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CSA-GROUPS AND SEPARATED FREE CONSTRUCTIONS

D. GlLDENHUYS, O. KHARLAMPOVICH AND A. MYASNIKOV

A group G is called a CSA-group if all its maximal Abelian subgroups axe malnor-
mal; that is, Mx l~l M — 1 for every maximal Abelian subgroup M and x £ G — M.
The class of CSA-groups contains all torsion-free hyperbolic groups and all groups
freely acting on A-trees. We describe conditions under which HNN-extensions and
amalgamated products of CSA-groups are again CSA. One-relator CSA-groups are
characterised as follows: a torsion-free one-relator group is CSA if and only if it
does not contain ft X Z or one of the nonabelian metabelian Baumslag-Solitar
groups £ i i n = (x,y \ yxy~x = xn), n € Z — {0,1}; a one-relator group with
torsion is CSA if and only if it does not contain the infinite dihedral group.

1. INTRODUCTION

The class of hyperbolic groups and the class of groups that can act freely on a A-
tree are two rapidly developing areas of group theory that have attracted the attention
of specialists from many fields of mathematics. Their study involves an interplay of
geometry and algebra. Another very active area of group theory, this time connected to
mathematical logic, is the study of systems of equations in free groups and hyperbolic
groups. The success of this study has inspired renewed interest in Tarski's famous prob-
lem: "Is the elementary theory of a free nonabelian group algorithmically decidable?"
One of the key steps in this direction is the description of 3-free groups (that is, those
groups that have the same existential theory as a non-Abelian free group). The purpose
of this article is to study the class of CSA-groups, which contains the classes of torsion-
free hyperbolic groups [8], groups acting freely on A-trees [1] and 3-free groups [19, 6].
CSA-groups share many of the properties of the groups in the above-mentioned three
classes, but have the advantage of being definable in purely group-theoretic terms.

DEFINITION 1: [18] We define a subgroup H of a group G to be malnormal (also
called conjugate separated) if H fl Hx — 1 for all x € G — H.

It is clear that the intersection of a family of malnormal subgroups is again mal-
normal, which allows us to define the malnormal closure male (A) of a subgroup A of
a group G to be the intersection of all the malnormal subgroups of G containing A.
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DEFINITION 2: [15] A group G is called a CSA-group if all its maximal Abelian
subgroups are conjugate separated.

DEFINITION 3: Let G be a group and <j> : A —> B an isomorphism of subgroups of
G. The HNN-extension

G* = (G,t\ rlat = 4>{a), a£A)

is called:

(1) separated if A n g~*Bg — 1 for all g 6 G\

(2) strictly separated if A D g~l male (B)g = 1 for all g £ G.

Kharlampovich and Myasnikov recently proved [10] that the class of hyperbolic
groups is closed under separated HNN-extensions, subject to the condition that the
two associated subgroups A and B be quasi-isometrically embedded in G and one
of them be malnormal. The class of groups acting freely on A-trees is also closed
under separated HNN-extensions, provided that A and B are Abelian and satisfy some
natural compatibility condition [14].

In the same spirit, we prove in Section 2 that separated HNN-extensions of an
arbitrary CSA*-group (CSA, without elements of order two) with associated malnormal
subgroups is again CSA* . In fact, a much more general result (Theorem 1) is true: any
strictly separated HNN-extension of a CSA*-group G with associated subgroups A

and B is again CSA* if A is malnormal in G and B is normal in malcj(B). We
obtain similar results for amalgamated products of CSA*-groups (Theorem 2) and, in
Theorem 3, for the fundamental groups of certain types of graphs of CSA*-groups. We
show in Theorem 1, which is the main result of the section, that neither the requirement
that the HNN-extension be separable, nor the requirement that one of the associated
subgroups be malnormal, is a necessary condition for the HNN-extension to be CSA.
(This is not astonishing, because even non-Abelian free group can be decomposed in very
complicated ways in terms of HNN-extensions and free products with amalgamation.)
However, in the most important case, where the associated subgroups are Abelian,
we use our main result to obtain in the next section a complete description of those
HNN-extensions which preserve the CSA*-property.

We start Section 3 by showing that if an HNN-extension with Abelian associated
subgroups is CSA, then at least one of the associated subgroups must be maximal
Abelian. Under these assumptions there then remain four types of HNN-extensions,
among which only the separated HNN-extensions and the rank 1 extensions of cen-
tralisers (described in Proposition 4) preserve the CSA *-property. Theorem 4, which
states the preservation of the CSA*-property by separated HNN-extensions, has as its
corollary a similar result about amalgamated products and tree products of CSA*-
groups.
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Gersten has conjectured that a torsion-free one-relator group is hyperbolic if and
only if it does not contain any Baumslag-Solitar groups

Bm,n = {x,y\ yx^-1 = xn), mn^O

(HNN-extensions of the infinite cyclic group). We prove that a torsion-free one-relator
group fails to be CSA if and only if it contains a nonabelian metabelian Baumslag-
Solitar group B\tn, n ^ 1, or the group B = F2 x Z, the product of a free group on two
generators by an infinite cycle (Theorem 7); a one-relator group with torsion fails to
be a CSA-group if and only if it contains the infinite dihedral group Doo (Theorem 8).
This gives a complete description, in terms of "obstacles", of one-relator CSA-groups.
Every one-relator group with torsion is hyperbolic. This has already been observed in
[4]; it follows easily from a theorem of Newman (see [18] or [11, Proposition 5.28 on
p. 109]).

It is known that CSA-groups are commutative transitive (a group G is commutative
transitive if the relation "o commutes with b" is transitive on the set G — {1}; that is, if
the centraliser of every nontrivial element of G is Abelian, [15, Proposition 10]). That
the converse is not true was pointed out in [15], and is shown by the simple example of
the infinite dihedral group Doo • However, it is true for torsion-free one-relator groups
(Theorem 9). It is not true, in general, for one-relator groups with torsion, because all
these groups are commutative transitive (Newman [18, Theorem 2]) but some of them
are not CSA (see the example in Proposition 8).

In Section 5 we consider exponential groups and the property of being residually
of prime power order ("residually p"). Let A be an (associative) ring with identity.
A group G is called an A-group if its elements admit exponents from the ring A.
The defining axioms can be found in [17, 16, 15]. The tensor completion over A of
a group is defined by the obvious universal property, and a group is said to be A-
faitkful if the canonical morphism from the group into its tensor completion over A is
injective. Tensor completions of groups have been studied extensively in [3, 16] and
[15]. Myasnikov and Remeslennikov proved that if G is a torsion-free CSA-group and
A a ring whose underlying Abelian group is torsion free, then G is A-faithful, and the
tensor completion of G over A is again a torsion-free CSA-group [15, Theorem 9]. So,
the class of torsion-free CSA-groups is contained in the class of Q-faithful groups (it is
clear that a Q-faithful group must be torsion free). We prove (Proposition 9) that if,
for almost all primes p, a group is residually p, then it is Q-faithful.

Gilbert Baumslag [2] posed the problem of determining which one-relator groups
are Q-faithful. The class of torsion-free one-relator CSA-groups is strictly contained in
the class of one-relator Q-faithful groups as well as in the class of one-relator groups
that are residually p for almost all primes p (Proposition 12). It would be interesting
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to find obstacles to Q-faithfulness in torsion-free one-relator groups (in the sense that
the groups B and Bi,n of Theorem 7 are obstacles to the CSA-property, and the groups
Bm,n are conjectured to be obstacles to hyperbolicity).

In Proposition 12, we give an example of a one-relator group which is not CSA,
but is nevertheless Q-faithful, residually torsion-free nilpotent and residually p, with
torsion-free pro-p-completion, for every prime p. On the other hand metabelian non-
Abelian Baumslag-Solitar groups provide examples of Q-faithful groups which are non-
CSA and not residually p for almost all primes p.

2. HNN-EXTENSIONS OF CSA*-GROUPS

Our main purpose in this section is to establish some natural sufficient conditions
for HNN-extensions and amalgamated products to preserve the CSA-property. We also
investigate the more general problem of determining when the fundamental group of a
graph of CSA-groups is again CSA.

DEFINITION 4: A CSA* -group is a CSA-group without elements of order 2.

Throughout the paper, G* will denote an HNN-extension of a group G relative to
an isomorphism of associated subgroups (j> : A —• B, and t will denote the stable letter.
Recall that any HNN-extension G* of a group G is endowed with a length function
[11, p.185]. We denote the length of an element z of G* by \z\.

LEMMA 1. Let G* be a strictly separated HNN-extension of a group G with

associated subgroups A and B such that A = male (A) and B < male (B) — B\. Let

ceG*.

1. If 1 ^ 6i G Bi, b* G G and c <£ G, then c G B^G and &i S B.

2. If Bl n # ! ^ 1, c 6 J5j.

3. It 1 ^ o £ A, ac £ G, then there are three possibilities: c G A, c G tG

or ce tB-it^G.

4. If Ac n A £ 1, then c G tB^t'1.

PROOF: Suppose that c <£ G. We write c in reduced form:

(1) c = g0t
ei

git
eig2 • •gn-1t

engn, \c\ = n ^ 1.

1. Suppose that &i G B\ and b\ G G. We have

(2) c^hc = g-H-'^g-^ • ••g;1t-e*g;1t-<igo1b1gotClgitc>g2 • •gn-it
Cngn.

Since the length of the left side of this equation is 0, the right side is not reduced and

(A ifei = l
So fci5o € < •

[ B if ei — — 1
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If ei = 1 , then &i G A9° fl 2?i, which violates our hypotheses. Hence, ei = —1,

g^bigo £ B, bi £ BiD B9oX C ^ n B\° , which implies that 50 G #1 and 61 G

BaoX C B. Write a = thft'1. If n > 2, then we see from (2) that the word

t~ejg^1agit'1 is not reduced, and

If e2 = —1 then a 6 Bf l .A9i C £ : n J49I , which contradicts our hypotheses. So,

e2 = 1, 0 6 4 f l J49I and gi £ A. But then this contradicts the assumption that (1)

was in reduced form. It follows that n = 1 and c = got-1 gi £ Bit~1G.

2. Since B\ is malnormal in G, it is sufficient to derive a contradiction from our

assumption that c £ G. It follows from part 1 that if 1 ^ 61 G Bi D cBic" 1 , then

bi £ B and for some g £ G, c £ Bit~1g. But then

6J 6 g'hBt^g C\BX= Aa C\ Bu

which contradicts our assumptions.
3. We keep our assumption that c has reduced form (1) (if c £ G and ac £ A,

then c £ A, since A is malnormal). By similar reasoning as in Part 1 we find that
ei = 1, g0 £ A. Letting a9ot and t~1gg1c play the roles of 61 and c respectively in
Part 1, we find that t~lg^c £ G or t^g^c £ B^G; that is, c £ gotG = tG or
c G gotBit^G - tBit^G.

4. If Ac n 4 ^ 1, then B( n B I ^ 1 and c 6 tBrf-1 by Part 2. This completes
the proof of the lemma. D

LEMMA 2 . Let G* be a strictly separated HNN-extension of a group G with
associated subgroups A and B such that A = male (A) and B < male (B) = J?i.
Suppose that M is a maximal Abelian subgroup of G*. Then one of the following is
true.

1. Tie intersection of M with some conjugate A1 (x £ G*) of A is
nontrivial, in which case M C xtBit~xx~l.

2. Tie intersection of M with every conjugate of A is trivial, but M inter-
sects some conjugate of G nontrivially, in which case

(V* G G*) (M n G' ± 1 => M C Gx).

3. Tiere exists a cyclically reduced element z £ G* such that M is a con-
jugate of the infinite cyclic group (z), \z\ ^ 1.
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PROOF: It follows from [20, Chapter 1, Section 5.4, Theorem 13 and its Corol-
lary 2] that G* can be made to act on a tree X in such a way that the stabilisers of the
edges are conjugates of A in G* (the vertices of X are cosets yG of G in G*, and the
edges are cosets of A in G* ). If a nontrivial element of M stabilises some edge of X,
then there exists an element x E G* such that MnA* ^ 1, and hence MxtC\B\ ^ 1.
Every element of Mxt then centralises a nontrivial element of B\, and it follows from
Lemma 1, Part 2, that Mxt is contained in Bi, and hence M in xtBit^x*1.

Suppose now that M intersects trivially all the stabilisers of edges of the tree X.
It follows from [20, Chapter 1, Section 5.4 Theorem 13 (see also Example 1) of Section
5.1] that M is a free product of conjugates of subgroups of G and a free group. Since
M is Abelian, the free product is trivial (that is, it has only one factor). More precisely,
if a nontrivial element of M fixes some vertex of X, say the coset wG (equivalently
M D wGw'1 7̂  1), then M is entirely contained in the conjugate wGw~1 of G; that
is, M is a conjugate of a maximal Abelian subgroup of G.

On the other hand, if M acts freely on the tree X then M is free, hence cyclic, and
is generated by an element w of length ^ 1. Since w is not conjugate to an element of
G (w does not fix any vertex of X), it is conjugate to a cyclically reduced element z,
with \z\~^l. This completes the proof of the lemma. D

THEOREM 1. Let G* be a strictly separated HNN-extension of a CSA* group
G with associated subgroups A and B such that A — mala {A) &nd B < mala(B).
Then G* is a CSA*-group.

PROOF: It is clear that G* has no elements of order 2 [11, Theorem 2.4, p. 185].
We may assume that A and B are nontrivial (else G* is the free product of G and an
infinite cyclic, hence CSA [15]). As usual we shall use the notation B\ = malo(B).

Let M be a maximal Abelian subgroup of G* . Suppose that there exists v in G*
such that M D Mv ^ 1. We must prove that v £ M.

We first consider the case where some element of M has nontrivial intersection
with a conjugate A*'1 of A (x e G*). Then, according to Lemma 2, Mxt C B\. The
groups Mxt and Mvxt have a nontrivial element w in common, which belongs to Bi
and which is centralised by Mvxt. By Lemma 1, Mvxi (which can be written MxtvX )
is contained in B\ and

1 ^ w G Bi f~l Bf'.

It follows from Lemma 1 that vxt E B\ C G. Since G is CSA, and

1 ^ w G Mxt n MxtvX

we conclude that vxt G Mxt and v G M.

vXt
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We now assume that M intersects trivially every conjugate of A but intersects
nontrivially a conjugate Gw of G, w £ G*. In this case, Lemma 2 tells us that M is
entirely contained in Gw. But then Mv also intersects Gw nontrivially, and there exists
a maximal Abelian subgroup N of G such that M = Mv = Nw (G is commutative
transitive). Next, we let v' = wvw~1, then Nv — N, and we claim that v' £ G. If
not, we write it in reduced form:

(3) v'=vot
eivite2v2--vn-1t

e"vn, | w ' | = n ^ l .

Let z £ N. We have

(4) (v1)'1 zv' = v'H-^v-^ • • • v;1r'*v-1t-'lv-1zvot'
1v1t'*v2 • • • vn^tenvn.

Since the length of the left side of this equation is 0, the right side is not reduced and

v0
 1zv0 £

In both cases we find that M has a nontrivial intersection with a conjugate of A in
G*, contrary to our assumption that it intersects trivially all the stabilisers of edges of
the tree X. So v £ G. Since G is a CSA-group, v £ M.

Suppose now that the third possibility of Lemma 2 applies to M. Replacing M
by one of its conjugates, we may suppose that M = (z), with z cyclically reduced. All
powers of z are then cyclically reduced as well. There exist integers m,n such that
v~1zmv — zn. By the Conjugacy Theorem for HNN-extensions [11, Chapter 4, Th.
2.5],

|m||*| = |*m| = |*"| = |n| | 2 | i

hence m = ±n and v2 lies in the centre of the group (zn,v). Suppose that (zn,v)

intersects a conjugate Ax of A nontrivially, then there exists w in (v,zn)xt D B\,
w ^ 1. Since (vxt) centralises ID, it follows from Lemma 1 that (vxt) £ B\. Since
(zzt) centralises the nontrivial element (vxt) of Bi, it follows again from Lemma 1
that {zxt)n £ Bi. But zn , being cyclically reduced and of length ^ 1, cannot belong to
a conjugate of G. This proves that {zn,v) is a free product of subgroups of conjugates
of G and a free group. Since (zn,v) has nontrivial centre, it is indecompasable as a
free product [12, Section 4.1, Problem 21, p.195]. Since, as already pointed out, zn

is not conjugate to an element of G, (zn,v) is contained in a free group, hence must
be cyclic. This implies that zn is in the centre of (z,v). By the same argument as
before, if (z,v) intersects some conjugate of A then z is contained in a conjugate of
G, which is impossible, since z is cyclically reduced of length J? 1. So (z,v) is a free
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product of subgroups of conjugates of G and a free group. It has nontrivial centre,
which implies as before that (z,v) is indecomposable, and hence contained in a free
group. This implies that v commutes with z. By the maximality of M = (z), v € M.
This is what we had to prove. D

COROLLARY 1. A separated HNN-extension of a CSA* -group with malnormal
associated subgroups is a CSA*-group.

Similar results for amalgamated products can be easily obtained using the following
lemma.

LEMMA 3 . Let A and B be subgroups of groups G and H respectively, <j>: A —*
B an isomorphism. The groups A and B can be considered as isomorphic subgroups
of the free product G * H. Let us denote by

E(G,H,cf>) = {G*H,t\ t~lat = <j>{a))

the HNN-extension, associated with <j>, of the group G* H. The amalgamated product

G*^,H is embeddable in E {G, H, <f>).

PROOF: The subgroup (Gf,H) generated in E(G,H,<j>) by the ^-conjugate of G
and H is isomorphic to G * ^ 5 . It can be easily verified using the normal forms of
elements in E(G,H,<j>). D

THEOREM 2 . Let G and H be CSA* -groups, A and B subgroups of G and H,
respectively, such that A = male (A) and B < malff(B), and <f> : A—yB an isomor-
phism. Then the amalgamated product G *$ H is CSA* .

PROOF: Let Bi = main (B). First, we claim that A and Bi are also malnormal
in the free product G * H. Malnormality is transitive: if X is a malnormal subgroup
of Y and Y is a malnormal subgroup of Z, then X is a malnormal subgroup of Z. So
we need only point out (as Lyndon and Schupp already did on page 203 of [11]) that
the factors of a free product are malnormal in the product. Then we need the fact that
A and B\ are mutually conjugate separated, that is A (IB* — 1 for all x G G*H. It is
enough to prove that G and H are mutually conjugate separated in their free product,
and this is easily verified using normal forms. Next, we need the fact that the class of
CSA*-groups is closed under free products [15, Theorem 4]. To complete the proof,
we note that the amalgamated product G *$ H is embedded in the HNN-extension of
G * H, relative to the isomorphism <f> (Lemma 3), and we apply Theorem 1 (note that
subgroups of CSA*-groups are CSA* , [15, Proposition 13]. D

COROLLARY 2 . An amalgamated product of CSA* -groups with malnormal amal-
gamated subgroups is again a CSA* -group.

To deal with graphs of groups we need the next Proposition, mentioned without
proof in [18].
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PROPOSITION 1. Let A be a malnormal subgroup ofa group G, B a subgroup
of a. group H, cf>: A-+B an isomorphism, and P = G*$H the associated amalgamated
product. Then every mednormal subgroup of H is also malnormal in P.

PROOF: TO simplify the exposition, we shall suppose that G and H are subgroups
of P and <t> is the identity. Because of the transitivity of malnormality, it suffices to
prove that H is malnormal in P. Every nontrivial element x of P can be written in
the form

x = P1P2 • P r ,

where each pt lies in one of the factors G or H, and no pi lies in A if r > 1; also, if
the length r of x exceeds 1 then pi and pi+i lie in different factors (i = l , . . . , r — 1).
Although this representation for x is not necessarily unique, the length T is unique, and
so is the sequence of factors determined by pi,p2,. • • , p r • Suppose that h G H D Hx .
We shall prove by induction on r that p,- G H for all i = 1 , . . . ,r. There exists an
h' £ H such that

h = p ~ x • • • P2 p f h'p1p2 •• pT-

It follows that p^h'pi G A or r = 1.

CASE 1. r = 1. If pi € H, then x G H and we are done. If pi £ G, then p^1h'pih~1 =
1. The left side is reducible, which implies that ti £ A and h £ H D G - A. But, A
is malnormal in G, so x = pi G A. So pi G H.

CASE 2. r > 1. Let 01 = Pi1h'p1 G A. Then px G ff by Case 1. We can now write

h — Pr 'PT. ° I P 2 • PT,

and apply the induction hypothesis to complete the proof. u

Note that under the hypotheses of Proposition 1 the malnormal closure of A in P
contains the normaliser of B in H.

Following Dicks [5] we define an oriented graph of groups as follows. It consists of
an oriented graph F = (V,E,1,T) (I(e) G V and f(e) G V are the initial and terminal
vertices respectively of an edge e G E), together with a function G which assigns to
each vertex v G V a group G(v), and to each edge e G E a subgroup G(e) of G(I(e))
and monomorphism te : G(e)—*G (r(e)). We shall say that this oriented graph of groups
is quasi-malnormal if, for all e G E, G(e) is malnormal in G(t(e)) while te(G(e)) is
normal in its malnormal closure in G (^(e)). If, in addition, for each edge e, te(G(e)) is
malnormal in G (^(e)), then we say that the graph of groups is malnormal. In this case,
the orientation of the graph is irrelevant. The graph of groups is said to be separated if
for any edge e which is a loop (v — Z(e) = r(e)) one has G(e)9 D te (G(e)) = 1 for all
geG{v).
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If a quasi-malnormal separated oriented graph of CSA*-groups has only one edge,
then its fundamental group is CSA* (Theorem 1, Theorem 2, [15, Theorem 6]). We
prove in Proposition 6 that the fundamental group of a quasi-malnormal oriented tree
of CSA-groups need not be CSA. For every ordinal number a we define as follows
an oriented graph La (a "line" from 1 to a). Its vertices are ordinals ^ a, and
{((3,(3 + 1) | 1 ^ (3,(3 + 1 ^ a} is its set of edges. The edge (/?, /? + 1) has initial vertex
/?, and terminal vertex (3 + 1.

THEOREM 3 . The fundamental group of an oriented graph of CSA* -groups is
again CSA* in the following two situations:

1. the underlying oriented graph is La for some ordinal a, and the oriented
graph of groups is quasi-malnormal;

2. the underlying oriented graph is a tree and the graph of groups is mal-
normal.

PROOF: 1. The class of CSA * -groups is closed under direct limits [15, Theorem 6]
and free products (Theorem 6), hence we are reduced to proving the result for finite
a. The result then follows, by a simple induction argument, from Theorem 2 and
Proposition 1.

2. By a similar argument, we need only prove the result for finite trees, and the
result follows from the Theorem and Proposition.

The separation conditions, necessary to ensure that the fundamental group of an
arbitrary malnormal separated oriented graph of CSA * -groups is CSA *, are quite com-
plicated and cumbersome to formulate. D

REMARK. The conditions of Theorem 1 are not necessary:
(1) the following example G* of an HNN-extension of a CSA*-group G is CSA*,

without the HNN-extension being separated (or a centraliser extension, in the sense of
Definition 6, [15]).

G* — {xi,x2,xz,t | x1 — x2,x2

G is the free group on xi,x2,x3, and the associated subgroups A = (zi,X2)> B =
{x2,x\X3), are malnormal in G, but have nontrivial intersection (x2) • Clearly, G* is
free on two generators x\, t, hence CSA.

(2) Let

G* = {x1,x2,x3,xiyxs,t | x\ = a;*8, (a:*2)* = xa,x\ = xj).

Then this is a representation of G* as a non-separated HNN-extension of the free
group G = {xi,X2,Xi,xi,xs), with associated subgroups A = (xi.Xj*,34) and B =
(x'3 ,xa,xl) (both A and B are free of rank 3). The subgroups A and B are not
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malnonnal in G; moreover, neither is normal in its malnormal closure. The group G*
can be represented as a free product with amalgamation:

G* = (x1,x2,x3,xi,t | x\ = a:*',(a:*2)* = x3) *v- (zs),

where i/> : (Z4) —> {x\) is the obvious isomorphism of infinite cycles. Let us denote the
left factor of the above decomposition by Gi. The subgroup (x\) is maximal Abelian
in G\, therefore, to prove that G* is a CSA-group it is enough to prove that G\ is a
CSA-group (Theorem 2). Writing s — tx\~x, one can represent Gi as follows:

Gi = (x1,x2,xi,s I [zi.s] = 1).

Hence the group Gi is CSA (see Proposition 4).

It is interesting that both examples above can be constructed using only "admiss-
able" HNN-extensions and free products with amalgamation (that is, those mentioned
in our theorems as sufficient conditions).

3. HNN EXTENSIONS OF CSA'-GROUPS WITH ABELIAN ASSOCIATED SUBGROUPS

In this section we give a complete description of HNN-extensions, with Abelian
associated subgroups, that preserve the CSA*-property.

REMARK. An Abelian subgroup of a CSA-group is malnormal if and only if it is max-
imal Abelian.

PROPOSITION 2 . Let G* be an HNN-extension of a CSA-group G, relative to
an isomorphism <j> : A—*B of nontrivial Abelian subgroups A and B of G. Then the
HNN-extension G* is strictly separated if and only if it is separated.

PROOF: Suppose that A' fl Bi ^ 1, s £ G; then the CSA-property of G implies
that the maximal subgroups A' and Bi of G are equal. Hence, A' D B ^ 1. The
result follows. U

PROPOSITION 3.

1. Suppose that <f> : A—*B is an isomorphism of two nontrivial Abelian
subgroups A and B of a group G. If neither A nor B is maximal
Abelian in G then the associated HNN-extension G* is not CSA.

2. Suppose that <f> : A—*B is an isomorphism of two nontrivial Abelian
subgroups of two groups G and H respectively. H A is not maximal
Abelian in G and B is not maximal Abelian in H, then the associated
amalgamated product is not CSA.
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PROOF: 1. Suppose that G* is CSA. Let Ai and J?i be maximal Abelian sub-
groups of G containing A and B respectively. Let a^ G Ai — A, &i 6 B\ — B and let
t denote as usual the stable letter of the HNN-extension G*, so that a* = </>(a) for all
a G A. Let 1 ̂  b G B. Then a* commutes with 6, and so does b\ . Since CSA-groups
are commutation transitive,

1 = [a\,bi] = t^a'Hb^t^aitbi.

This is impossible, since the word on the right cannot be reduced.

2. A similar argument can be used in this case.

Suppose as before that <j> : A—*B is an isomorphism of two nontrivial Abelian
subgroups A and B of a CSA-group G, with A maximal Abelian in G. Then one of
the following four possibilities must apply:

(1) (VaeG)(A'nB = l);
(2) (3s G G) {A' = B A (Va G A) (0(o) - a'));
(3) B is maximal Abelian in G, (3v &G){AV HB ̂  1) and

(Ws e G)[A' H B ^ I ^ A' = B A (3o0 G A) (oj ^ <f> (a0))];

(4) B is not maximal Abelian in G, and (3s G G) (A' D B ̂  1) (in this case,

JBCA') .

In the HNN-extension

G* = (G,t \t~1at = (S>{a),aeA),

4>(a) — a* for all a G A. In cases 3) and 4), there exist s G G and oo gj4 such that

A*'"1 C A but [oo.is"1] ^ 1, and hence i s" 1 £ A.

This shows that in the cases (3) and (4) the group G* is not CSA. D

PROPOSITION 4 . Let A be a maximaJ AbeL'an subgroup of a CSA*-group G,
B a subgroup of G and <f> : .A—>i? an isomorphism. Suppose that there exists an
s G G such that B = A' and <j>(a) = a' for ali a G A. Then the HNN-extension
G* = (G,t\ t^at = (j)(a)) is a CSA*-group.

PROOF: It is clear that if we put v = i s" 1 , then

G* = (G,v | [a,v] - 1, VaGJl).

That is, we get a presentation for G* from a presentation for G by taking as generators
for G* those of G together with v, and as defining relations those of G together with

https://doi.org/10.1017/S0004972700014453 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014453


[13] CSA-groups 75

[o,v] = 1 for all a £ A. Since A is maximal Abelian, we have A = CG(O) for some
fixed a £ A, and G* is the direct, rank 1, extension of the centraliser of the element o
(Definition 6, [15]). Since A x (v) has no element of order 2, it follows from Theorem
5 [15] that G* is a CSA'-group. D

THEOREM 4 . Let G be a CSA*-group and G* a separated HNN extension of

G, relative to an isomorphism <j>: A—*B of Abelian subgroups of G, with A maximal

Abelian in G. Then G* is a CS A* -group.

PROOF: We may assume that A and B are nontrivial (else G* is the free product
of G and an infinite cyclic, hence CSA* [15]). The maximal Abelian subgroup Bi of
G containing B is the malnormal closure of B. Clearly, B is normal in J?i, and the
result follows from Theorem 1 and Proposition 2. U

Combining Proposition 4, Theorem 4 and the remarks at the beginning of this

section, we obtain

THEOREM 5 . Let <j) : A-^B be an isomorphism of Abelian subgroups of a CSA* -
group G, with A maximal Abelian in G. Then the corresponding HNN-extension of
G is again CSA* if and only if it is a separated extension or there exists an s £ G such
that B = A' and <j>{a) = a5 for all a 6 A.

THEOREM' 6 . Let G and H be CSA*-groups and <j> : A—>B an isomorphism of

Abelian subgroups of G and H respectively. Then the amalgamated product G *$ H

is CSA* if and only if at least one of the subgroups A or B is maximal Abelian in G

or H respectively.

PROOF: It follows directly from Proposition 3 and Theorem 2. D

REMARK. An oriented graph F of CSA-groups, with Abelian edge groups, is quasi-
malnormal if and only if each edge group G(e) is maximal Abelian in G(l(e)); and F
is malnormal if and only if each edge group G(e) is maximal Abelian in both vertex
groups (that is, G(e) is maximal Abelian in G (t(e)) and its image te (G(e)) is maximal
Abelian in G(r(e))) . Theorem 3 gives examples of types of oriented graphs of CSA*-
groups, with Abelian edge groups, whose fundamental groups are again CSA*. We
have, in particular,

PROPOSITION 5 . If the edge groups G(e) of an oriented tree of CSA* -groups
are maximal Abelian in G(l(e)) and also have maximal Abelian images in the target
groups G ( r(e)) , then the fundamental group of the tree of groups is again a CSA*-
group.

PROOF: The result follows immediately from Theorem 3 and the Remark at the
beginning of this section. D

PROPOSITION 6 . Let T - (V, E) be the tree with two edges ei and e2 , having
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a common initial point v, and endpoints wi and w2 respectively. Suppose that the
vertex groups are CSA* and the edge groups G (e<) are maximal Abelian in G(v), with
nontrivial intersection (hence coincident). If their images are not maximal Abek'aji in
G(wi) and G(w2) respectively, then the fundamental group of this oriented graph of
groups is not CSA.

PROOF: The fundamental group is the amalgamated product of the CSA-groups
G(v) *G(ei) G{wi) (Theorem 2) and G(w2), with amalgamated subgroup G(e2). The
maximal Abelian subgroup of Gv*G(<.1)G(wi), containing the image of G(e2), contains
the image of the maximal Abelian subgroup of G(wi) containing the image of G(ei),
hence cannot coincide with the image of G (e2) • The result now follows from Proposition
3. D

4. ONE-RELATOR CSA-GROUPS

In this section we completely characterise, in terms of "obstacles", all one-relator
groups that are CSA, and we show that all the obstacles are realised. It follows from
the characterisation of one-relator CSA-groups that in the torsion-free case the CSA-
property is equivalent to the transitivity of commutation; however, this equivalence fails
for one-relator groups with torsion.

PROPOSITION 7.

1. The group B — F2 x Z is not commutative transitive (hence not CSA).
2. The non-Abelian Baumslag-Solitar groups

Bm,n = (x,y\ t/z™*/-1 = as"), run £ 1,

are not CSA; furthermore, the non-metabelian Baumslag-Solitar groups
(\m\ z£ 1 7̂  \n\) contain B as a subgroup (hence are not commutative
transitive and not CSA).

3. The one-relator group

G=(x,y\[[x,y},y} = l)

contains B, but does not contain any non-Abelian Baumslag-Solitar
groups.

PROOF: 1. If we write B = F(x,y) x (z), then we see immediately that the
elements x and y commute with z, but not with each other.

2. A metabelian non-Abelian BS-group contains a nontrivial Abelian normal sub-
group, therefore it is not a CSA-group. See the proof of Theorem 7 for a verification of
the statement that the non-metabelian Baumslag-Solitar groups contain B.
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3.The proof that B is a subgroup of G is contained in the proof of Proposition 12 of
the next section. Since G is residually p (Proposition 12) for all primes p but the non-
Abelian Baumslag-Solitar groups fail to be residually p for almost all p (Proposition
11), G does not contain any non-Abelian Buamslag-Solitar groups. U

LEMMA 4 . Suppose that a group T is a nonabelian semidirect product A+ x (t)

of the underlying Abelian group A+ of a finitely generated subring A of Q and an
infinite cycle (t). Then every epimorphism V> from T onto a torsion-free group W,

with tj} nontrivial on A and (t), is an isomorphism.

PROOF: It is easily seen that A — Z [1/fc] for some natural number k, and that
the restriction of tj> to A+ is injective. The action of t on A+ is multiplication by
some rational number m/n, where both m and n divide a power of k. Clearly, ij)(T) —
V> {A+) (i/){t)). Identify if> (A+) with A+ . The action (through conjugation) by i on A+

is multiplication by m/n. If no power of t is in A+ , then ip is clearly an isomorphism.
Suppose now that some power 7 is in A+. Then, since A+ is Abelian, m* = n* and
m = ± n . Since T is nonabelian, m/n = —1. The (i)-module A+ is the union of an
ascending chain of submodules (a,-); therefore, T is the union of an ascending chain
of groups, each isomorphic to H = {a,t | t~1at = a " 1 ) . If the restriction of ijj to
each of these groups is injective then tji is injective; so we may assume, without loss
of generality, that T is in fact equal to H. If i/" is not injective then ip(T) admits a
presentation with generators a, t, and

t^at = a~\ tT = a' {r,s £ Z)

among its defining relations. Then

tr = r V * - (t-lat)' = a~' = t~T

and t2r = 1. This contradicts our assumption that i/)(T) is torsion free. D

THEOREM 7 . A nonabelian torsion-free one-relator group G is CSA if and only if

it does not contain a copy of B or one of the (nonabelian) metabeh'an Baumslag-Solitar

groups £ 1 ) n = {x,y \yxy~1 = xn), n £ Z - {0,1}.

The proof of Theorem 7 will use the following

LEMMA 5 . Let H be a subgroup of a torsion-free one-reiator group G. Then one
of the following is true:

• H is locally cyclic;

• H contains a nonabelian free group of rank 2;

• H is isomorphic to B\<m for some m £ Z - {0}.
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PROOF OF THE LEMMA: By [11, Chapter II, Proposition 5.27], H is either solv-
able or contains a free group of rank 2. Suppose that H is solvable. The result then
follows from Moldavanskii's Theorem [11, Chapter II, Proposition 5.25, p.109] or from
the classification of solvable groups of cohomological dimension ^ 2 [7] (G has coho-
mological dimension ^ 2, and the same must be true of its subgroups.)

PROOF OF THE THEOREM: . Clearly G cannot be CSA if it contains a copy of
B or Bi<n. If G is not CSA, then there exists a maximal Abelian subgroup A of G,
and elements 01,02 E A, z £ G — A, such that a\ — a?. ^ a.\. By Lemma 5, (01,02) is
either free Abelian of rank two or it is cyclic.

Consider first the case where (01,02) is cyclic. Then there exists ao £ A, m,n £ Z
such that 01 = a™, 02 = a™. If |m| = 1, then, by Lemma 4, (00,2) is isomorphic to
the semidirect product of the additive group of the ring Z [1/n] and the infinite cycle
(z), where the action by z is multiplication by n. Similarly, if |n| = 1 then (ao,z) is
isomorphic to the semidirect product of Z [1/m] and the infinite cycle (z), where the
action of z is now multiplication by m. So, if |n| or |m| is 1, then (ao,z) is isomorphic
to Bitn or B\>m. It cannot be isomorphic to the free Abelian group of rank 2, B\y\ ,
since we have supposed that ai ^ 02. Suppose now that |m| ^ 1 ^ \n\. Consider, for
every natural number i, the group

Hi-{al\az
o

l ,...,Oo , a 0 ) o j , . . . ,aj').

These groups cannot all be Abelian, since in that case (ao,z) would be isomorphic
to a homomorphic image of the semidirect product of Z [1/mn] and (z), where the
action of z is multiplication by m/n; hence, by Lemma 4, (ao,z) would be isomorphic
to this (metabelian) semidirect product. But this solvable group is not among those
that appear in the statement of Lemma 5 (it has cohomological dimension 3, [7]). It
follows from the Lemma that either some Hi is isomorphic to i?i,mi m £ {0,1}, or
Hi contains a free group of rank 2. It is easily proved, by induction on t ^ l , that

(5) 4-}1"

So, <XQ centralises Hi, and it follows that, if Hi contains a free group of rank 2,

then (ao,z) contains a copy of the group B. In particular, the above arguments show

that Bm,n contains a copy of B.

We now consider the case where (01,02) is not cyclic. Suppose that G does not

contain any nonabelian Baumslag-Solitar group. Then every subgroup of G is either

Abelian or contains a free group of rank 2. Let Ki be the subgroup of G generated by

a\ , — i ^ j ^ i. If all Ki are Abelian, then their union K is Abelian and normal in
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the nonabelian solvable subgroup {K, z) of G. By the Lemma and our assumptions,

G cannot contain a nonabelian solvable subgroup. Hence, we may assume that K{ is

Abelian and Ki+l is not. Then Ki+i contains a free subgroup of rank 2, and we claim

that Ko centralises it. If i = 0, this is clear since (ai,af) and (af ,a i ) are Abelian.

If i > 0, then

(aua*,... ,a\ ), (a* ,... ,ai ,0,!}

are contained in conjugates of Ki, hence are Abelian. The result follows. D

PROPOSITION 8 . Tie infinite dihedral group

Doo = {x,y | yxy'1 = x'1 ,y2 = 1)

is commutative transitive, but not CSA. Moreover, Doo is a subgroup of the one-relator
group

(6) G = (x,y | x2 = 1).

PROOF: Clearly, (x)n(x)y = (x), y $ (x), which shows that £)«> cannot be CSA.

The normal subgroup of G generated by x is the free product of countably many
copies of a cyclic group of order 2, hence contains Doo •

We can represent G as a free product of Z and Z/2Z. To prove that G, and
hence Doo, is commutative transitive, it suffices to observe that a free product P of
commutative transitive groups is commutative transitive. Indeed, if x commutes with
y and z in P, then H = (x,y,z) is a free product of conjugates of subgroups of the
factors of P and (possibly) a free group F. Since the centre of H is nontrivial, the
decomposition of H as a free product is trivial, hence H is isomorphic to a subgroup
of F or of one of the factors of P. Thus, y commutes with z. U

THEOREM 8 . Let G be a one-relator group with torsion. Then G is CSA if and

only if it does not contain the infinite dihedral group

Doo = (x,y | yxy'1 = x~l,y2 = 1).

PROOF: If G contains Doo, it cannot be CSA, since the class of CSA-groups is
closed under taking subgroups and Doo is not CSA, by Proposition 8.

Conversely, suppose that G is not CSA and does not contain a copy of Doo • By a
result of Karass and Solitar, every subgroup of a one-relator group with torsion is either
cyclic, Doo or contains a free group of rank 2 [11, Chapter II, Proposition. 5.27]. Let
A be a maximal Abelian subgroup of G. Then A is cyclic.
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CASE 1. A is infinite. Suppose that 1 ^ ai 6 A = (oo), a\ — a™, z 6 G, a-i = a\ =
a j , z ^ J4 , then there are two possibilities for

K = (4 11 6 Z) :

it contains a free subgroup of rank 2 or is cyclic. If K is cyclic, then {K, z) does not

contain a nonabelian free group. Hence it is Abelian. It contains the maximal Abelian

subgroup A of G, hence z 6 A. Contradiction. If K contains a free subgroup F

of rank 2, then F is contained in the subgroup generated by a finite number of the

displayed generators of K; hence is centralised by a power OQ of oo (see the proof

of Theorem 7). Since the centre of F is trivial, any nontrivial element of F, together

with OQ , generate a noncylic Abelian subgroup, and we again have a contradiction.

CASE 2. A is finite. We apply the usual Magnus treatment to the one-relator group
[11, Chapter 2, Section 6, Chapter 4, Section 5], and argue by induction on the length
of the defining relator. If only one letter appears in the defining relator, then the one-
relator group is finite cyclic, or the free product of a free group and a finite cyclic group.
It is easily verified that in this case the one-relator group is again CSA (the base of the
induction). If the exponent sum of no generator in the relator is zero, we can adjoin a
root of a generator to our one-relator group G, and take a different system of generators,
so that the relator, when expressed in these new generators, has exponent sum zero in
one of the generators, and is an HNN-extension of a one-relator group H, with shorter
defining relator. The associated subgroups, the co-called Magnus subgroups, are free,
hence have trivial intersection with A. It follows that A is a free product of subgroups
of conjugates of H and a free group. But A, being finite cyclic, is indecomposable
as a free product, and must be contained in a conjugate of F . As in the proof of
Theorem 1 (see the discussion around (3) and (4)), we find that z belongs to the same
conjugate of H . By the induction hypothesis, H is CSA. But then z £ A, the desired
contradiction. D

THEOREM 9 . A torsion-free one-relator group is CSA if and only if it is commu-

tative transitive. The class of one-relator groups with torsion that are CSA is strictly

contained in the class of commutation-transitive one-relator groups with torsion.

PROOF: In the torsion-free case, the obstacles B and B\<n (n ^ 1) to the CSA-
property are not commutative transitive. The result follows. In the torsion case the
group G of Proposition 8 is commutative transitive but not CSA. D

5. Q-FAITHFULNESS, RESIDUAL PROPERTIES AND ONE-RELATOR GROUPS

In the context of G. Baumslag's problem [2] of describing the class of Q-faithful
one-relator groups, we prove here that this class strictly contains the union of the class
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of one-relator CS A * -groups and the class of one-relator groups that are residually p for

almost all primes p .

PROPOSITION . If, for almost all primes p, a group G is residually p then it is

Q-faithful.

PROOF: Let S be the set of prime numbers and $ an ultrafilter on S, containing
all cofinite subsets of 5 . The ultraproduct n * ^ p °f ^ e rinSs °f p-adic numbers con-
tains Q as a subring (every integer is divisible by only finitely many primes). Moreover,
the componentwise action by exponentiation of this ultraproduct on the ultraproduct
JI^Gp of pro-p-completions Gp of G is faithful. The restriction to Q of this action is
faithful. Since G is embeddable in the Q-group Y[\ Gp, G is Q-faithful. D

PROPOSITION 1 0 . If a group G is residually torsion-free nilpotent, then it is

faithful over Q .

PROOF: By hypothesis, G is embeddable in a product of torsion-free nilpotent
groups. Since torsion-free nilpotent groups are faithful over Q (see [13] or [9]), each
one is embeddable in its Q-completion, and it follows that there is a monomorphism
from G into a product of Q-groups. The canonical homomorphism from G into its Q-
completion factors through this monomorphism, hence is itself a monomorphism, which
means that G is Q-faithful. U

PROPOSITION 1 1 . Every nonabeL'an Baumslag-Solitargroup Bmtn is not resid-

ually p for almost all primes p. If BmiTl is metabek'an (that is, \m\ or \n\ — 1), then

it is Q-faithful.

PROOF: The defining relation of a nonabelian Baumslag-Solitar G = Bmtn can be

written in the form

(7) xn-m=[xm,y^].

Consider first the case were n ^ m. If p is a prime not dividing m — n, then G is not
residually p . Indeed, the pro-p-completion Gp is a one-relator pro-p-group with the
same defining relation, and if x belongs to the fc-th term of the central descending series
of Gp, then (7) shows that xn~m, and hence x, belongs to the (k + l)-st term. This
proves that the image of x in Gp is 1, and the canonical map from G into Gp cannot
be injective, which means that G is not residually p . If m — n then y commutes with
xn but not with x. However, for every prime p not dividing n the pro-p-completion
Gp of G is an Abelian pro-p-group. This shows that the canonical map:*?—»GP is not
injective, and G is not residually p .

Clearly, the nonabelian metabelian Baumslag-Solitar groups are semidirect prod-
ucts of the form Z [1/n] xiZ, where the action of a generator of Z on Z [l/n] is multi-
plication by n > 1. This semidirect product is naturally embedded in the semidirect
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product E = R ^ Q , where the action

9 : Q—>Aut R

is given by 6 (s/t) (r) — TO*'*r. For every (c, d) £ E and natural number m > 1,
the element (c, d) has a unique m-th root (a, 6). Indeed, let b = d/m, and solve the
equation

(l+b+ ••• + bn-1)a = c

for a, then clearly (a,b)m = (c,d). U

PROPOSITION 12 . The one-relator group

G = (x,y\[[x,y],y] = l)

is not a CSA-group. However, it is Q-faithful, residuaMy torsion-free nilpotent, residu-
aJly p and with torsion-free pro-p-completion for every prime p (hence does not contain
a nonabelian Baumslag-Soh'tar group).

PROOF: Let X be the normal subgroup of the free group F(x,y) generated by
x, and let Xi = y~'lxyt for all integers i. Then

We see that in G we have a^Xj- i — x^aj j for all i £ Z. Let d = X^1XQ, then

d = x^Xi for all i € Z. It is easy to prove, by induction on |i|, that Xi = xd~x for all

integers i. It follows that X is freely generated by d and x, and G is the semidirect

product of the free group F(d,x) and the infinite cycle (y), with y acting trivially on

d, and xy — xd~x .

Let Fk be the k-ih term of the central descending series of F (d, x). Then G/Fk+i

is torsion free for all k (it is a semi-direct product of F/Fk+i and (y)). We claim that

it is also nilpotent. We have [y,d] = 1 and

[x,d\*=[xd-\d]=[z,d\i~1.

Suppose that c is a commutator of weight k ^ 2 in d and x. It is "multilinear" modulo
Fk+i; hence it follows from the relations dv = d and xy = xd~x, that if x appears only
once in c, then cy = c (mod .Ffc+i) and [y, c] = 1 (mod Fk+i). By the same reasoning,
if x appears j ^ 2 times in the commutator c, then [y,c] is congruent, modulo Fk+i,

to a product of commutators in which x appears at most j — 1 times. If we commutate
the element c j times by y, it drops into Fk+i • This shows that G/Fk+i is nilpotent.
By Proposition 10, G is Q-faithful.
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For every prime p , the pro-p-completion of G is the semi-direct product of the
free pro-p-groupon x,d by the free pro-p-group on the single generator y. Clearly, the
canonical map from G into its pro-p-completion is injective. Thus, G is residually p.

That G is Q-faithful follows from Proposition 10 or Proposition 9.

To see that G is not CSA, we write yi = x~xyxx, and we find that [2/0,2/1] = 1-
Hence,

1 # (yi> = (yo,yi) n (1/1,2/2) = {2/0,2/1) n (2/0,2/1)*) x £ (2/0,2/1)-

This completes the proof of the Proposition. D
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