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Extreme probing of particle
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Extreme behaviour of fluid and material motions needs to be understood for
engineering processes and the behaviour of clouds or plumes of pollution. Applications
in the natural environment require scaling of turbulence behaviour and models beyond
current computational or laboratory understanding. New computational studies of
Biferale et al. (J. Fluid Mech., 2014, vol. 757, pp. 550-572) are probing new regimes
of scaling of extreme random events in nature produced by turbulent fluctuations
trending towards applications in environmental prediction.
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1. Introduction

Biferale er al. (2014) examined fundamental inertial-range properties of turbulent
mixing processes of particles expanding on classical work (Richardson 1926a;
Kolmogorov 1941). These processes are important for industrial (Fox 2012),
environmental and even astrophysical distributions of material (Gaensler et al. 2011).
Cloud dynamics and pollution dispersion are practical examples dependent on particle
mixing (Wang et al. 2006; Thomson & Wilson 2013).

Advances in understanding mixing have emerged from Lagrangian theory (Taylor
1921), and from simulations of turbulence (Borgas & Yeung 2004). High sensitivity
to viscous scaling occurs because the computational scales are bandwidth limited
(Sawford 1991; Fung & Vassilicos 1998; Xu et al. 2008). The estimate of Taylor
(1921) is practically important and free from explicit viscous or molecular diffusion
effects on the scales of the atmosphere or ocean. However, to understand more
complex mixing such as the relative dispersion of pairs of particles in geophysical
flows, on the basis of simulated or laboratory-scale flows, it is necessary to examine
systematic corrections of viscous, molecular diffusion and turbulence intermittency
effects. Even initial separation ‘ballistic’ effects can confound scaling estimates
(Bourgoin et al. 2006).

The work of Biferale et al. (2014) focuses on pair separation of heavy particles to
diagnose small-scale processes in turbulence within the limited resolution scales of
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FIGURE 1. An ensemble of tracer particles with St =0 (red) and heavy particles with
St =35 (blue), simultaneously emitted from a source of size ~n. Trajectories are recorded
from the emission time, up to the time =757, after the emission.

computational studies. The work considers the dilute particle concentration limit with
no feedback of particle dynamics on the underlying turbulent flow field. The results
expand upon the classic ‘inertial-range’ pair separation results of Richardson (1926a),
and find corrections to such simple diffusion scaling on the basis of multifractal
intermittency (Borgas 1993; Xu, Ouellette & Bodenschatz 2006). Such extreme-event
behaviours are large deviations from regular behaviour and are important (Sornette
2004). The results of Biferale et al. (2014) clearly show variations of the probability
of separation events at the tail of the distributions, for pairs of particles that separate
much more rapidly than average behaviour. These events are rare and not usually
sampled well.

The better statistical sampling of large comprehensive and highly resolved
simulations such as that of Biferale et al. (2014) compensates for bandwidth limits.
The additional trick exploited by Biferale et al. (2014) is to use heavy particles with
trajectories that are not pure tracers and sample a hybrid Eulerian—Lagrangian world
with better scaling characteristics. Regardless of scaling, the separation behaviour of
heavy particles is intrinsically interesting and useful for application.

2. Overview

The nature of the heavy-particle trajectories is graphically illustrated in figure 1 of
Biferale et al. (2014). In this picture, ensembles of trajectories are shown emanating
from a small source of length scale n= (v?/€)'/4, estimated by Kolmogorov (1941) for
the parameters of kinematic viscosity v and local turbulent energy dissipation rate €.
The trajectories shown in blue for heavy particles form a more coherent cluster than
the red tracer trajectories as the flow moves right to left from the source.

The Stokes number shown is the ratio of the particle response time 7, to the
Lagrangian viscous time scale 7, = (v/€)'/?: St = t,/7,. Here St =0 are tracers and
St =35 for heavy particles.

For fixed scales of the energy containing eddies of the turbulence, say velocity scale
o and length scale L, define a Reynolds number Re =o' L/v, implying that n = Re™>/*L,
1,=Re”'’L/o.
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For geophysical flows we anticipate the limit of large Reynolds number Re >> 1, and
we see that the length scale n reduces to zero at a faster rate than the corresponding
time scale 7, which is the relevant time scale for Lagrangian processes.

The estimates of turbulent scaling, first promoted by Richardson (1926b) and
Kolmogorov (1941), is to predict parameters such as velocity differences separated
by a length scale r, where viscous or molecular parameters are not important and
only ‘inertial’ scales matter: for example

(0 (x4 1) = w1 (0))*) ~ Cro(€r)*r >, 2.1)

where (o) means an averaging operation of a velocity difference (say over the x
direction) and Cy,; =~ 2.13 is a constant (Sreenivasan 1995). Similarly, the analogous
Lagrangian result is

(((t+ 1) —u(0)*) ~ Coet, T> 71, 2.2)

first examined for viscous scaling corrections by Sawford (1991) estimating that
Co~ 6.

Viscous scaling means that the resolved dynamic scales of turbulence are
smaller in the Lagrangian frame than in the Eulerian frame and for a moderate-Re
computational simulation it is difficult to unambiguously observe Lagrangian scaling.
The intermittency corrections to scaling for higher moments, say ((u;(x+r) — u;(x))?)
for ¢ > 2, are also difficult to untangle from viscous scaling effects at moderate
Reynolds number, and difficult to sample sufficiently in geophysical flows for
increasingly rare extreme events, which even for highly non-Gaussian multifractal
behaviour are highly infrequent (Sornette 2004).

The work of Biferale et al. (2014) seeks to untangle this complex world of multiple
scaling by using a lens of heavy particle trajectories, which span the Lagrangian tracer
view to the Eulerian view for increasingly more massive particles: a very massive
particle remains stationary and samples Eulerian velocities in time. In addition,
sophisticated diagnostics are used by Biferale er al. (2014) including: high-order
moments, probability density functions (emphasising the tails) and exit-time statistics
which examine the random times taken for particles of a fixed initial separation to
move apart by fixed amounts. In the latter case, heavy particles initially close together
can have rare extremely long exit times to separate from 7 to inertial range scales.

3. Future

The goal of the science of heavy particle motions, at least for particle loadings that
do not feedback and influence the underlying turbulence, is to help develop models
of heavy particle motions and separations. Studies such as those of Fung & Vassilicos
(1998), Thomson (1990), Thomson & Devenish (2005) and Borgas & Yeung (2004)
show high sensitivity to scaling effects requiring difficult parameterisations. Models
for heavy particles are even less well developed and currently cannot incorporate
intermittency and complex scaling parameterisations. It is worth noting the famous
role of Kolmogorov in the development of stochastic models through the fundamental
Chapman—Kolmogorov equation (Gardiner 2009), which has played a pivotal role in
the development of stochastic models for tracer advection in turbulence. The scaling of
increments and changes, correlations and dependencies, are all important for model
fidelity. Only through ongoing discovery about the scaling behaviour of particle
trajectories will we be able to advance the modelling of these trajectories for routine
geophysical prediction, say for clouds, pollution or clustering behaviour (Falkovich,
Gawedzki & Vergassola 2001; Wang et al. 2006; Thomson & Wilson 2013). The
work of Biferale et al. (2014) is an important contribution to this ongoing task.


https://doi.org/10.1017/jfm.2014.679

https://doi.org/10.1017/jfm.2014.679 Published online by Cambridge University Press

4 M. S. Borgas
References

BIFERALE, L., LANOTTE, A. S., SCATAMACCHIA, R. & ToscHI, F. 2014 Intermittency in the
relative separations of tracers and of heavy particles in turbulent flows. J. Fluid Mech. 757,
550-572.

BORGAS, M. S. 1993 The multifractal Lagrangian nature of turbulence. Phil. Trans. R. Soc. Lond.
A 432, 379-411.

BORGAS, M. S. & YEUNG, P. K. 2004 Relative dispersion in isotropic turbulence. Part 2. A new
stochastic model with Reynolds-number dependence. J. Fluid Mech. 503, 125-160.

BOURGOIN, M., OUELLETTE, N. T., XU, H., BERG, J. & BODENSCHATZ, E. 2006 The role of pair
dispersion in turbulent flow. Science 311, 835-838.

FALKOVICH, G., GAWEDZKI, K. & VERGASSOLA, M. 2001 Particles and fields in fluid turbulence.
Rev. Mod. Phys. 73, 913-975.

Fox, R. O. Large-eddy-simulation tools for multiphase flows. Annu. Rev. Fluid Mech. 44, 47-76.

FuNg, J. C. H. & VAssILICOS, J. C. 1998 Two-particle dispersion in turbulentlike flows. Phys. Rev.
E 57 (2), 1677-1690.

GAENSLER, B. M., HAVERKORN, M., BURKHART, B., NEWTONMCGEE, K. J., EKERS, R. D.,
LAZARIAN, A., MCCLUREGRIFFITHS, N. M., ROBISHAW, T., DICKEY, J. M. & GREEN,
A. J. 2011 Low-Mach-number turbulence in interstellar gas revealed by radio polarization
gradients. Nature 478, 214-217.

GARDINER, C. 2009 Stochastic Methods. A Handbook for the Natural and Social Sciences, 4th edn
Springer Series in Synergetics, vol. 13, p. XVIIL. Springer.

KOLMOGOROV, A. N. 1941 The local structure of isotopic turbulence in an incompressible viscous
fluid. Dokl. Akad. Nauk SSSR 30, 301-305.

RICHARDSON, L. F. 1926a Atmospheric diffusion shown on a distance-neighbour graph. Proc. R.
Soc. Lond. A 110, 709-737.

RICHARDSON, L. F. 19265 The supply of energy from and to atmospheric eddies. Proc. R. Soc.
Lond. A 99, 354-373.

SAWFORD, B. L. 1991 Reynolds number effects in Lagrangian stochastic models of turbulent
dispersion. Phys. Fluids A 3, 1577-1586.

SAWFORD, B. L.2001 Turbulent relative dispersion. Annu. Rev. Fluid Mech. 33, 289-317.

SORNETTE, D. 2004 Critical Phenomena in Natural Sciences, Chaos, Fractals, Self-organization and
Disorder: Concepts and Tools, 2nd edn Springer Series in Synergetics, vol. 528. Springer.

SREENIVASAN, K. R. 1995 On the universality of the Kolmogorov constant. Phys. Fluids A 7 (11),
2778-2784.

TAYLOR, G. 1. 1921 Diffusion by continuous movements. Proc. Lond. Math. Soc. 2 20, 196-211.

THOMSON, D. J. 1990 A stochastic model for the motion of particle pairs in isotropic high-Reynolds-
number turbulence, and its application to the problem of concentration variance. J. Fluid Mech.
210, 113-153.

THOMSON, D. J. & DEVENISH, B. J. 2005 Particle pair separation in kinematic simulations. J. Fluid
Mech. 526, 277-302.

THOMSON, D. J. & WILSON, J. D. 2013 History of Lagrangian stochastic models for turbulent
dispersion. In Lagrangian Modeling of the Atmosphere (ed. J. Lin, D. Brunner, C. Gerbig,
A. Stohl, A. Luhar & P. Webley), pp. 19-36. American Geophysical Union.

WANG, L.-P., FRANKLIN, C. N., AYALA, O. & GRABOWSKI, W. W. 2006 Probability distributions
of angle-of-approach and relative velocity for colliding droplets in a turbulent flow. J. Atmos.
Sci. 63, 881-900.

XU, H., OUELLETTE, N. T. & BODENSCHATZ, E. 2006 Multifractal dimension of Lagrangian
turbulence. Phys. Rev. Lett. 96, 114503.

XU, H., OUELLETTE, N. T., NOBACH, H. & BODENSCHATZ, E. 2008 Experimental measurements of
Lagrangian statistics in intense turbulence. In Advances in Turbulence XI, Springer Proceedings
in Physics, vol. 117, pp. 1-10. Springer.


https://doi.org/10.1017/jfm.2014.679

	Extreme probing of particle motions in turbulence
	Introduction
	Overview
	Future
	References




