)-4:(l-fi)x

X{4xy2(a2—ay—x2) + 2x(a2—ay—x2)2+8x3y2+2azy{a2—ay—x2)}
-(l-fi){2y-a){2y{a2-ay-x2)2-4:ax2y2}]

2D(l — u)
+ y^ " [2x{4x*y2-(a2-ay-x2)2}+2xy(a2-ay~x2)(2y-a)}2.

In the present case, the formula (1.9) for the deflection of a thin plate turns
out to be complicated, because the evaluation of the integrals §Rds, j>Fds,
jGds and $$aqdQ appearing in the equation is not simple. As a consequence
the following procedure may be adopted. Using Green's formula, the double
integral $$QqdQ is transformed into a contour integral of the form jTds and
then the line integrals §Rds, • • •, fTds are evaluated approximately by the
mean value theorem

(3.25) & (R, F, G, T)ds = (R, F, G, T)S,

where, as usual, R, F, G, T denote the mean values of R, F, G, T on the
contour u = Const, with the perimeter S. However, in this particular case,
for the sake of simplicity, we shall take R, F, G, T as the arithmetic mean
values of R, F, G, T evaluated at the points of intersection of the lines
u = Const, and x = 0, i.e., at

A

We thus obtain

[0, * ( , - } / . - 5)] and S[0,«(l+yi-!)] (Fig.6,.

(3.26)
4 P ( l Q / 2u\

2 «»/ '
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The differential equation (1.9) finally reduces to
2d3w I 2u\tPw / , 2u\dw

(3.27)

= ~ 2D

Let us now consider the boundary conditions at the edge of the plate.
If the plate is assumed to be clamped, the corresponding boundary condi-
tions are

dw~\
(3.28) «;]„_„ = 0, — = 0 .

«wju=o

From the symmetry of the loading, we conclude that the inclination of the
deflected surface at the centre on the direction of axis Oy must be zero.
The centre is obviously a point on the y-axis which is obtained by considering
the extremum value of the function u(x, y). The value of u(x, y) at the
centre is found to be «3/2. Consequently, we have at the centre

,, 2 M dw~~\
(3.29) y i _ = O f

a3 » M _ | U = O S / 2

where, clearly,
dw
du «=o»/2

is finite. In order to solve the differential equation (3.29), let us substitute

2M I / 2M dw
(3.30) 1 = W 2 ; Vl_ Y.

a3 r a3 du
In terms of the new variables (3.27) takes the form (ft = •§-)

and the conditions given by (3.28) and (3.29) become

(3.32) H.-i = 0, *1_i = °. Y| ,_0

Any conventional method may be used to solve the differential equation
(3.31). Let us solve this equation by the method of Galerkin, assuming the
function Y, in conjunction with the specified boundary conditions, to be
of the form

(3.33) Y = fl(l-w2) (<
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The coefficient a0, in the first approximation

(3.34) Y = aov(l-v*),

is determined by the usual orthogonality condition, from which we find

(3.35) aQ = 0 • 10362 ^ ;

we thus, finally, obtain

(3.36) w = aiij9 = 0-10362 - ^ y

The maximum deflection occurs at the centre and is given by

(3.37) H m a x = 0-0259^-4.

We may, however, improve this result by considering more number of
terms in the equation (3.33).

Let us now examine the distribution of the bending moments Mn and
Mt along the edge of the plate. One can easily see that the maximum
value of

(3.38) • t = ^xiyi+{ai~ay—x2)2

at the edge of the plate occurs at (± V ^ a , \\a) and the minimum value at
(±*> 0) and, therefore, in the light of what has been discussed at the end
of Section 2, one can infer that the strongest points with respect to bending
moments appear to be at the end of the horizontal axis and the weakest at

H«) and M(-V^a,{%a) (Fig. 6).

Clearly, great care must be taken in such situations.

4. Additional remarks

An estimate can be made of the error involved in the use of the fore-
going method. In fact, as has been shown by the Author [3], the error
involved in prescribing the above type of equation of lines of deflection
is found to be only 14 %. It should be noted that the method described in
the present paper can be extended without difficulty to the study of the
stability of elastic plates of arbitrary shape (see [4]).

It is believed that the concepts given here may be developed further
to give a general theory of the equation of lines of equal deflection. The
author hopes to pursue this and other related questions in a later paper.
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