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B-Stable Ideals in the Nilradical of a Borel
Subalgebra

Eric N. Sommers

Abstract. We count the number of strictly positive B-stable ideals in the nilradical of a Borel subalgebra

and prove that the minimal roots of any B-stable ideal are conjugate by an element of the Weyl group

to a subset of the simple roots. We also count the number of ideals whose minimal roots are conjugate

to a fixed subset of simple roots.

1 Introduction

Let G be a connected simple algebraic group over the complex numbers and B a Borel

subgroup of G. Let g be the Lie algebra of G and b the Lie algebra of B. The nilradical

of b is denoted n.

The subspaces of n which are stable under the adjoint action of B are called

B-stable ideals of n (henceforth, often called ideals). The study of these ideals has

attracted much recent attention.

The purpose of this note is to extend the recent uniform proof of Cellini–Papi

on the number of ideals to the number of strictly positive ideals (these are the ones

which intersect the simple root spaces trivially). At the same time, we obtain a result

on the minimal roots in an ideal: namely, a set of mutually incomparable positive

roots is conjugate by an element of the Weyl group to a subset of the simple roots.

We plan to use this result in a later paper to study Kazhdan–Lusztig cells. Finally, we

count the number of ideals whose minimal roots are conjugate to a fixed set of simple

roots.

2 Statement of Results

Fix a maximal torus T in B and let (X, Φ,Y, Φ∨) be the root datum determined by

G and T, and let W be the Weyl group. Let Π ⊂ Φ
+ denote the simple roots and

positive roots determined by B. As usual, 〈 , 〉 denotes the pairing of X and Y . Let Q∨

denote the lattice in Y generated by Φ
∨ (the coroot lattice). We denote the standard

partial order on Φ by ≺; so α ≺ β for α, β ∈ Φ if and only if β − α is a sum of

positive roots.

We define an ideal (also called an upper order ideal) I of Φ
+ to be a collection of

roots such that if α ∈ I, β ∈ Φ
+, and α + β ∈ Φ

+, then α + β ∈ I. In other words, if

α ∈ I and γ ∈ Φ
+ with α ≺ γ, then γ ∈ I.
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B-Stable Ideals 461

It is easy to see that B-stable ideals in the nilradical n of b are naturally in bijection

with the ideals of Φ
+. Namely, if I is a B-stable ideal of n, it is stable under the action

of T, hence I is a sum of roots spaces. Denote by I the set of roots whose root space

is contained in I. Then I is an ideal of Φ
+ and this map is a bijection.

Given an ideal I in Φ
+, we define the minimal roots Imin of I as follows: α ∈ I

belongs to Imin if and only if β ∈ Φ
+, β ≺ α implies β /∈ I. Clearly I determines

and is determined by its set of minimal roots Imin. Note that the elements of Imin are

mutually incomparable elements of Φ
+ and that every set of mutually incomparable

elements is an Imin for a unique I (namely, I is the set of all elements bigger or equal

to the elements of Imin).

Our two main results are the following:

Theorem Let I be an ideal of Φ
+. Then there exists w ∈ W such that w(Imin) ⊂ Π.

In other words, any set of mutually incomparable elements of Φ
+ is conjugate by

an element of W to a subset of Π.

We say an ideal I of Φ
+ is strictly positive if I ∩ Π is empty.

Theorem The number of strictly positive ideals is given by

1

|W |

n
∏

i=1

(h − 1 + mi)

where m1, . . . , mn are the exponents of W and h is the Coxeter number.

Cellini–Papi gave a uniform proof of the corresponding result for all ideals (where

h − 1 in the formula gets replaced by h + 1) [3, 4]. Earlier authors had counted the

ideals, but had not produced this closed formula (see [13]). We will review the work

of [3, 4] and also that of [12], since it will be needed for the theorem on minimal

roots.

The formula for the number of strictly positive ideals shows up in the work of

Fomin and Zelevinsky [7], where it counts the number of postive clusters. That work

was an inspiration for the present one.

Finally, we note that Athanasiadis has obtained our second theorem (by a different

method) [1], as has Panyushev, who has also obtained some of our results on minimal

roots [11].

3 Roots Lemmas

We first prove a few lemmas about roots.

Lemma 3.1 Let γ ∈ Φ and suppose γ =
∑k

i=1
αi for αi ∈ Φ. For 1 ≤ j ≤ k, either

γ − α j ∈ Φ ∪ {0} or α j + αl ∈ Φ ∪ {0} for some l with 1 ≤ l ≤ k, l 6= j. If in the

latter case l is unique and α j 6= −αl, then αl is a long root and α j is short (and the root

system is not simply-laced).

Proof If 〈γ, α∨

j 〉 > 0, then applying the reflection sα j
to γ ensures that γ − α j ∈ Φ

(since strings of roots are unbroken), unless γ = α j in which case γ − α j = 0.
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Therefore γ − α j /∈ Φ ∪ {0} implies 〈γ, α∨

j 〉 ≤ 0. This implies that 〈αl, α
∨

j 〉 < 0

for some l 6= j since 〈α j , α
∨

j 〉 = 2. And this in turn forces αl + α j ∈ Φ ∪ {0} as in

the first sentence of the proof with α j replaced by −α j . Finally if αl is short or α j is

long and α j 6= −αl, then 〈αl, α
∨

j 〉 = −1; hence there exist m 6= l with 〈αm, α∨

j 〉 < 0,

implying that also αm + α j ∈ Φ ∪ {0}.

Lemma 3.2 Let α1 ∈ Φ ∪ {0}. Suppose that αi ∈ Φ
+ for 2 ≤ i ≤ k and γ =

∑k
i=1

αi ∈ Φ ∪ {0}. Then there exists a re-ordering of the αi ’s with i ≥ 2 so that
∑ j

i=1
αi ∈ Φ ∪ {0} for all j ∈ {1, . . . , k}.

Proof We proceed by induction on k, the case k = 2 being trivial. Assume k ≥ 3.

If γ − αk ∈ Φ ∪ {0}, we are done by induction applied to γ − αk, which is a sum of

k − 1 roots. If not, then αk + αl ∈ Φ ∪ {0} for some l by Lemma 3.1. If l = 1, we

finish by applying induction to the sum of the k − 1 roots (α1 + αk) +
∑

i 6=1,k αi = γ
and then breaking apart the first two roots. If l > 1, then αk + αl ∈ Φ

+ and we apply

induction to the sum of the k−1 roots α1 +(αk +αl)+
∑

i 6=1,k,l αi = γ. At some point

in the re-ordering of the latter k − 2 roots, we find that β, β + (αk + αl) ∈ Φ ∪ {0}
where β is a sum of αi ’s. We apply the previous lemma with γ = β + αk + αl. Now

αk 6= −αl since αk and αl are positive roots. Thus if neither β + αk nor β + αl is in

Φ ∪ {0}, the previous lemma would imply that αk is both long and short (in a root

system with distinct lengths), a contradiction. Therefore either β + αk or β + αl is in

Φ ∪ {0}, completing the proof.

To each I and each α ∈ Φ
+, we now attach a nonnegative integer (two integers

if I is strictly positive). One can use the previous lemma to show that the numbers in

the first part of the definition below coincide with the numbers attached to each root

and each ideal in [3].

Definition 3.3 Let I be an ideal and α ∈ Φ
+.

(1) Let αI,+ be defined as follows

αI,+ := max{k | α =

k
∑

i=1

γi with γi ∈ I}.

(2) If I is strictly positive, let αI,− be defined as follows

αI,− := min{k | α =

k+1
∑

i=1

γi with γi ∈ Φ
+ − I}.

The fact that I is strictly positive ensures that αI,− is defined since Π ⊂ Φ
+−I.
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4 Affine Weyl Group

Let Wa be the affine Weyl group of G. Then Wa has two descriptions. First, it is

isomorphic to W ⋉ Q∨ and it acts naturally on the vector space V = Q∨ ⊗R, with W

acting in the usual way and Q∨ acting by translations. If λ ∈ Q∨, we write τλ for the

corresponding element of Wa. Second, Wa is a Coxeter group. Let S = {s0, s1, . . . , sn}
be the simple reflections of Wa, where s0 is the affine reflection sθτ−θ∨ and si for i > 0

is the reflection via the simple root αi ∈ Π. Here, θ is the highest root of Φ
+. Wa

comes equipped with a length function l(−) and the Bruhat order.

The affine roots of Wa are denoted α + mδ where α ∈ Φ, m is an integer, and δ is,

for our purposes, just a place-keeper for m. The positive affine roots are those α+ mδ
with either α ∈ Φ

+ and m > 0 or −α ∈ Φ
+ and m ≥ 0. If α̃ is an affine root, we

write α̃ ≻ 0 if α̃ is positive and α̃ ≺ 0 otherwise. The simple affine roots are those

−α with α ∈ Π together with θ + δ. If w ∈ Wa is written w f τλ, then the action of w

on the affine roots is given by

w(α + mδ) = w f (α) + (m + 〈α, λ〉)δ.

This action is consistent with the action of Wa on V as follows. Consider the hyper-

planes

Hα,m = {v ∈ V | 〈α, v〉 = m}.

Then w(Hα,m) = Hβ,k whenever w(α + mδ) = β + kδ.

Let

A = {v ∈ V | α(v) > 0 for α ∈ Π and θ(v) < 1}.

Given w ∈ Wa, let N(w) denote the positive affine roots α̃ = α + mδ such that

w−1(α̃) ≺ 0. This is equivalent to the following: α + mδ ∈ N(w) if and only if

Hα,m separates A from w(A). We define the support of w, denoted supp(w), to be

those roots α ∈ Φ such that α + mδ ∈ N(w) for some m. We say w is dominant

if supp(w) ⊂ Φ
+. This is equivalent to w(A) belonging to the dominant chamber

C := {v ∈ V | α(v) > 0 for α ∈ Π}.

For a point v ∈ V which is not on any affine hyperplane Hβ,m, define k(α, v) ∈ Z

for α ∈ Φ
+ so that k(α, v) < 〈α, v〉 < k(α, v) + 1. For w ∈ Wa define k(α, w) =

k(α, v) for any point v in w(A). The following result is important and goes back to

Shi [12] (see also the references in [3] to their earlier work). Shi’s formula looks a bit

more complicated since he uses coroots instead of roots.

Proposition 4.1 ([12]) Let kα be a collection of integers for each α ∈ Φ
+. Then there

exists w ∈ Wa with k(α, w) = kα for all α ∈ Φ
+ if and only if whenever α, β, α + β ∈

Φ
+ the inequalities

kα + kβ ≤ kα+β ≤ kα + kβ + 1

hold true.

We will use a couple of standard facts about Wa. First, the length of l(w) of w ∈ Wa

is the cardinality of N(w). Second, l(w) =
∑

|k(α, w)|. Third, N(x) ⊂ N(y) if and

only if y = xu for some u ∈ Wa with l(y) = l(x) + l(u). Fourth, wsi < w in the
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Bruhat order if and only if w(α̃i) is negative where si is the reflection corresponding

to the affine simple root α̃i . We also note that Wa acts simply-transitively on the set

of all alcoves (that is, the regions in V of the form w(A) for w ∈ Wa).

Given an ideal I in Φ
+, let ST(I) ⊂ Wa denote all w such that supp(w) = I. The

ST refers to sign type (after Shi). It follows from Lemma 5.2 that ST(I) is always

non-empty.

Recall that a strictly positive ideal is one for which I ∩ Π is empty. The strictly

positive ideals are exactly the ideals for which ST(I) is a finite set. Namely, if α ∈ I ∩
Π, then ST(I) contains the elements τmω∨w for m ≥ 0 where ω∨ is the fundamental

coweight corresponding to α and w is any element of ST(I) (we require that mω∨ ∈
Q∨). Hence ST(I) is not finite. Conversely, if I ∩ Π is empty and w ∈ ST(I), then

w(A) lies in the region bounded by the hyperplanes {Hα,0 ∪ Hα,1 | α ∈ Π}, a region

of finite volume.

5 Enumerating and Counting Ideals

Lemma 5.1 Let I be an ideal in Φ
+.

(1) w ∈ ST(I) implies k(α, w) ≥ αI,+ for all α ∈ Φ
+ [3].

(2) If I is strictly positive then w ∈ ST(I) implies k(α, w) ≤ αI,− for all α ∈ Φ
+.

Proof If γ ∈ I, then certainly k(γ, w) ≥ 1. So if α =
∑k

i=1
γi with γi ∈ I, then by

Proposition 4.1, k(α, w) ≥ k. Hence k(α, w) ≥ αI,+.

Similarly, if I is strictly positive and if γ ∈ Φ
+ − I, then k(γ, w) = 0. So if

α =
∑k

i=1
γi with γi ∈ Φ

+ − I, then k(α, w) ≤ k − 1 by Proposition 4.1. Therefore,

k(α, w) ≤ αI,−.

Lemma 5.2 Let I be an ideal.

(1) There exists w ∈ Wa such that k(α, w) = αI,+ for all α ∈ Φ
+ [3, 12].

(2) If I is strictly positive then there exists w ∈ Wa such that k(α, w) = αI,− for all

α ∈ Φ
+.

Proof Suppose α, β, α + β ∈ Φ
+.

For the first statement, let a = αI,+, b = βI,+, c = (α + β)I,+ for simplicity. By

Proposition 4.1 we need to show that a + b ≤ c ≤ a + b + 1. The first inequality is

obvious from the definitions. For the second inequality, write α+β =
∑k

i=1
γi where

γi ∈ I. Then α = −β+
∑k

i=1
γi . By Lemma 3.2 there exists j (after re-ordering the γi

as in the lemma) for which −β +
∑ j−1

i=1
γi ∈ Φ

− ∪ {0} and −β +
∑ j

i=1
γi ∈ Φ

+.

The former inclusion means that µ +
∑ j−1

i=1
γi = β for some µ ∈ Φ

+ ∪ {0}. Hence

b ≥ j − 1 since µ + γi ∈ Φ
+ for some i ≤ j − 1 by Lemma 3.2 and then µ + γi ∈ I as

γi ∈ I and µ ∈ Φ
+∪{0}. The inclusion −β+

∑ j
i=1

γi ∈ Φ
+ implies−β+

∑ j+1

i=1
γi ∈ I

since γ j+1 ∈ I (unless of course j = k). Thus a ≥ k − j (which is also true if j = k).

Together, a + b ≥ k − 1, so a + b + 1 ≥ c.

For the second statement, let a = αI,−, b = βI,−, c = (α + β)I,−. Clearly from

the definitions, c ≤ a + b + 1. For the other inequality, write α + β =
∑k

i=1
γi
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for γi ∈ Φ
+ − I, and let j be as in the first part of the proof. The definition of j

implies that −β +
∑ j

i=1
γi = (−β +

∑ j−1

i=1
γi) + γ j ∈ Φ

+ − I, since the term in

parentheses is either zero or a negative root and γ j ∈ Φ
+ − I. Thus a ≤ k − j. On

the other hand, −β +
∑ j

i=1
γi ∈ Φ

+ means that β = −µ +
∑ j

i=1
γi for some µ ∈ Φ

+.

By Lemma 3.2 applied to β, we can re-arrange the γi ’s with i ≤ j so that for some

l ≤ j we have −µ +
∑l−1

i=1
γi ∈ Φ

− ∪ {0} and −µ +
∑l

i=1
γi ∈ Φ

+. It follows that

−µ +
∑l

i=1
γi ∈ Φ

+ − I since γl ∈ Φ
+ − I. We conclude that b ≤ j − 1. Thus

a + b ≤ k − 1 and hence a + b ≤ c.

Let wI,min denote the unique element of minimal length in ST(I) and when I is

strictly positive let wI,max denote the unique element of maximal length in ST(I).

These exist and are unique by the previous two lemmas (and the simple-transitivity

of the affine Weyl group on alcoves). We drop the I from the subscript when there is

no confusion.

Remark 5.3 Let R be a region of the Shi arrangement. This is the arrangement

in V given by the set of hyperplanes {Hα,0} ∪ {Hα,1} where α ∈ Φ
+. Shi showed

more generally that there is a unique element w with w(A) ⊂ R such that, for every

positive root α, |k(α, w)| ≤ |k(α, w ′)| for every w ′ with w ′(A) ⊂ R. Cellini and

Papi characterized these minimal numbers k(α, w) when w(A) lies in the dominant

chamber, allowing for an alternative (and simpler) proof in that case.

It is also possible to study (in the same spirit as Shi) the maximal elements of all

bounded regions, which we have only done here (in the spirit of Cellini–Papi) for

those bounded regions in the dominant chamber (that is, those ideals I for which

ST(I) is finite).

Proposition 5.4 Let I be an ideal and w ∈ ST(I).

(1) w = wmin if and only if for all s ∈ S for which ws < w we have ws /∈ ST(I) [12]

(2) I is strictly positive and w = wmax if and only if for all s ∈ S for which ws > w we

have ws /∈ ST(I)

Proof For the forward direction of the first statement, assume w = wmin. Then

ws < w implies k(β, ws) = k(β, w) − 1 for a unique β ∈ Φ
+ by the basic properties

of Wa listed above. This implies that ws /∈ ST(I) by the previous two lemmas (and

so, in fact, k(β, ws) = 0 and β ∈ Imin).

For the reverse direction of the first statement, assume w 6= wmin. Then since

w ∈ ST(I), by Lemma 5.1 we have N(wmin) ⊂ N(w). Thus by the third property of

the affine Weyl group listed above, there exists u ∈ Wa, u 6= 1 so that w = wminu and

l(w) = l(wmin) + l(u). It follows that there exists s ∈ S so that ws < w and ws has a

reduced expression beginning with wmin. Hence N(wmin) ⊂ N(ws) ⊂ N(w) which

implies that ws ∈ ST(I) and the reverse direction is proved.

For the forward direction of the second statement, set w = wmax for I. Then

ws > w implies k(α, ws) = k(α, w) + 1 for a unique α ∈ Φ
+, which implies that

ws /∈ ST(I) by the previous two lemmas.
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For the reverse direction of the second statement, we first need to show that I is

strictly positive. Let w satisfy the hypothesis that for all s ∈ S for which ws > w

we have ws /∈ ST(I). If I were not strictly positive, then the proof that ST(I) is not

finite shows that there exists x ∈ ST(I) (in fact, infinitely many) with N(w) ⊂ N(x).

Hence there exists u ∈ Wa, u 6= 1 so that x = wu and l(x) = l(w) + l(u). Thus

there exists s ∈ S with w < ws < x. In particular N(w) ⊂ N(ws) ⊂ N(x). Therefore

ws ∈ ST(I), contradicting our hypothesis on w. We conclude that I is strictly positive

and possesses a maximal element.

Now assume that w ∈ ST(I) but w 6= wmax. By Lemma 5.1, we have N(w) ⊂
N(wmax). Then there exists u ∈ Wa, u 6= 1 so that wmax = wu and l(wmax) = l(w) +

l(u). Hence there exists s ∈ S with w < ws < wmax. In particular N(w) ⊂ N(ws) ⊂
N(wmax). Therefore ws ∈ ST(I), finishing the proof of the reverse direction.

Now let t be a natural number which is relatively prime to the Coxeter number h

of G and write t = ah + b where 1 ≤ b < h. Let Φk be the roots of Φ of height k (the

sum of the coefficients when expressing a root in the simple root basis).

Define

Dt
= {λ ∈ Q∨ | 〈α, λ〉 ≤ a for α ∈ Φb and 〈α, λ〉 ≤ a + 1 for α ∈ Φb−h}.

We are interested in the two cases where t = h + 1 and t = h− 1. When t = h + 1,

we have Φb = Π and Φb−h = {−θ}. When t = h − 1, we have Φb = {θ} and

Φb−h = −Π.

The following is the main result of [4]. We give a proof here in order to extract

information on the minimal roots of an ideal.

Proposition 5.5 ([4]) The set of ideals is in bijection with the elements of Dh+1.

Proof For w ∈ Wa, we write w = xτλ with x ∈ W . Our aim is to show that if

w = wmin for some ideal I, then λ ∈ Dh+1, and conversely, if λ ∈ Dh+1 then w = xτλ

is a minimal element of an ideal for the unique x ∈ W which makes xτλ dominant.

By the uniqueness of x and the uniqueness of the minimal element of an ideal, this

will establish the bijection.

Let α̃i be an affine simple root and write α̃i = αi + miδ where αi is a negative

finite simple root (respectively, θ) and mi = 0 (respectively, mi = 1). Then

w(α̃i) = x(αi) + (mi + 〈αi, λ〉)δ.

First assume that w = wmin for some ideal I. If wsi > w, then w(α̃i) is positive and

so certainly 〈αi, λ〉 ≥ −mi . If wsi < w, then w(α̃i) is negative. Since w is dominant

and supp(wsi) 6= supp(w) by Proposition 5.4, we must have w(α̃i) = −β − δ, where

β ∈ Φ
+ and also β ∈ Imin. Consequently, x(αi) = −β and 〈αi, λ〉 = −1 − mi . We

conclude in both cases that if w = wmin then 〈αi, λ〉 ≥ −1 − mi , that is, λ ∈ Dh+1.

Moreover, when equality holds, −x(αi) ∈ Imin.
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Conversely, assume that λ ∈ Dh+1. Then there is a unique x ∈ W such that

w = xτλ is dominant. It is characterized by the fact that

〈β, λ〉 ≥ 0 if and only if x(β) ≻ 0 and 〈β, λ〉 < 0 if and only if x(β) ≺ 0

for all β ∈ Φ
+.

Now if 〈αi, λ〉 = −1 − mi , then x(αi) ≺ 0 and certainly w(α̃i) = x(αi) − δ is

negative. Thus wsi < w and also supp(wsi) ∪ {−x(αi)} = supp(w), so supp(wsi) 6=
supp(w). If 〈αi , λ〉 = −mi , then x(αi) ≺ 0 and w(α̃i) = x(αi) is a positive affine

root. Thus wsi > w. Finally if 〈αi, λ〉 > −mi , then certainly w(α̃i) is positive and

wsi > w. This shows that w satisfies the hypotheses of Proposition 5.4 and so w

equals wI,min for some I.

This establishes the Cellini–Papi bijection between ideals (and their minimal ele-

ments) and elements of Dh+1.

Proposition 5.6 The set of strictly positive ideals is in bijection with the elements

of Dh−1.

Proof Suppose w = wmax for some strictly positive ideal. If wsi < w, then w(α̃i) is

negative and certainly 〈αi, λ〉 ≤ −mi . If wsi > w, then w(α̃i) is positive. Since w is

dominant and supp(wsi) 6= supp(w) by Proposition 5.4, we have either w(α̃i) = β+δ
for β ∈ Φ

+ or w(α̃i) is a negative finite simple root. In the first case, 〈αi, λ〉 = 1−mi

and in the second case, 〈αi, λ〉 = −mi . In all cases then, 〈αi , λ〉 ≤ 1 − mi , that is,

λ ∈ Dh−1. Moreover, if equality holds, then x(αi) is a maximal root in Φ
+ − I.

Conversely, suppose λ ∈ Dh−1 and let x ∈ W be the unique element such that

w = xτλ is dominant. If 〈αi, λ〉 = 1 − mi , then x(αi) ≻ 0 and so wsi > w and

also supp(wsi) ∪ {x(αi)} = supp(w). If 〈αi , λ〉 = −mi , then x(αi) ≺ 0 and so

w(α̃i) = x(αi) is a positive affine root and so wsi > w. Since w is dominant, it is clear

that supp(wsi) 6= supp(w). Finally if 〈αi , λ〉 < −mi , then wα̃i is clearly negative

and wsi < w. This shows that w satisfies the hypotheses of Proposition 5.4 and so w

equals wI,max for some strictly positive I.

This establishes the bijection between strictly positive ideals (and their maximal

elements) and elements of Dh−1.

It is now possible to enumerate the number of ideals and strictly positive ideals.

The former was done uniformly in [4].

Theorem 5.7 The number of ideals (strictly positive ideals) is given by

1

|W |

n
∏

i=1

(t + mi)

where t = h + 1 (respectively, t = h − 1) and the mi are the exponents of W .
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Proof The cardinality of Dt can be computed in general when t is good for G.

Namely, let ∆
t denote the simplex in V bounded by the hyperplanes {Hα,a | α ∈

Φb} ∪ {Hα,a+1 | α ∈ Φb−h}. It was stated (without proof) in [14] that there exists

w̃ ∈ Wa such that w̃(∆t ) = tĀ where Ā is the closure of the fundamental alcove A.

The existence of this element is proved as follows: by [6] (the end of section 2.3) there

is an element w̃ ′ in the extended affine Weyl group with this property and thus (for

example by [4, Lemma 1]) there is an element w̃ ∈ Wa with the same property.

It follows that

w̃(Dt ) = Q∨ ∩ tĀ.

The latter is known to parametrize the orbits of W on Q∨/tQ∨, and the number of

orbits is given by

1

|W |

n
∏

i=1

(t + mi),

(see for example [8]).

Remark 5.8 It is possible to show a more general result: namely, let J ⊂ Π and let

W J be the corresponding parabolic subgroup of W . Then the number of regions in

the Shi arrangement lying in a fundamental domain for the action of W J is

1

|W J|

j
∏

i=1

(h + 1 + mi)(h + 1)n− j ,

where the mi are the exponents of W J and n is the rank of G. A similar statement

holds for bounded regions by replacing h + 1 with h − 1.

This recovers under one rubric Shi’s original result on the number of regions ( J =

∅, t = h+1), Cellini and Papi’s counting of the dominant regions ( J = Π, t = h+1),

and Headley’s counting of all bounded regions ( J = ∅, t = h − 1) [9]. This formula

appears in [14] as the Euler characteristic of a partial affine Springer fiber. The proofs

there, together with Shi’s work in [12], are sufficient to prove the above formula on

the total number of regions in a W J-fundamental domain.

6 Combinatorics of the Minimal Roots of an Ideal

We are now able to obtain some new results on the minimal roots of an ideal by using

the work of the previous section.

Definition 6.1 Let λ ∈ Dt . Write t = ah + b as above. Define

Bt,λ = {α ∈ Φb | 〈α, λ〉 = a} ∪ {α ∈ Φb−h | 〈α, λ〉 = a + 1}.

In other words, Bt,λ records the root hyperplanes bounding the simplex defined

by Dt on which λ lies.
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Proposition 6.2 Let I be an ideal. Let w = wmin for I in the first statement below. If I

is strictly positive, let w = wmax for I in the second statement below. We write w = xτλ

where x ∈ W . Let α ∈ Φ
+.

(1) Then α ∈ Imin if and only if x−1(α) ∈ Bh+1,λ.

(2) Assume I is strictly positive. Then α is a maximal root of Φ
+ − I if and only if

x−1(α) ∈ Bh−1,λ.

Proof We showed in the proofs of Propositions 5.5, 5.6 that the reverse implication

holds in both cases. We now prove the forward implications.

For the first statement, suppose α is minimal in I. Then certainly k(α, w) = 1.

We define integers kβ for β ∈ Φ
+ as follows: kβ = k(β, w) for β ∈ Φ

+ − α and

kα = 0. We wish to show that there exists an element y ∈ Wa with k(β, y) = kβ for

all β ∈ Φ
+. By Proposition 4.1 we have to show that if γ ∈ Φ

+ and α + γ ∈ Φ
+,

then kα + kγ ≤ kα+γ ≤ kα + kγ + 1. In other words, since kα = 0, we need kγ ≤
kα+γ ≤ kγ + 1. The first inequality is clear (and is clearly a strict inequality). For the

second inequality, write α + γ =
∑k

i=1
γi with γi ∈ I. Then γ = −α +

∑k
i=1

γi .

Invoking Lemma 3.2, we have −α + γ j ∈ Φ ∪ {0} for some j. But α is minimal in I,

so −α + γ j ∈ Φ
+ ∪ {0}; hence pulling out one more root gets us −α + γ j + γ j ′ ∈ I.

Thus k(γ, w) ≥ k−1 and so k(γ, w) ≥ k(α+γ, w)−1. In other words, kγ +1 ≥ kα+γ ,

as desired.

It follows that there exists y ∈ Wa such that w = ysi where si ∈ S. Moreover,

w(α̃i) = −α − δ. Hence x(−αi) = α and −αi ∈ Bh+1,λ.

For the second statement, suppose α is maximal in Φ
+ − I. Let kβ = k(β, w) for

β ∈ Φ
+ − α and kα = 1. We wish to show that there exists an element y ∈ Wa with

k(β, y) = kβ for all β ∈ Φ
+. By Proposition 4.1 we have to show that if γ ∈ Φ

+ and

α + γ ∈ Φ
+, then kα + kγ ≤ kα+γ ≤ kα + kγ + 1. Since kα = 1, this simplifies to

kγ + 1 ≤ kα+γ ≤ kγ + 2. The second inequality is clearly a strict one. For the first

inequality, write α+γ =
∑k+1

i=1
γi with γi ∈ Φ

+−I. Then γ = −α+
∑k+1

i=1
γi . Invoking

Lemma 3.2 and re-ordering the roots accordingly, we have −α + γ1 ∈ Φ ∪ {0}. But

α is maximal in Φ
+ − I, so −α + γ1 ∈ Φ

− ∪ {0}. Continuing to use Lemma 3.2,

we can write γ = (−α +
∑ j

i=1
γi) +

∑k+1

i= j+1
γi where j ≥ 2 and the expression in

parentheses belongs to Φ
+ − I. It follows that kγ ≤ k − 1 and so kγ ≤ kα+γ − 1 as

desired.

It follows that there exists y ∈ Wa such that y = wsi where si ∈ S. Moreover,

w(α̃i) = α + δ. Hence x(αi) = α and αi ∈ Bh−1,λ.

In particular, the number of minimal elements of I is equal to the number of

bounding inequalities which are equalities for the lattice point corresponding to I.

This has been obtained by Panyushev [11] and generalized in a recent article by

Athanasiadis. We note that Theorem 6.4 and Proposition 6.6 below give a general-

ization in a different direction. Namely, that the parabolic subgroup in W associated

to Imin coincides with the parabolic subgroup associated to the corresponding lattice

point, up to conjugacy in W (in particular, the ranks of both parabolic subgroups

coincide).

The proof of the proposition yields the following corollary.
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Corollary 6.3 Let I be an ideal.

(1) Let w = wmin be the minimal element of I. If α ∈ I is minimal, then w−1(α + δ) is

a negative affine simple root.

(2) If I is strictly positive and w = wmax is the maximal element of I, then α ∈ Φ
+ − I

is maximal implies that w−1(α + δ) is an affine simple root.

We can now prove

Theorem 6.4 Let I be an ideal.

(1) Let Imin be the minimal elements of I. Then there exists J ⊂ Π and y ∈ W such

that y(Imin) = J.

(2) Let I be strictly positive and let Imax be the maximal elements of Φ
+ − I. Then there

exists J ⊂ Π and y ∈ W such that y(Imax) = J.

Proof As in the proof of Theorem 5.7, let w̃ ∈ Wa be such that w̃(∆t ) = tĀ and

hence so that w̃(Dt ) = Q∨∩tĀ. We note that if we write w̃ = x̃τλ̃ then x̃(Φb∪Φb−h) =

Π̃ where Π̃ = Π ∪ {−θ} [6].

For the first part of the theorem: let w be the minimal element of ST(I). Write

w = xτλ where x ∈ W and λ ∈ Q∨. Then x−1(Imin) = Bh+1,λ by Proposition 6.2.

Then x̃(x−1(Imin)) are exactly the elements of Π̃ such that w̃(λ) (an element of Q∨)

lies on the corresponding wall of (h + 1)Ā.

In [14] it was proved that every such subset is conjugate by an element of W to

some J ⊂ Π. We give a simpler proof here.

Write θ =
∑

α∈Π
cαα and set c−θ = 1. Given J ′ ⊂ Π̃, let

d = gcd(cα | α ∈ Π̃ − J ′).

Recall (for example, from [15]) that J ′ is conjugate by an element of W to a subset of

Π if and only if d = 1. Let J ′ = x̃(x−1(Imin)). If J ′ ⊂ Π, there is nothing to prove.

Otherwise let µ = w̃(λ). Since −θ ∈ J ′, we have 〈θ, µ〉 = h + 1. Hence

h + 1 =

〈

∑

α∈Π

cαα, µ
〉

=

∑

α∈Π

cα〈α, µ〉 =

∑

α∈Π− J ′

cα〈α, µ〉

where the last equality holds since 〈α, µ〉 = 0 if α ∈ Π ∩ J ′. Hence we see that d

divides h + 1. But it is known that each cα divides h, hence d divides h. Thus d divides

h + 1 and h and so d = 1. Note that the proof remains valid for any t which is good,

i.e., prime to all of the cα’s, by replacing h + 1 above with such a t .

This completes the proof for the first part. The second part follows in an analogous

fashion.

Given a α ∈ Φ, let eα be a non-zero element in the corresponding root space in g.

The following corollary is immediate from the theorem.

Corollary 6.5 The nilpotent element
∑

α∈Imin
eα is regular in a Levi subalgebra of g.
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Let J ⊂ Π. We can use the results of [14] to enumerate the number of ideals I

such that Imin is conjugate by some element of W to J.

Let W J be the Weyl group generated by the simple reflections corresponding to the

elements of J. Let V J denote the subspace of V fixed point-wise by all the elements

of W J. Consider the set of hyperplanes

{V J ∩ Hα,0 | α ∈ Φ
+ and V J 6⊂ Hα,0}.

This defines a hyperplane arrangement in V J. It is known that this arrangement is

free [2, 5] and hence that its characteristic polynomial p J(t) factors as
∏n− j

i=1
(t −m J

i ),

where n is the rank of G, j is the cardinality of J, and m J
i are positive integers [16].

These integers, called the Orlik–Solomon exponents, were computed in [10]. An

alternative way to compute the Orlik–Solomon exponents was given in [14, section

5]. In fact those results and the proof of the above theorem yield

Proposition 6.6 Let J ⊂ Π. Let N(W J) denote the normalizer of W J in W . Let

χ J(t) =
1

[N(W J) : W J]
p J(t).

(1) The number of ideals I such that Imin is conjugate under W to J is χ J(h + 1).

(2) The number of strictly positive ideals I such that Imax is conjugate under W to J is

χ J(h − 1).

Acknowledgement The author thanks C. Athanasiadis for pointing out an error in

an earlier version of the paper.
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