A GENERALIZED AVERAGING OPERATOR

D. B. SUMNER

1. Introduction. The averaging operator $\nabla f(z)=\frac{1}{2}[f(z+h)+f(z)]$ has an extensive literature, the most detailed account being that of Nörlund (4). In discussing solutions of the functional relation

$$
\begin{equation*}
\nabla f(z)=\phi(z) \tag{1.1}
\end{equation*}
$$

he defines a "principal solution" (4, p. 41) by means of a summability process, and later, working in terms of complex numbers, he obtains (4, p. 70) a principal solution of (1.1) by means of a contour integral. He distinguishes his principal solution from other solutions, by showing that it is continuous at $h=0$. His work includes a detailed account of the polynomial solutions of

$$
\begin{equation*}
\nabla f(z)=z^{k} \tag{1.2}
\end{equation*}
$$

the Euler polynomials with assigned values at $z=\frac{1}{2}$. Milne-Thomson (3, pp. 519-521) gives an account of generalized Euler numbers arising from the operator ∇^{N}, (N a positive integer) and of the generalized Euler numbers.

In this paper the ideas of Milne-Thomson are taken a step further. The operator ∇^{λ} is defined for all real λ, and is shown to be applicable to a wide class of functions. Polynomials corresponding to the generalized Euler polynomials of Milne-Thomson and a sequence of numbers corresponding to Nörlund's C-numbers (4, p. 27) are defined and some of their more important properties established. The inverse operator $\nabla^{-\lambda}$ is defined, and is shown to invert the operation ∇^{λ} and to give a unique solution in terms of the functions to which ∇^{λ} is applicable.
2. Generalized power of the averaging operator. The averaging (or mean) operator is defined for span h by

$$
\begin{equation*}
\nabla f(z)=\frac{1}{2}[f(z+h)+f(z)] \tag{2.1}
\end{equation*}
$$

and its positive integer powers by

$$
\begin{equation*}
\nabla^{M} f(z)=\nabla \nabla^{M-1} f(z)=\sum_{0}^{M}\binom{M}{p} f(z+h p) / 2^{M} \tag{2.2}
\end{equation*}
$$

To define $\nabla^{\lambda} f(z)$, where λ is related to the positive integer N by

$$
\begin{equation*}
N-1<\lambda \leqslant N \tag{2.3}
\end{equation*}
$$

we use the formal relation

[^0]$$
\nabla f(z)=\frac{1}{2}(1+\exp h D) \cdot f(z)
$$
and write
$$
\nabla^{\lambda}=\frac{(1+\exp h D)^{N+1}}{2^{\lambda}(1+\exp h D)^{\mu}}, \quad \quad \mu=N+1-\lambda
$$

The operation in the numerator can be expressed by means of (2.2); and to obtain a representation of the operation in the denominator, we use the fact that

$$
\frac{1}{(1+\exp t)^{\alpha}}=\frac{1}{2 \pi i} \int_{c-i_{\infty}}^{c+i_{\infty}} \frac{\exp (-t w) d w}{E(\alpha, w)},
$$

where t is real, α is positive, $0<c<\alpha$ and

$$
\begin{equation*}
E(\alpha, w)=\Gamma(\alpha) / \Gamma(w) \Gamma(\alpha-w) \tag{2.4}
\end{equation*}
$$

Using the abbreviation

$$
\int_{c} \text { for } \int_{c-i_{\infty}}^{c+i_{\infty}}
$$

we then have formally

$$
\begin{align*}
\nabla^{\lambda} f(z) & =\frac{1}{2^{\lambda}} \sum_{0}^{N+1}\binom{N+1}{p} e^{p h D} \cdot \int_{c} \frac{\exp (-h D w) d w}{2 \pi i E(\mu, w)} \cdot f(z) \tag{2.5}\\
& =\sum_{0}^{N+1}\binom{N+1}{p} \int_{c} \frac{f(z+p h-h w) d w}{2 \pi i E(\mu, w) 2^{\lambda}}
\end{align*}
$$

on using the shift operation $\exp (k D) \cdot f(z)=f(z+k)$. We take (2.5) as the definition of $\nabla^{\lambda} f(z)$, if λ satisfies (2.3), the span h is positive or negative and the integrals exist.

Although less restrictive assumptions as to the nature of $f(z)$ would be sufficient to ensure the existence of the integrals in (2.5), we shall assume throughout that

$$
\begin{equation*}
f(z) \text { is an entire function of exponential order } \kappa, \kappa h<\pi . \tag{2.6}
\end{equation*}
$$

The following proposition is then an easy consequence of (2.6) and the fact that

$$
|\Gamma(c+i v) \Gamma(\mu-c-i v)| \sim A \exp (-\pi|v|) \cdot|v|^{N-\lambda},(|v| \rightarrow \infty):
$$

if $\phi(z, h)$ is the function defined by (2.5) and $f(z)$ satisfies (2.6), then $\phi(z, h)$ is an entire function of exponential order $\kappa($ in $z)$ and

$$
\begin{equation*}
\lim _{h \rightarrow 0} \phi(z, h)=f(z) . \tag{2.7}
\end{equation*}
$$

Thus $\phi(z, h)$ has the property (2.7) which was noted by Nörlund (4, p. 46) as being characteristic of his principal solution of the functional equation $\nabla f(z)=\phi(z)$. It must be observed, however, that there do exist entire functions
in z, for example, $\cos (\pi z / h)$ which satisfy neither (2.6) nor (2.7), but for which the operation ∇^{λ} is defined when λ is a positive integer but not otherwise.

In the particular case when $\lambda=N$, the definition (2.5) gives for $f(z)$ satisfying (2.6),

$$
\begin{aligned}
\nabla^{N} f(z) & =2^{-N} \sum_{0}^{N}\binom{N}{p} \int_{c} \frac{f[z+h(p-w)]+f[z+h(p+1-w)]}{2 \pi i E(1, w)} d w \\
& =2^{-N} \sum_{0}^{N}\binom{N}{p} \operatorname{Res}\left\{\frac{\pi f[z+h(p-w)]}{\sin \pi w} ; 0\right\} \\
& =2^{-N} \sum_{0}^{N}\binom{N}{p} f(z+p h)
\end{aligned}
$$

which is the value given in (2.2).
We may confine ourselves to cases where $h \geqslant 0$ by reason of the following extension property: if $\phi(z, h)=\nabla^{\wedge} f(z)$, then

$$
\begin{equation*}
\phi(z+h \lambda,-h)=\phi(z, h) . \tag{2.8}
\end{equation*}
$$

For reversing the summation, and making the change of variable $w=\mu-\xi$, we have

$$
\begin{aligned}
\phi(z+h \lambda,-h) & =2^{-\lambda} \sum_{0}^{N+1}\binom{N+1}{q} \int_{\mu-c} \frac{f(z+h q-h \xi) d \xi}{2 \pi i E(\mu, \mu-\xi)} \\
& =2^{-\lambda} \sum_{0}^{N+1}\binom{N+1}{q} \int_{c} \frac{f(z+h q-h \xi) d \xi}{2 \pi i E(\mu, \xi)}
\end{aligned}
$$

by Cauchy's theorem, since $0<c<\mu, 0<\mu-c<\mu$, and $E(\mu, \mu-\xi)=$ $E(\mu, \xi)$.
3. The exponential property of ∇^{λ}. We prove that

$$
\begin{equation*}
\nabla^{\alpha} \nabla^{\beta} f(z)=\nabla^{\alpha+\beta} f(z) \tag{3.1}
\end{equation*}
$$

when α, β are positive. On account of (2.2) it is sufficient to give details for the cases

$$
\begin{align*}
& 0<\alpha+\beta \leqslant 1 \tag{3.2}\\
& 1<\alpha+\beta<2 \tag{3.3}
\end{align*}
$$

For the proof in the case (3.2) write $\alpha+\beta=\gamma$. Then

$$
\begin{equation*}
\nabla^{\gamma} f(z)=\sum_{n=0}^{2}\binom{2}{n} \int_{c} \frac{f(z+h n-h w) d w}{2^{\bar{\gamma}} 2 \pi i E(2-\gamma, w)} \quad(0<c<2-\gamma) \tag{3.4}
\end{equation*}
$$

and for $0<a<2-\alpha, 0<b<2-\beta$,
$\nabla^{\alpha} \nabla^{\beta} f(z)=\sum_{p, q=0}^{2}\binom{2}{p}\binom{2}{q} \int_{a} \overline{2^{\bar{\gamma}}} \frac{d s}{2 \pi i E(2-\alpha, s)} \int_{b} \frac{f[z+h(p+q-s-w)] d w}{2 \pi i E(2-\beta, w)}$

$$
\begin{equation*}
=\sum_{n=0}^{2}\binom{2}{n} \int_{a} \frac{d s}{2^{\bar{\gamma}}} \frac{d s i E(2-\alpha, s)}{} \int_{b} \frac{F(s+w) d w}{2 \pi i E(2-\beta, w)} \tag{3.5}
\end{equation*}
$$

where $F(\xi)=f[z+h(n-\xi)]+2 f[z+h(n+1-\xi)]+f[z+h(n+2-\xi)]$. By Cauchy's theorem we may take $0<a<b$; then

$$
\int_{b} \frac{F(s+w) d w}{2 \pi i E(2-\beta, w)}=\int_{b} \frac{F(\xi) d \xi}{2 \pi i E(2-\beta, \xi-s)} .
$$

Hypothesis (2.6) guarantees the absolute convergence of the integrals in (3.5), so that

$$
\begin{aligned}
\nabla^{\alpha} \nabla^{\beta} f(z)= & \sum_{0}^{2}\binom{2}{n} \int_{b} \frac{F(\xi) d \xi}{2 \pi i} \\
& \int_{a} \frac{\Gamma(s) \Gamma(2-\beta-\xi+s) \Gamma(2-\alpha-s) \Gamma(\xi-s) d s}{2^{\bar{\gamma}} 2 \pi i \Gamma(2-\alpha) \Gamma(2-\beta)} \\
= & \sum_{0}^{2}\binom{2}{n} \int_{b} \frac{\Gamma(\xi) \Gamma(4-\gamma-\xi) F(\xi) d \xi}{2^{\bar{\gamma}}} \frac{\gamma \pi i}{2 \pi(4-\gamma)},
\end{aligned}
$$

by Barnes's Lemma (1, p. 155). Abbreviating this expression as

$$
2^{-\gamma} \sum_{0}^{2}\binom{2}{n}\left[I_{1}+2 I_{2}+I_{3}\right]
$$

we let the lines of integration in I_{2} and I_{3} be changed to $b+1$ and $b+2$ respectively; and since the only positive poles of the integrand are at $\xi=4-\gamma, 5-\gamma, \ldots$ and since $4-\gamma>3$, no poles lie in the strip $b<R(\xi)<$ $b+2$. Cauchy's theorem may then be applied to give

$$
\begin{aligned}
& I_{1}+2 I_{2}+I_{3}=\int_{b} \\
& \frac{[\Gamma(\xi) \Gamma(4-\gamma-\xi)+2 \Gamma(\xi+1) \Gamma(3-\gamma-\xi)+\Gamma(\xi+2) \Gamma(2-\gamma-\xi)] f[z+h(n-\xi)] d \xi}{2 \pi i \Gamma(4-\gamma)} \\
& \quad=\int_{b} \frac{\Gamma(\xi) \Gamma(2-\gamma-\xi) f[z+h(n-\xi)] d \xi}{2 \pi i \Gamma(2-\gamma)} .
\end{aligned}
$$

Thus we have from (3.4)

$$
\nabla^{\alpha} \nabla^{\beta} f(z)=\nabla^{\alpha+\beta} f(z)
$$

In the case (3.3)

$$
\begin{aligned}
\nabla^{\gamma} f(z)= & \sum_{0}^{3}\binom{3}{n} \int_{c} \frac{f[z+h(n-w)] d w}{2^{\tau}} 2 \pi i E(3-\gamma, w) \\
\nabla^{\alpha} \nabla^{\beta} f(z)= & \sum_{p, q=0}^{2}\binom{2}{p}\binom{2}{q} \int_{a} \frac{d s}{E(2-\alpha, s)} \int_{b} \frac{f[z+h(p+q-s-w)] d w}{2^{\bar{\gamma}} \frac{1}{(2 \pi i)^{2}} E(2-\beta, w)} \\
= & \sum_{0}^{3}\binom{3}{n} \int_{a} \frac{d s}{2 \pi i E(2-\alpha, s)} \\
& \int_{b} \frac{\{f[z+h(n-s-w)]+f[z+h(n+1-s-w)]\} d w}{2 \pi i E(2-\beta, w)},
\end{aligned}
$$

and the previous argument may then be used to establish the result.
4. The numbers g_{k}^{λ} and the polynomials $g_{k}^{\lambda}(z)$. We digress here to define certain fundamental numbers and polynomials associated with ∇^{λ}. Let

$$
\begin{array}{rlrl}
\frac{2^{\lambda}}{(1+\exp t)^{\lambda}} & =\sum_{0}^{\infty} \frac{g_{k}^{\lambda} t^{k}}{k!} & (|t|<\pi) \\
g_{k}^{\lambda}(z) & =\sum_{0}^{k}\binom{k}{m} z^{k-m} g_{m}^{\lambda} \tag{4.2}
\end{array}
$$

On writing $G(t)=2^{\lambda}(1+\exp t)^{-\lambda}$, we obtain

$$
\begin{gathered}
{[1+\exp (-t)] G^{\prime}(t)+\lambda G(t)=0} \\
\sum_{k=0}^{n}\binom{n}{k}[1+\exp (-t)]^{(k)} G^{(n+1-k)}(t)+\lambda G^{(n)}(t)=0
\end{gathered}
$$

from which, on setting $t=0$, and using the definition $g_{k}^{\lambda}=G^{(k)}(0)$, we have the recurrence relations

$$
\sum_{1}^{n}\binom{n}{k}(-)^{k} g_{n+1-k}^{\lambda}+2 g_{n+1}^{\lambda}+\lambda g_{n}^{\lambda}=0
$$

or

$$
\begin{gather*}
(-)^{n} \sum_{0}^{n-1}\binom{n}{p}(-)^{p} g_{p+1}^{\lambda}+2 g_{n+1}^{\lambda}+\lambda g_{n}^{\lambda}=0, \quad n \geqslant 0 \tag{4.3}\\
g_{0}^{\lambda}=1 .
\end{gather*}
$$

It is an easy calculation to establish for the polynomials $g_{k}{ }^{\lambda}(z)$ the generating relation

$$
\begin{equation*}
\frac{2^{\lambda} \exp (z t)}{(1+\exp t)^{\lambda}}=\sum_{0}^{\infty} \frac{t^{k} g_{k}^{\lambda}(z)}{k!} . \tag{4.4}
\end{equation*}
$$

The numbers g_{k}^{λ} have the following explicit value in terms of the Stirling numbers:

$$
\begin{equation*}
g_{k}^{\lambda}=(-)^{k} \sum_{p=1}^{k} \mathscr{S}_{k}^{p} \Gamma(\lambda+p) / \Gamma(\lambda) 2^{p} \tag{4.5}
\end{equation*}
$$

For we have

$$
\begin{aligned}
g_{k}^{\lambda} & =\lim _{t \rightarrow 0} G^{(k)}(t)=\lim _{t \rightarrow 0} \frac{(-)^{k} 2^{\lambda}}{2 \pi i} \int_{c} \frac{w^{k} \exp (-t w) d w}{E(\lambda, w)} \\
& =\lim _{t \rightarrow 0}(-)^{k} 2^{\lambda} \sum_{1}^{k} \frac{\mathscr{S}_{k}^{p} \Gamma(\lambda+p)}{\Gamma(\lambda) 2 \pi i} \int_{c} \frac{\exp (-t w) d w}{E(\lambda+p, \lambda-w)}
\end{aligned}
$$

where

$$
\mathscr{S}_{k}^{p}=\lim _{x \rightarrow 0} \frac{\Delta^{p} x^{k}}{p!}
$$

are the Stirling numbers of the second kind (2, p. 134), and use is made of the identity

$$
w^{k}=\sum_{p=1}^{k} \mathscr{S}_{k}^{p} \Gamma(w+p) / \Gamma(w) .
$$

Thus, using the notation $(\lambda)_{p}=\Gamma(\lambda+p) / \Gamma(\lambda)$,

$$
g_{k}^{\lambda}=\lim _{t \rightarrow 0}(-)^{k} 2^{\lambda} \sum_{p=1}^{k} \frac{\mathscr{S}_{k}^{p}(\lambda)_{p}}{\left(1+e^{t}\right)^{\lambda+p}}=(-)^{k} 2^{-p} \sum_{p=1}^{k} \mathscr{S}_{k}^{p}(\lambda)_{p} .
$$

We prove next that

$$
\begin{equation*}
\nabla^{\lambda} h^{k} g_{k}^{\lambda}(z / h)=z^{k} \tag{4.6}
\end{equation*}
$$

Writing $\xi=z / h$, we have from (4.4),

$$
\frac{z^{\lambda} e^{t(\xi+n-w)}}{\left(1+e^{t}\right)^{\lambda-1}}=\sum_{0}^{\infty} \frac{t^{k}}{k!}\left[g_{k}^{\lambda}(\xi+n-w)+g_{k+1}^{\lambda}(\xi+n+1-w)\right] .
$$

Multiplying throughout by

$$
\binom{N}{n} / 2 \pi i 2^{\lambda} E(N+1-\lambda, w)
$$

summing from $n=0$ to N, and integrating with respect to w along the line $R(w)=c$ makes the right-hand side equal to

$$
\sum_{0}^{\infty} \frac{t^{k}}{k!} \nabla^{\lambda} g_{k}^{\lambda}(\xi)
$$

and the left-hand side equal to

$$
\begin{gathered}
\frac{e^{t \xi}}{\left(1+e^{t}\right)^{\lambda-1}} \sum_{n=0}^{N}\binom{N}{n} e^{n t} \int_{c} \frac{\exp (-t w) d w}{2 \pi i E(N+1-\lambda, w)} \\
=\frac{e^{t \xi}\left(1+e^{t}\right)^{N}}{\left(1+e^{t}\right)^{\lambda-1}\left(1+e^{t}\right)^{N+1-\lambda}}=e^{t \xi}
\end{gathered}
$$

Thus

$$
e^{t \xi}=\sum_{0}^{\infty} \frac{t^{k}}{k!} \nabla^{\lambda} g_{k}^{\lambda}(\xi),
$$

and the result stated follows by comparing coefficients.
We note here that the function $h^{k} g_{k}^{\lambda}(z / h)$ has the property (2.7).
5. The inverse operator. A definition for negative powers of ∇ is obtained from the observation that formally

$$
\begin{array}{rlrl}
\nabla^{-\lambda} \phi(z) & =\frac{2^{\lambda}}{(1+\exp h D)^{\lambda}} \phi(z)=\frac{2^{\lambda}}{2 \pi i} \int_{c} \frac{\exp (-h D w) d w}{E(\lambda, w)} \cdot \phi(z) \tag{5.1}\\
& =\frac{2^{\lambda}}{2 \pi i} \int_{c} \frac{\phi(z-h w) d w}{E(\lambda, w)}, & 0<c<\lambda .
\end{array}
$$

We take (5.1) as the definition of $\nabla^{-\lambda} \phi(z)$, and as before assume that $\phi(z)$ is of exponential order $\kappa, \kappa h<\pi$, as a sufficient condition for assuring the existence of the integral in (5.1). This definition is valid for any real h, but
we are justified in confining ourselves to the case $h \geqslant 0$ by the following extension property

$$
\begin{equation*}
\text { if } f(z)=\nabla^{-\lambda} \phi(z), \text { then } f(z-h \lambda,-h)=f(z, h) \tag{5.2}
\end{equation*}
$$

For on setting $w=\lambda-\xi$, and observing that

$$
0<\mathscr{R}(\xi)=\lambda-c<\lambda,
$$

we may apply Cauchy's theorem to see that

$$
\begin{aligned}
2^{-\lambda} f(z-h \lambda,-h) & =\int_{c} \frac{\phi(z-\lambda h+h w) d w}{2 \pi i E(\lambda, w)} \quad(0<c<\lambda) \\
& =\int_{\lambda-c} \frac{\phi(z-h \xi) d \xi}{2 \pi i E(\lambda, \lambda-\xi)} \\
& =\int_{c} \frac{\phi(z-h \xi) d \xi}{2 \pi i E(\lambda, \xi)}=2^{-\lambda} f(z, h)
\end{aligned}
$$

The definition (5.1) is easily applied in special cases. Since

$$
\begin{align*}
\nabla^{-\lambda} \phi(z) & =\frac{2^{\lambda}}{2 \pi i} \int_{c} \frac{d w}{E(\lambda, w)} \sum_{m=0}^{\infty} \frac{(-h w)^{m}}{m!} \phi^{(m)}(z) \tag{5.3}\\
& =\phi(z)+\frac{2^{\lambda}}{2 \pi i} \int_{c} \frac{d w}{E(\lambda, w)} \sum_{m=1}^{\infty} \frac{(-h)^{m}}{m!} \phi^{(m)}(z) \sum_{p=1}^{m} \mathscr{S}_{m}^{p} \frac{\Gamma(w+p)}{\Gamma(w)} \\
& =\phi(z)+2^{\lambda} \sum_{m=1}^{\infty} \frac{(-h)^{m}}{m!} \phi^{(m)}(z) \sum_{p=1}^{m} \mathscr{S}_{p}^{p} \frac{\Gamma(p+\lambda)}{\Gamma(\lambda)} \\
& =\phi(z)+\sum_{m=1}^{\infty} \frac{(-h)^{m}}{m!} \phi^{(m)}(z) \sum_{p=1}^{m} \frac{\Gamma(w+p) \Gamma(\lambda-w) d w}{2 \pi i \Gamma(p+\lambda)} \mathscr{S}_{m} \frac{\Gamma(p+\lambda)}{\Gamma(\lambda) 2^{p}} \\
& =\phi(z)+\sum_{m=1}^{\infty} \frac{h^{m}}{m!} \phi^{(m)}(z) g_{m}^{\lambda}=\sum_{m=0}^{\infty} \frac{h^{m} \phi^{(m)}(z)}{m!} g_{m}^{\lambda},
\end{align*}
$$

by (4.5) when the series converge. Thus when $\phi(z)=z^{k}$,

$$
\begin{equation*}
\nabla^{-\lambda} \phi(z)=z^{k}+\sum_{1}^{k}\binom{k}{m} h^{m} z^{k-m} g_{m}^{\lambda} \cdot=\sum_{0}^{k}\binom{k}{m} h^{m} z^{k-m} g_{m}^{\lambda} . \tag{5.4}
\end{equation*}
$$

Other simple cases would be

$$
\begin{gather*}
\nabla^{-\lambda} e^{z}=2^{\lambda} e^{z} /\left(1+e^{h}\right)^{\lambda} \tag{5.5}\\
\nabla^{-\lambda} \sin z=\sin \left(z-\frac{h}{2}\right) /\left(\cos \frac{h}{2}\right)^{\lambda} \tag{5.6}
\end{gather*}
$$

That the operation (5.1) does indeed invert $\nabla^{\lambda} f(z)$ is shown in the theorem:
Theorem. If $\phi(z)=O(\exp \kappa|z|),(|z| \rightarrow \infty), \kappa h<\pi$, and $F(z)$ is defined by (5.1), then $F(z)$ is of exponential order к, and

$$
\begin{equation*}
\nabla^{\wedge} F(z)=\phi(z) . \tag{5.7}
\end{equation*}
$$

That $F(z)=O(\exp \kappa|z|)$ may be proved in a manner similar to that by which (2.7) was established. To prove (5.7), let $0<a<N+1-\lambda, 0<b<\lambda$, and consider

$$
\begin{aligned}
\nabla^{\lambda} F(z) & =2^{-\lambda} \sum_{p=0}^{N+1}\binom{N+1}{p} \int_{a} \frac{F(z+p h-h s) d s}{2 \pi i E(N+1-\lambda, s)} \\
& =\sum_{0}^{N+1}\binom{N+1}{p} \int_{a} \frac{d s}{2 \pi i E(N+1-\lambda, s)} \\
& =\sum_{0}^{N+1}\binom{N+1}{p} \int_{a} \frac{\phi[z+p h-h(s+w)] d w}{2 \pi i E(\lambda, w)} \\
2 \pi i E(N+1-\lambda, s) & \int_{a+b} \frac{\phi(z+p h-h \xi) d \xi}{2 \pi i E(\lambda, \xi-s)}
\end{aligned}
$$

Since $a+b<a+\lambda$, and the poles of the inner integrand lie on the lines

$$
\mathscr{R}(\xi)=a, a-1, \ldots, \mathscr{R}(\xi)=a+\lambda, a+\lambda+1, \ldots
$$

Cauchy's theorem may be applied to give

$$
\begin{aligned}
& \nabla^{\lambda} F(z)= \sum_{0}^{N+1}\binom{N+1}{p} \int_{a} \frac{d s}{2 \pi i E(N+1-\lambda, s)} \\
& \quad \int_{0} \frac{\phi(z+p h-h \xi) d \xi}{2 \pi i E(\lambda, \xi-s)}
\end{aligned}
$$

The exponential order of $\phi(z)$ and the order properties on vertical lines of the Γ-function ($5, \mathrm{p} .151$), are sufficient to establish the absolute convergence of this iterated integral, and Fubini's theorem may be applied to give

$$
\begin{aligned}
& \nabla^{\lambda} F(z)= \sum_{0}^{N+1}\binom{N+1}{p} \\
& \int_{b} \frac{\phi(z+p h-h \xi) d \xi}{2 \pi i} \\
&= \sum_{0}^{N+1}\binom{N+1}{p} \\
& \int_{b} \frac{\Gamma(s) \Gamma(\lambda-\xi+s) \Gamma(N+1-\lambda-s) \Gamma(\xi-s) d s}{2 \pi i \Gamma(\lambda) \Gamma(N+1-\lambda)} \\
& \int_{L_{a}} \frac{\Gamma(s) \Gamma(\lambda-\xi-\xi+s) \Gamma(N+1-\lambda-s) \Gamma(\xi-s) d s}{2 \pi i}
\end{aligned}
$$

by Cauchy's theorem, where the contour L_{a} is obtained by deforming $R(s)=a$ in such a way that the poles of $\Gamma(N+1-\lambda-s) \Gamma(\xi-s)$ lie to the right of L_{a}, while the poles of $\Gamma(s) \Gamma(\lambda-\xi+s)$ lie to the left. Then by Barnes's Lemma (1, p. 155),

$$
\nabla^{\lambda} F(z)=\sum_{0}^{N+1}\binom{N+1}{p} \int_{0} \frac{\phi[z-h(\xi-p)] d \xi}{2 \pi i E(N+1, \xi)} \equiv A+B .
$$

To evaluate

$$
A=\sum_{0}^{N}\binom{N+1}{p} \int_{b} \frac{\phi[z-h(\xi-p)] d \xi}{2 \pi i E(N+1, \xi)},
$$

Cauchy's theorem may be applied, since $0 \leqslant p \leqslant N$, to give

$$
\begin{aligned}
A & =\sum_{0}^{N}\binom{N+1}{p} \int_{b+p} \frac{\phi[z-h(\xi-p)] d \xi}{2 \pi i E(N+1, \xi)} \\
& =\sum_{0}^{N}\binom{N+1}{p} \int_{b} \frac{\phi(z-h \xi) d \xi}{2 \pi i E(N+1, p+\xi)} \\
& =\int_{b} \frac{\phi(z-h \xi)}{2 \pi i} \sum_{0}^{N}\binom{N+1}{p} \frac{\Gamma(p+\xi) \Gamma(N+1-p-\xi)}{\Gamma(N+1)} d \xi \\
& =\int_{b} \frac{\phi(z-h \xi)}{2 \pi i E(N+1, \xi)} \sum_{0}^{N} \frac{(-N-1)_{p}(\xi)_{p}}{p!(\xi-N)_{p}} d \xi
\end{aligned}
$$

where

$$
\begin{aligned}
\sum_{0}^{N} \frac{(-N-1)_{p}(\xi)_{p}}{p!(\xi-N)_{p}} & ={ }^{2} F_{1}\left[\begin{array}{c}
-N-1, \xi \\
\xi-N
\end{array} ; 1\right]-\frac{(-)^{N+1}(\xi)_{N+1}}{(\xi-N)_{N+1}} \\
& =\frac{(-N)_{N+1}}{(\xi-N)_{N+1}}-\frac{\Gamma(N+1+\xi) \Gamma(-\xi)}{\Gamma(\xi) \Gamma(N+1-\xi)} \\
& =-\frac{\Gamma(N+1+\xi)(-\xi)}{\Gamma(\xi) \Gamma(N+1-\xi)} .
\end{aligned}
$$

Thus $A+B$
$=\int_{0} \frac{\Gamma(\xi) \Gamma(N+1-\xi) \phi[z-h(\xi-N-1)]-\Gamma(N+1+\xi) \Gamma(-\xi) \Gamma(z-h \xi)}{2 \pi i \Gamma(N+1)} d \xi$
$=\left\{\int_{b-N-1}-\int_{b}\right\} \frac{\Gamma(N+1+w) \Gamma(-w) \phi(z-h w) d w}{2 \pi i \Gamma(N+1)}$
$=-\operatorname{Res}\left\{\frac{\Gamma(N+1+w) \Gamma(-w) \phi(z-h w)}{\Gamma(N+1)} ; 0\right\}=\phi(z)$,
which completes the proof.
6. Remarks. It is well known that the functional equation

$$
\begin{equation*}
\nabla^{N} f(z)=\phi(z), \quad(N=1,2, \ldots) \tag{6.1}
\end{equation*}
$$

has solutions other than that given by (5.1). For example, if $p(z)$ has the property

$$
\begin{equation*}
p(z+h)+p(z)=0 \tag{6.2}
\end{equation*}
$$

it is a solution of the homogeneous equation

$$
\nabla^{N} f(z)=0
$$

and if it is added to the solution of (6.1) given by (5.1), the resulting function is still a solution of (6.1). It does not, however, have the property (2.7), since for example $p(z)$ could be $\sin (\pi z / h)$ or $\cos (\pi z / h)$. Moreover it need not satisfy requirement (2.6), since

$$
\cos (\pi z / h)=O[\exp (\pi|y| / h)], \quad(|y| \rightarrow \infty)
$$

and ∇^{λ} need not then be defined except when $\lambda=1,2, \ldots$ These facts suggest the possible existence of a set of eigenvalues $\lambda=1,2, \ldots$, with a family of eigenfunctions corresponding to each eigenvalue for the operator ∇^{λ}.

References

1. E. W. Barnes, A new development of the theory of the hypergeometric functions, Proc. London Math. Soc. (2), 6 (1908), 141-177.
2. C. Jordan, Calculus of Finite Differences (New York, 1947).
3. L. Milne-Thomson, Two classes of generalized polynomials, Proc. London Math. Soc. (2), 35 (1933), 514-522.
4. N. E. Nörlund, Vorlesungen über Differenzenrechnung (Berlin, 1924).
5. E. C. Tirchmarsh, The Theory of Functions (2nd. ed., Oxford 1939).

Hamilton College, McMaster University

[^0]: Received November 7, 1955.

